## Journal of the European Optical Society - Rapid publications, Vol 5 (2010)

### The Legendre transformations in Hamiltonian optics

#### Abstract

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2010.10022]

#### Citation Details

Cite this article

#### References

R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1964).

W. Brouwer, and A. Walther, "Geometrical optics" in Advanced Optical Techniques (North-Holland Publishing Company, Amsterdam, 1967).

M. Born, and E. Wolf, Principles of Optics (7th Edition, Cambridge University Press, Cambridge, 1999).

V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, New York, 1989).

http://en.wikipedia.org/wiki/Legendre_transformation

A. Walther, "Systematic approach to the teaching of lens theory" Am. J. Phys. 35, 808-816 (1967).

A. V. Gitin, "Using continuous Feynman integrals in the mathematical apparatus of geometrical and wave optics. A complex approach" J. Opt. Technol.+ 64, 729-735 (1997).

V. Guillemin, and S. Sternberg, Geometric Asymptotics (American Mathematical Society, Providence, 1977).

A. V. Gitin, "Legendre transformation: connection between transverse aberration of an optical system and its caustic" Opt. Comm. 281, 3062-3066 (2008).

A. V. Gitin, "The Legendre transformation as a way of constructing a phase portrait of beams of light rays" Opt. Comm. 282, 757-762 (2009).

http://www.optics.arizona.edu/loft/People/Proteep%20Mallik/OPTI_689_Summary.doc

A. Walther, "Radiometry and coherence" J. Opt. Soc. Am. 58, 1256- 1259 (1968).

K. H. Brenner, and J. Ojeda-Castañeda, "Ambiguity function and Wigner distribution function applied to partially coherent imagery" Opt. Acta 31, 213-223 (1984).

A. V. Gitin, "Optical systems for measuring the Wigner function of a laser beam by the method of phase-spatial tomography" Quantum Electron.+ 37, 85-91 (2007).

E. W. Marchand, Gradient Index Optics (Academic Press, New York, 1978).

L. D. Faddeev, and O. A. Yakubovskii, Lectures on Quantum Mechanics for Mathematics Students (American Mathematical Society, Providence, 2009).