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This paper reviews machine-learning methods that are nowadays the most frequently used for the supervised classification of spectral
signals in laser-induced breakdown spectroscopy (LIBS). We analyze and compare various statistical classification methods, such as linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA), partial least-squares discriminant analysis (PLS-DA), soft independent
modeling of class analogy (SIMCA), support vector machine (SVM), naive Bayes method, probabilistic neural networks (PNN), and K-nearest
neighbor (KNN) method. The theoretical considerations are supported with experiments conducted for real soft-solder-alloy spectra obtained
using LIBS. We consider two decision problems: binary and multiclass classification. The former is used to distinguish overheated soft solders
from their normal versions. The latter aims to assign a testing sample to a given group of materials. The measurements are obtained for
several laser-energy values, projection masks, and numbers of laser shots. Using cross-validation, we evaluate the above classification

methods in terms of their usefulness in solving both classification problems.
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1 INTRODUCTION

The most popular method of connecting electronic compo-
nents on printed circuit boards (PCBs) is soft soldering. In
this process, metallic material (solder) heated to the melting
point (usually lower than 450°C) covers the connected ele-
ments. After the solder solidifies, an inseparable connection
is obtained. Soft soldering can be performed in various ways.
In manual assembly and repair of electronic parts, soldering
irons (pencils, stations) are used. In an automated production
process, more advanced soldering techniques are used, i.e., re-
flow and wave as well as laser soldering!. Regardless of the
method used, high-quality joints are obtained by using a suit-
able metal solder alloy, ensuring very good wettability of the
alloy by using flux, and setting the correct melting tempera-
ture.

When the soldering parameters are not set correctly, the qual-
ity of the solder can decrease considerably. In particular, us-
ing a temperature that is too high may reduce the effective-
ness of the flux. Overheating most often results in the forma-
tion of new layers of intermetallic compounds that weaken
the solder, thereby increasing the risk of damage to an elec-
trical circuit. This phenomenon occurs more frequently when
lead-free solders are used [1]. When overheating occurs, a sol-
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der surface is immediately covered with a layer of oxides and
becomes desiccated.

To assess the quality of solders on a PCB, several inspec-
tion techniques can be used, including visual inspection, auto-
mated optical inspection [2, 3], analysis X-ray inspection (re-
ferred to as 2D or 3D X-ray computed tomography) [4]-[7],
acoustic microscopy [8]-[10], and inspection by infrared laser
systems [11, 12]. These methods provide a variety of oppor-
tunities for determining the quality of the solder by detecting
cracks, air-filled voids in the solder, insufficient wetting, over-
soldering, and bridging. However, they cannot be used to an-
alyze the chemical composition, assign the solder to a given
group (according to the EN: ISO 9453:2014 standard?), or de-
termine whether the solder has been overheated or dried out.
Such information is needed for assessing the quality of solder
alloys. It is important for both solder and equipment man-
ufacturers, who refer to technical documentation and stan-
dards, especially the RoHS and Waste Electrical and Electronic
Equipment (WEEE)>.

Laser-induced breakdown spectroscopy (LIBS) [13]-[15], com-
bined with statistical classification methods, is used in this pa-

2ISO 9453:2014: Soft solder alloys - Chemical compositions and forms, In-
ternational Organization for Standardization, April 2014

3Directive 2012/19/EU: Waste Electrical and Electronic Equipment, Eu-
ropean Union, July 2012
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per to tackle this problem. The foundations of the LIBS tech-
nique have been laid in the early 1960s through many stud-
ies [16]-[19]. A comprehensive review of this technique and
its applications can be found in several recently published re-
view papers [20]-[25] and books [26, 27]. LIBS is an atomic
emission spectroscopy technique that can be used for chemical
material analysis. It uses a short laser pulse to generate a high-
temperature microplasma on the surface of a sample. The
plasma is formed by the laser ablation of a very small amount
(picograms to nanograms) of material, and it contains free
electrons, excited atoms, and ions. Beginning a few microsec-
onds after the end of the laser pulse, the plasma emits a con-
tinuous spectrum (continuum) in the range of 200-1000 nm.
However, information about the structure of the analyzed ma-
terial cannot be obtained directly from this spectrum. Thus,
after another period of microseconds, the temperature of the
plasma is lowered, and the discrete structure of the spectrum,
which is essential for analysis and identification of plasma
products, starts to emerge [28]-[30]. The parameters of the dis-
crete spectrum, such as the wavelength, intensity, and shape,
uniquely characterize the analyzed material.

Solder alloys used in soft soldering can be classified as leaded
or lead-free (RoHS- and RoHS2-compliant?). Their chemical
composition is specified by the EN ISO 9453:2014 standard.
LIBS emission spectra should uniquely determine the chem-
ical composition. However, when solder alloys differ only in
the proportions of the same chemical elements, their spectra
may be significantly correlated. The largest differences can be
observed between leaded and lead-free solder alloys, where
the detection of one or more emission lines of lead is quite sim-
ple. Many industrial devices use such an analytical approach,
in addition to determining the percentage of lead in the alloy,
on the basis of the respective calibration curves. If the type and
quality of solder is expected to be assessed, and the alloys to
be analyzed contain the same elements, it is advisable to use
more advanced methods to analyze the observed spectra.

