Journal of the European Optical Society - Rapid publications, Vol 7 (2012)

Eigenvalue calibration methods for polarimetry

C. Macias-Romero, P. Török

Abstract


Complex polarisation sensitive systems such as imaging Mueller matrix polarimeters are commonly calibrated using the eigenvalue calibration method. In this paper we present an extensive review of the method and an existing variant. We also introduce two more variants of the method to calibrate imaging polarimeters that use high numerical aperture optics. The calibration methods are tested using a Mueller matrix confocal microscope of high numerical aperture, and the effect of the pinhole size on the polarisation is also assessed experimentally.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2012.12004]

Full Text: PDF

Citation Details


Cite this article

References


E. Compain, S. Poirier, and B. Drevillon, "General and Self- Consistent Method for the Calibration of Polarization Modulators, Polarimeters, and Mueller-Matrix Ellipsometers," Appl. Optics 38, 3490-3502 (1999).

C. Macas-Romero, M. R. Foreman, and P. Trk, "Spatial and temporal variations in vector fields," Opt. Express 19, 25066-25076 (2011).

S. Inou, "Studies of depolarisation of light at microscope lens surfaces I: The origin of stray light by rotation at the lens surfaces," Exp. Cell. Biol. 3, 199-208 (1952).

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, "General methods for optimized design and calibration of Mueller polarimeters," Thin Solid Films 455, 112-119 (2004).

R. M. A. Azzam, E. Masetti, I. M. Elminyawi, and A. M. El-Saba, "Construction, calibration, and testing for a fourdetector photopolarimeter," Rev. Sci. Instrum. 59, 84-88 (1988).

R. M. A. Azzam, and A. G. Lopez, "Accurate calibration of the fourdetector photopolarimeter with imperfect polarizing polarizing elements," J. Opt. Soc. Am. A 6, 1513-1521 (1989).

K. Brudzewski, "Static Stokes ellipsometer: general analysis and optimization," J. Mod. Opt. 38, 889-896 (1991).

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, "Figures of merit for complete Stokes polarimeter optimization," Proc. SPIE 4133, 75 (2000).

D. Lara, and C. Dainty, "Axially resolved complete Mueller matrix confocal microscopy," Appl. Optics 45, 1917-1930 (2006).

R. M. A. Azzam, and N. M. Bashara, Ellipsometry and Polarized Light (Amsterdam: North-Holland, Amsterdam, 1977).

S. Lu, and R. A. Chipman, "Interpretation of Mueller matrices based on polar decomposition," J. Opt. Soc. Am. A 13, 1106-1113 (1996).

R.A. Horn, and C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985).

M. Darouach, "Solution to Sylvester equation associated to linear descriptor systems," Syst. Control Lett. 55(10), 835-838 (2006).

B. Zhou, and G.R. Duana, "On the generalized Sylvester mapping and matrix equations," Syst. Control Lett. 57(3), 200-208 (2008).

C. J. C. Burges, and V. Vapnik, "A new method for constructing artificial neural networks," Interim technical report, ONR contract N00014-94-c-0186, AT&T Bell Laboratories (1995).

H. Ren, and R. Dekany, "Fast wave-front reconstruction by solving the Sylvester equation with the alternating direction implicit method," Opt. Express 12, 3279-3296 (2004).

F. R. Gantmacher, Theory of Matrices (Chelsea Publishing Co., New York, 1977).

H. T. Burgess, "Solution of the Matrix Equation X_1AX = N," Ann. Math. 19(1), 30-36 (1917).

H. Neudecker, "A Note on Kronecker Matrix Products and Matrix Equation Systems," SIAM J. Appl. Math. 17(3), 603-606 (1969).

H. V. Henderson, and S. R. Searle, "Vec and Vech Operators for Matrices, with Some Uses in Jacobians and Multivariate Statistics," Can. J. Stat. 7(1), 65-81 (1979).

J. W. Brewer, "Kronecker Products and Matrix Calculus in System Theory," IEEE T. Circuits Syst. 25(9), 772-781 (1978).

A. Graham, Kronecker Products and Matrix Calculus with Applications (Ellis Horwood Limited, Chichester, 1981).

M. A. Epton, "Methods For The Solution Of AXD-BXC=E And Its Application In The Numerical Solution Of Implicit Ordinary Differential Equations," BIT 20, 341-345 (1980).

T. F. Coleman, and A. Pothen, "The null space problem. I. Complexity," SIAM J. Algebra. Discr. 7, 527-537 (1986).

R. A. Chipman, Polarization Aberrations (PhD, University of Arizona, 1992).

W. H. Press, and S. A. Teukolsky, Numerical recipes in C. The art of scientific computing (Cambridge University Press, Cambridge, 1992).

A. De Martino, K. Yong-Ki, E. Garcia-Caurel, B. Laude, and B. Drevillon, "Optimized Mueller polarimeter with liquid crystals," Opt. Lett. 28(8), 616-618 (2003).

P. Trk, P. D. Higdon, and T. Wilson, "On the general properties of polarising conventional and confocal microscopes," Opt. Commun. 148, 300-315 (1998).

B. R. Boruah and M. A. A. Neil, "Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam," Rev. Sci. Instr. 80, 013705 (2009).

A. J. Laub, Matrix Analysis for Scientists and Engineers (Society for Industrial and Applied Mathematics, Philadelphia, 2005).