Journal of the European Optical Society - Rapid publications, Vol 7 (2012)

Diffractive and interferometric methods to characterize photopolymers with liquid crystal molecules as holographic recording material

S. Gallego, A. Márquez, M. Ortuno, J. Francés, I. Pascual, A. Beléndez


We present two methods, interferometry at the zero spatial frequency limit and analysis of diffracted orders for very low spatial frequency gratings, to characterize photopolymers with dispersed nematic liquid crystals. These methods provide us with real time information about the transformations taking place inside the material during recording.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2012.12024]

Full Text: PDF

Citation Details

Cite this article


S. Martin, P. E. Leclere, Y. L. M. Renotte, V. Toal, and Y. F. Lion, "Characterization of an acrylamide-based dry photopolymer holographic recording material," Opt. Eng. 33, 3942 (1994).

K. Curtis, and D. Psaltis, "Characterization of the Du-Pont photopolymer for 3-dimensional holographic storage," Appl. Optics 33(23), 5396-5399, (1994).

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical photopolymers: design and applications," Adv. Mater. 10, 1219-1224 (1998).

V. A. Barachevskii, "Photopolymerizable recording media for threedimensional holographic optical memory," High. Energy Chem. 40, 131-141 (2006).

W. J. Gambogi, A. M. Weber, and T. J. Trout, "Advances and applications of DuPont holographic photopolymers," SPIE 2043, 2-13 (1993).

H.-Y. S. Li, and D. Psaltis, "Three-dimensional holographic disks," Appl. Optics 33, 3764-3774 (1994).

S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A 3, 72-81 (2001).

Mrquez, C. Neipp, S. Gallego, M. Ortuo, A. Belndez and I. Pascual, "Edge enhanced imaging using PVA/acrylamide photopolymer gratings," Opt. Lett. 28, 1510-1512 (2003).

J. T. Sheridan, and J. R. Lawrence, "Nonlocal-response diffusion model of holographic recording in photopolymer," J. Opt. Soc. Am. A 17, 1008-1014 (2000).

K. Pavani, I. Naydenova, S. Martin, V. Toal, "Photoinduced surface relief studies in an acrylamide-based photopolymer," J. Opt. A-Pure Appl. Opt. 9, 43-48 (2007).

I. Naydenova, E. Mihaylova, S. Martin, and V. Toal, "Holographic patterning of acrylamide-based photopolymer surface," Opt. Express 13, 4878-4889 (2005).

S. Gallego, A. Mrquez, M. Ortuo, J. Francs, S. Marini, A. Belndez, and I. Pascual, "Surface relief model for photopolymers without cover plating," Opt. Express 19, 10896-10906 (2011).

J. T. Sheridan, M. Downey, and F. T. O'Neill, "Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses," J. Opt. A-Pure Appl. Opt. 3, 477-488 (2001).

C. E. Close, M. R. Gleeson, and J. T. Sheridan, "Monomer Diffusion Rates in Photopolymer Material: Part I: Low Spatial Frequency Holographic Gratings," J. Opt. Soc. Am. B 28, 658-666 (2011).

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O' Neill, J. T. Sheridan, S. Gallego, and C. Neipp, "Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model," Opt. Express 13, 6990-7004 (2005).

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, "Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording," Opt. Express 14, 12712-12719 (2006).

S. Harbour, J. V. Kelly , T. Galstian, and J. T. Sheridan, "Optical birefringence and anisotropic scattering in acrylate based holographic polymer dispersed liquid crystals," Opt. Commun. 278, 28-33 (2007).

K. R. Sun, Y. S. Kang, and B. K. Kim, "Transflective multiplexing of holographic polymer dispersed liquid crystal using Si additives," Polymer Letters 5, 73-81 (2010).

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, "Holographic polymer-dispersed liquid crystals (H-PDLCS)," Annu. Rev. Mater. Sci. 30, 83-115 (2000).

S. Gallego, A. Mrquez, D. Mndez, M. Ortuo, C. Neipp, M. L. Alvarez, A. Belndez, E. Fernndez, and I. Pascual, "Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods," Appl. Optics 47, 2556-2563 (2008).

A. J. Bergeron, F. Gauvin, D. Gagnon, H. Gingras, H. H. Arsenault, and M. Doucet, "Phase calibration and applications of a liquid crystal spatial light modulator," Appl. Optics 34, 5133-5139 (1995).

S. Gallego, A. Mrquez, D. Mndez, S. Marini, A. Belndez, and I. Pascual, "Spatial-phase-modulation-based study of polyvinylalcohol/ acrylamide photopolymers in the low spatial frequency range," Appl. Optics 48, 4403-4413 (2009).

M. Born, and E. Wolf, Principles of Optics (Pergamon Press. Oxford, 1980).

M. Ortuo, E. Fernndez, S. Gallego, A. Belndez, and I. Pascual, "New photopolymer holographic recording material with sustainable design," Opt. Express 15, 12425 (2007).

S. Gallego, A. Mrquez, M. Ortuo, S. Marini, and J. Francs, "High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit," Opt. Mater. 33, 531-537 (2010).

G. Zhao, and P. Mouroulis, "Extension of a diffusion model for holographic photopolymers," J. Mod. Opt. 42, 2571-2573 (1995).

S. Gallego, C. Neipp, M. Ortuo, A. Benlndez, E. Fernndez, and I. Pascual, "Analysis of monomer diffusion in depth in photopolymer materials," Opt. Commun. 274, 43-49 (2007).

S. Gallego, M. Ortuo, C. Neipp, A. Mrquez, A. Belndez, E. Fernndez, and I. Pascual, "3-dimensional characterization of thick grating formation in PVA/AA based photopolymer," Opt. Express 14, 5121-5128 (2006).

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, "Effects of absorption and inhibition during grating formation in photopolymer materials," J. Opt. Soc. Am. B 23, 2079-2088 (2006).

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, "Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation," Appl. Phys. B 100, 559-569 (2010).

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, "Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer," J. Appl. Phys. 107, 053113 (2010).

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, "High intensity response of photopolymer materials for holographic grating formations," Macromolecules 43, 9462-9472 (2010).

S. Gallego, A. Mrquez, M. Ortuo, S. Marini, I. Pascual, and A. Belndez, "Monomer diffusion in sustainable photopolymers for diffractive optics applications," Opt. Mater. 33, 1626-1629 (2011).

S. Gallego, A. Mrquez, M. Ortuo, J. Francs, I. Pascual, and A. Belndez, "Relief diffracted elements recorded on absorbent photopolymers," Opt. Express 20, 11218-11231 (2012).

J. V. Kelly, F. T. O'Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuo, "Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions," J. Opt. Soc. Am. B 22, 407-416 (2005).

A. Mrquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Belndez, "Production of computer-generated phase holograms using graphic devices: application to correlation filters," Opt. Eng. 39, 1612-1619 (2000).

S. Gallego, A. Mrquez, S. Marini, E. Fernndez, M. Ortuo, and I. Pascual, "In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation," Opt. Express 17, 18279-18291 (2009).