Journal of the European Optical Society - Rapid publications, Vol 5 (2010)

Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays

P.-Y. Baroni, B. Päivänranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, H. P. Herzig

Abstract


A subwavelength-scale square lattice optical meta-material is fabricated using an interference photolithography process on the surface of a quartz microlens array. This nanostructuring of the quartz surface introduces an antireflective effect, reducing reflectivity between 10% and 30% and enhancing the transmissivity 3% in the visible spectrum. This approach permits fast fabrication on a 4-inch wafer covered with microlenses (non-flat surface) and produces monolithic devices which are robust to adverse environments such as temperature variations.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2010.10006]

Full Text: PDF

Citation Details


Cite this article

References


D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist" Meas. Sci. Technol. 1, 759-766 (1990).

Ph. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems" Pure Appl. Opt. 6, 617-636 (1997).

V. Bardinal, E. Daran, T. Leïchlé, C. Vergnenègre, C. Levallois, T. Camps, V. Conedera, J. B. Doucet, F. Carcenac, H. Ottevaere, and H. Thienpont, "Fabrication and characterization of microlens arrays using a cantilever-based spotter" Opt. Express 15, 6900-6907 (2007).

S. Calixto, "Silicone microlenses and interference gratings" Appl. Opt. 41, 3355-3361 (2002).

B. Päivänranta, P.-Y. Baroni, T. Scharf, W. Nakagawa, M. Kuittinen, and H. P. Herzig, "Antireflective nanostructured microlenses" Microelectron. Eng. 85, 1089-1091 (2008).

M. Karlsson, and F. Nikolajeff, "Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region" Opt. Express 11, 502-507 (2003).

C. J. M. van Rijn, "Laser interference as a lithographic nanopatterning tool" J. Microlith. Microfab. 5, 011012 (2006).

B. Päivänranta, N. Heikkilä, and M. Kuittinen, "Antireflective subwavelength-structured surfaces with enhanced color properties" J. Opt. Soc. Am. A 24, 1680-1686 (2007).

T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, "Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency" Opt. Express 16, 5577-5584 (2008).

S. Traut, M. Rossi, and H. P. Herzig, "Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array" J. Mod. Opt. 47, 2391-2397 (2000).

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies" J. Opt. A-Pure Appl. Op. 8, 407-429 (2006).

B. Päivänranta, M. Pudas, O. Pitkänen, K. Leinonen, M. Kuittinen, P.-Y. Baroni, T. Scharf, and H. P. Herzig, "Liquid phase deposition of polymers on arbitrary shaped surfaces and their suitability for e-beam patterning" Nanotechnology 20, 225305 (2009).

P.-Y. Baroni, T. Scharf, and H. P. Herzig, "Fabrication of large-area two-dimensional photonic crystals using interference lithography and direct writing of defects" Proc. SPIE 6182, 61821V(2006).

S. Traut, and H. P. Herzig, "Holographically recorded gratings on microlenses for a miniaturized spectrometer array" Opt. Eng. 39, 290-298 (2000).

H. Sickinger, J. Schwider, and B. Manzke, "Fiber based Mach- Zehnder interferometer for measuring wave aberrations of microlenses" Optik 110, 239-243 (1999).

M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).

D. H. Raguin, and G. M. Morris, "Structured surfaces mimic coating performance" Laser Focus World 33, 113-117 (1997)