Journal of the European Optical Society - Rapid publications, Vol 4 (2009)

LiNbO3 acousto-optical and electro-optical micromodulators

N. Courjal, M.-P. Bernal, G. Ulliac, J. Dahdah, S. Benchabane, J.-M. Merolla

Abstract


We report on acousto-optical (AO) and electro-optical (EO) LiNbO3 modulators with an active length of only 11 µm. The miniature devices are based on photonic crystal (PhC) structures that are controlled by an external effect (DC electric field or Surface Acoustic Waves). Two processes are presented for realizing the PhCs despite the resistance of the material to etching. The first method is based on direct FIB writing and can yield the fabrication of holes with depth of 32 m and diameter of 12 m or less. The second method consists in FIB patterning of a mask which is deposited on the substrate. This process is followed by proton exchange (PE) and reactive ion etching (RIE). Thus, structures with a diameter of 400 nm and an aspect ratio of 3:1 have been fabricated. The methods have been applied to the fabrication of EO and AO micromodulators showing a driving voltage of 13,5 V and a driving electric power of 20 mW respectively. These developments open the way to dense integration of dynamic optical functionalities.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2009.09018]

Full Text: PDF

Citation Details


Cite this article

References


L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, "High speed silicon photonic crystal waveguide modulator for low voltage operation" Appl. Phys. Lett 90, 071105 (2007).

B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, "Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultrasmall modal volumes" Opt. Express 15, 3140- 3148 (2007).

P. D. Batista, B. Drescher, W. Seidel, J. Rudolph, S. Jiao, and P. V. Santos, "ZnO/SiO2 microcavity modulator on silicon" Appl. Phys. Lett. 92, 133502 (2008).

M. M. de Lima, Jr., R. Hey, and P. V. Santos, "Active photonic crystals based on surface acoustic waves" Appl. Phys. Lett. 83, 2997-2999 (2003).

V. Laude, M. Wilm, S. Benchabane, and A. Khelif, "Full bandgap for surface acoustic waves in a piezoelectric phononic crystal" Phys. Rev. E 71, 036607 (2005).

P. Ferraro and S. Grilli, "Modulating the thickness of the resist pattern for controlling size and depth of submicron reversed domain in lithium niobate" Appl. Phys. Lett. 89, 133111 (2006).

D.W. Ward, E.R. Statz, and K.A. Nelson, "Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser machining" Appl. Phys. A-Mater. 86, 49-51 (2007).

F. Laurell, Jonas Webjörn, G. Arvidsson, and J. Holmberg, "Wet etching of proton exchanged lithium niobate-a novel processing technique" J. Lightwave Technol. 10, 1606-1610 (1992).

T.-J. Wang, C.-F. Huang, W.S. Wang, and P.-K. Wei, "A novel wetetching method using electric-field-assisted proton exchange in LiNbO3" J. Lightwave Technol. 22, 1764-1767 (2004).

D.M. Gill, D. Jacobson, C.A. White, D.W. Jones, Y. Shi, W. J. Minford, and A. Harris, "Ridged LiNbO3 modulators fabricated by a novel oxygen-ion implant/wet-etch technique" J. Lightwave Technol. 22, 887-890 (2004).

H. Hu, A.P. Milenin, R.B. Wehrspohn, H. Hermann, and W. Sohler, "Plasma etching of proton-exchanged lithium niobate" J. Vac. Sci A 24(A), 1012-1015 (2006).

G. Ulliac, N. Courjal, H. M.H. Chong, and R.M. De La Rue, "Batch process for the fabrication of LiNbO3 photonic crystals using proton exchange followed by CHF3 reactive ion etching" to be published in Opt. Mater. R3591 (2009).

Z. Ren, P.J. Heard, J.M. Marshall, P.A. Thomas, S. Yu, "Etching characteristics of LiNbO3 in reaction ion etching and inductively coupled plasma" J. Appl. Phys. 103, 034109 (2008).

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida and R. Salut, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons" Appl. Phys. Lett. 89, 241110 (2006).

V. Laude, M. Wilm, and S. Ballandras, "Least action principle for the estimation of the slowness and the attenuation of pseudo surface acoustic waves" J. Appl. Phys. 93, 10084 (2003).

S. Yin, "Lithium niobate fibers and waveguides: fabrication and applications" Proc IEEE 87, 1962-1974 (1999).

F. Lacour, N. Courjal, M.P. Bernal, A. Sabac, C. Bainier, M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling" Opt. Mater. 27, 1421-1425 (2005).

M.-P. Bernal, N. Courjal, J. Amet, M. Roussey, C.H. Hou, "Lithium niobate photonic crystal waveguides: far field and near field characterization" Opt. Commun. 265, 180-186 (2006).

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal" Appl. Phys. Lett. 87, 241101 (2005).