Journal of the European Optical Society - Rapid publications, Vol 6 (2011)

Two-photon polymerization with optimized spatial light modulator

L. Kelemen, P. Ormos, G. Vizsnyiczai


The application of diffractive optical elements can enhance the efficiency of the two-photon polymerization (TPP) process by multiplying the polymerizing beams. Spatial light modulators (SLMs) can dynamically change the light intensity pattern used for polymerization, making single shot polymerization possible. Most reflective, liquid crystal-based instruments, however, suffer from various surface aberrations. In order to enable SLMs to generate suitable polymerizing beams for TPP, these aberrations need to be corrected. Several methods were introduced earlier to compensate SLM aberrations in different applications. For the nonlinear process of TPP, we developed and specifically characterized a correction procedure. We used a simple interferometric method to determine the surface distortion of the SLM, calculated a correcting hologram and confirmed the correction with the polymerization of test structures. The corrected SLM was capable of parallel polymerization of 3D structures with a quality achievable with non-SLM beams.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2011.11029]

Full Text: PDF

Citation Details

Cite this article


B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three dimensional optical data storage and microfabrication", Nature 398, (6722), 51- 54 (1999).

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption", Nature 412, (6848) 697-698 (2001).

P. Galajda and P. Ormos, "Complex micromachines produced and driven by light", Appl. Phys. Lett. 78, 249-151 (2001).

R. Guo, S. Z. Xiao, X. M. Zhai, J. W. Li, A. D. Xia, and W. H. Huang, "Micro lens fabrication by means of femtosecond two photon photopolymerization", Opt. Express 14, 810-816 (2006).

S. Maruo, and H. Inoue, "Optically driven micropump produced by three-dimensional two-photon microfabrication", Appl. Phys. Lett. 89, 144101 (2006).

L. Kelemen, S. Valkai, and P. Ormos, "Integrated optical motor", Appl. Optics 45, 2777- 2780 (2006).

G. Knner, S. Parkin, and T. A. Nieminen, V. L. Y. Loke, N. R. Heckenberg, H. Rubinsztein-Dunlop, "Integrated optomechanical microelements", Opt. Express 15, 5521-5530 (2007).

S. Maruo, A. Takaura, and Y. Saito, "Optically driven micropump with a twin spiral microrotor", Opt. Express 17, 18525-18532 (2009).

K.-S. Lee, R. H. Kim, D.-Y. Yang, S. H. Park, "Advances in 3D nano/microfabrication using two-photon initiated polymerization", Prog. Polym. Sci. 33, 631-681, (2008).

S-H. Park, D-Y. Yang, and K-S. Lee, "Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices", Laser Photonics Rev. 3, 1-11 (2009).

S. D. Gittard and R. J. Narayan, "Laser direct writing of micro- and nano-scale medical devices", Expert Rev. Med. Devic. 7, 343-356 (2010).

H.-B. Sun, T. Tanaka, and S. Kawata, "Three-dimensional focal spots related to two- photon excitation", Appl. Phys. Lett. 80, 3673-3675 (2002).

T. Tanaka, H. Sun, and S. Kawata, "Rapid Sub-Diffraction-Limit Laser micro/ nanoprocessing in a Threshold Material System", Appl. Phys. Lett. 80, 312-314 (2002).

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, "65 nm feature sizes using visible wavelength 3-D multiphoton lithography", Opt. Express 15, 3426-3436 (2007).

F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, "Three-dimensional fabrication of metallic nanostructures over large areas by two- photon polymerization", Opt. Express 14, 800-809 (2006).

L. Kelemen, S. Valkai, and P. Ormos, "Parallel photopolymerisation with complex light patterns generated by diffractive optical elements", Opt. Express 15, 14488-14497 (2007).

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, "Sparseexposure technique in holographic two-photon polymerization", Opt. Express 16, 16592-16599 (2008).

R. J. Winfield, B. Bhuian, S. O' Brien, G.M. Crean, "Fabrication of grating structures by simultaneous multi-spot fs laser writing", Appl. Surf. Sci. 253, 8086-8090, (2007).

D. G. Grier, "A revolution in optical manipulation", Nature 424, (6950), 810-816 (2003).

J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Maughon, J. Qin, H. Rckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three dimensional optical data storage and microfabrication", Nature 398, (6722), 51- 54 (1999).

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, "Full phase and amplitude control of holographic optical tweezers with high efficiency", Opt. Express 16, 4479-4486 (2008).

G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, "Parallel two-photon photopolymerization of microgear patterns", Opt. Commun. 282, 3746-3750 (2009).

K. Seunarine, D. W. Calton, I. Underwood, J. T. M. Stevenson, A. M. Gundlach, and M. Begbie, "Techniques to improve the flatness of reflective micro-optical arrays", Sensor Actuator 78, 18-27 (1999).

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, "LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation", Proc. SPIE 6487, 64870Y (2007).

A. Jesacher, A. Schwaighofer, S. Frhapter, C. Maurer, S. Bernet, and M. Ritsch- Marte, "Wavefront correction of spatial light modulators using an optical vortex image", Opt. Express 15, 5801-5808 (2007).

E. Martn-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, "Design strategies for optimizing holographic optical tweezers set-ups", J. Opt. A - Pure Appl. Op. 9, S267-S277, (2007).

Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, "Optical traps with geometric aberrations", Appl. Opt. 45, 3425-3429 (2006).

K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, "Aberration correction in holographic optical tweezers", Opt. Express 14, 4169-4174 (2006).

C. Li, M. Xia, Q. Mu, B. Jiang L.i Xuan, and Z. Cao, "High-precision open-loop adaptive optics system based on LC-SLM", Opt. Express 17, 10774-10781 (2009).

C. Lpez-Quesada, J. Andilla, and E. Martn-Badosa, "Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor", Appl. Opt. 48, 1084- 1090 (2009).

J. Garcia-Marquez, J.E.A. Landgrave, N. Alcala-Ochoa, C. Perez-Santos, "Recursive wavefront aberration correction method for LCoS spatial light modulators", Opt. Laser Eng. 49, 743-748 (2011).

R. W. Bowman, A. J. Wright and M. J. Padgett, "An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers", J. Opt. 12, 124004 (2010).

T. Cizmar, M. Mazilu, K. Dholakia, "In situ wavefront correction and its application to micromanipulation", Nat. Photonics 4, 388-394 (2010).

L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, "Phase-only liquid crystal spatial light modulator for wavefront correction with high precision", Opt. Express 12, 6403- 6409 (2004).

H. B. Sun, K. Takada, M. S. Kim, K.-S. Lee, and S. Kawata, "Scaling laws of voxels in two-photon photopolymerization nanofabrication", Appl. Phys. Lett. 83, 1104-1106 (2003).