In many areas of research, LIBS-based data have been re-
cently analyzed and classified using various statistical ma-
chine learning methods [31, 32]. Principal component analysis
(PCA) is probably the most frequently used method for pro-
cessing LIBS data. Examples include biomedical and environ-
mental applications [33], phone manufacturer identification
[34], and inspection of concrete aggregates recycled from de-
molished buildings [35]. In geology, Gottfried et al. [36] used
PCA and partial least-squares discriminant analysis (PLS-DA)
to classify carbonate, fluorite, and silicate geological materials.
In a later study, Kim et al. [37] employed these methods for the
rapid detection of heavy metals and oils in soil. Next, Zhu et
al. [38] applied PLS-DA and support vector machine (SVM) to
analyze LIBS data for sedimentary rocks. PLS-based computa-
tional tools have also been used to determine the composition
of geological samples from Mars [39], for ash determination in
coal [40], and to establish the fuel-air equivalence ratio [41].
Another approach to the analysis of LIBS data was presented
by El Haddad et al. [42], who performed the on-site quanti-
tative analysis of lead in real soil samples by using a series of
artificial neural networks (ANNSs). Other methods, such as lin-

4Restriction of Hazardous Substances Directive, European Union,
http://www.rohs.eu

ear discriminant analysis (LDA) and soft independent model-
ing by class analogy (SIMCA) [43], gave satisfactory results
in the classification of soil and geomaterial samples. Senesi
[44] provided a comprehensive review of the applications of
LIBS in the classification of geomaterials with a focus on min-
erals and rocks. In archeology, PCA, PLS-DA [45], and ANNs
[46] have been used to classify ceramics efficiently. Vitkova et
al. [47] applied LDA to analyze brick samples. In medicine,
Kanawade et al. [48] used a similar computational technique
to discriminate tissues during laser surgery. SIMCA, PLS-DA,
SVM, classification and regression tree, and binary logistic re-
gression are applied for the classification of human bones in
[49]. Godoi et al. [50] tackled the problem of identifying toxic
elements in toys using SIMCA, PLS-DA, and the K-nearest
neighbor (KNN) method. Cisewski et al. [51] used SVM for the
classification of a suspect powder to detect Bacillus anthracis
spores. SVM was also successfully used by Liang et al. [52] to
classify steel materials. In industrial applications, SVM, KNN,
and the naive Bayes (NB) method are applied for the auto-
matic sorting of aluminum alloys [53]. The analysis of vari-
ance, which is closely related to LDA, is used in [54] for the
depth-profile analysis of galvanized steel sheets. Comprehen-
sive reviews of statistical tools used for the identification and
classification of LIBS data can be found in [24, 25].

In this paper, we discuss the application of LIBS technology
to the classification and identification of soft solder alloys. We
consider two decision problems. The first is concerned with
binary classification that aims to discriminate overheated soft
solders from their normal versions using LIBS spectra. The
other uses multiclass classification to identify a group of ma-
terials to which a given sample belongs. Various statistical
machine-learning methods are studied with respect to both
classification problems. We review the most popular methods,
including PLS-DA, SIMCA, LDA, QDA, SVM, KNN, NB, and
one version of ANN. As mentioned above, all these methods
have already been used in LIBS technology in various appli-
cations. In the experimental section, we discuss their effective-
ness in solving these two classification problems.

The remainder of this paper is organized as follows: Section 2
presents the experimental setup and a short description of the
analyzed solder materials. The statistical tools are described in
Section 3. The classification results are presented in Section 4.
Finally, the conclusions are drawn in Section 5.

2 EXPERIMENTAL STUDY

The testing instrumental configuration, which is shown in Fig-
ure 1, consists of a KrF excimer laser system, an LIBS spec-
trometer (which is connected to the optical head for observing
plasma light by a fiber optic cable and a reflective collimator
with a plano-convex lens), and a computer running the Spec-
traSuite software (Ocean Optics, USA).

2.1 KrF (248 nm) excimer laser system

The laser system used in the experiments consists of the
CNC Optec Promaster with the excimer KrF (248 nm) ATL
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FIG. 2 (a) Real energy and (b) fluence values on the material, depending on the output la:

Lasertechnik ATLEX-300-SI-248 laser. The basic parameters of
the output laser beam are as follows:

energy: 4.5-22 mJ
2

® gize: 6 X 4 mm

e duration: 5-6 ns

* average power: <6 W

pulse repetition rate: 1-300 Hz

The laser source is combined with the optical system and a
selector for choosing from among 32 masks with various mo-
tifs (circle, bar-shaped, and square apertures) and sizes. The
optical system ensures the demagnification of the mask’s size
on the material at a rate of —10.45x. The laser beam in the
workspace has a maximum energy of 2.03 mJ (measured us-
ing a Thorlabs energy meter with the ES111C pyroelectric en-
ergy sensor), and its size ranges from 24 to 240 um, regardless
of the shape of the projection mask. In this research, we used
four square masks with sizes of 98 x 98, 144 x 144, 191 x 191,
and 240 x 240 um 2 and four output beam energies: 10, 12, 15,
and 18 mJ. The real energy and fluence values of the material
are shown in Figure 2. Five shots are taken at one location on
the sample. Precise movement of the material is obtained by
using the computerized numerical control table in the Optec
system.

2.2 LIBS device

The plasma light emission is observed using a spectrome-
ter (Ocean Optics Libs 2500+) in the bandwidth range of
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295-635 nm (three of seven channels) with a spectral resolu-
tion of 0.1 nm (FWHM). The trigger output of the laser is
used to trigger the detection system. The integration time of
the CCD array amounts to 1 ms, with a gate delay of 4 ps
from the beginning of a laser pulse (a minimal value result-
ing from delays in the CCD arrays and a delay in the laser
trigger). Direct acquisition of a plasma plume is performed by
the optical head, which includes a reflective collimator (Thor-
labs RC12SMA-P01) with a plano-convex lens (LA-4306-ML;
f = 40 mm) and a seven-channel sampling probe (BUN-7,
Ocean Optics). It was placed at an angle of 45° with respect
to the direction normal to the sample surface. The spectra
from three channels are recorded by the SpectraSuite software
and concatenated into one. Then, the continuum component
(background) is removed by applying a denoising method
based on the same concept as in [55] but fully automated.

2.3 Materials

The experiments are conducted using five soft solder alloys
produced by the Cynel-Unipress®. Two of them are lead-tin
alloys, and the rest, instead of lead, have more tin and dif-
ferent proportions of silver and copper. The symbols and the
chemical compositions, specified by the manufacturer of the
Spektromaxx spectrometer6, are listed in Table 1.

The test alloys are divided into two groups. One group con-
tains the reference alloys, which are equivalent to solder made

5Phage Cynel-Unipress Co. Ltd.: solders, July 2015
6SPECTRO Analytical Instruments GmbH, July 2015
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Name ‘ Flux/No. core/% ‘ Sn% ‘ Pb% ‘ Ag% ‘ Cu% ‘
S-Sn60Pb40 SW26/3/2.5 59.9 | 40.02 | 0.0003 | 0.0014
S-Pb70Sn27Ag SW26/3/1.8 2693 | 69.8 3.01 0.038
S-S5n99Cul F-SW32/3/3 98.85 | 0.020 | 0.0004 0.98
SAC 305
(5n96.5Ag3Cu0.5) PRO/1/1.5 96.53 | 0.014 2.97 0.46
S-Sn97Cu3 - 96.88 | 0.029 | 0.028 3.03

TABLE 1 Parameters of the solder alloys used in the tests, according to EN ISO 9453:2014, Flux [DIN 8511].

properly but covered with an oxide layer as a result of aging
(Figure 3, top), and the other consists of overheated samples
(Figure 3, bottom).

A hot-air gun with the air temperature set to 450°C is used
to overheat the samples. The alloys are subjected to high tem-
perature until the symptoms of overheating (described in Sec-
tion 1) are observed. Consequently, the surfaces of the alloys
change owing to the evaporation of the flux, their colors be-
come dull, and surface tension is observed.

Ten testing alloys (five in each group) are selected. The spec-
tral data are collected in 50 series of five laser shots in one
location on each sample. Taking into account the settings de-
scribed in Section 2.1, we use four types of masks and four
energy values for the ten types of samples, which gives a total
of 40,000 test shots (8000 series). Each series of measurements
is performed at a pulse repetition rate equal to 1 Hz. Examples
of emission spectra obtained with our measurement system at
12 mJ and using mask 12 are shown in Figure 4.

3 STATISTICAL ANALYSIS

The proposed methodology is based on the supervised classi-
fication of LIBS data, assuming that training data can be easily
obtained. This approach is useful for the identification or dis-
crimination of soft solder alloys, especially in decision prob-
lems, where a given testing sample must be classified with re-
spect to a certain group of training samples. For example, one
should decide whether the analyzed sample is overheated. In
this case, we have a binary decision problem, which is easily
solved using the standard SVM.

A more difficult decision problem occurs when we have more
classes, for example, if we need to determine the group of ma-
terials to which a testing sample belongs. We assume that we
have a dictionary or database of LIBS spectra of soldering ma-
terials that can be found on PCBs.

Let the observed LIBS spectrum be represented by the vec-
tor x € R!. The number I determines the spectral resolu-
tion, and it is not necessarily the number of subbands ob-
served in one channel. Multichannel registrations can be con-
catenated. Hence, it might be a large number. In supervised
classification, we need to have the training samples, i.e., the
LIBS spectra of the most relevant materials to be analyzed.

Let D = {(x£r>,y§r)),t = 1,...,T} be the set of T training

samples. Each xgr) contains the LIBS spectrum of the known

material (solder alloy) that belongs to the group (class) indi-

()

cated by y, . We assume we have C groups of materials.

The aim of training is to find a classification rule or classifier
F such that F(xgr)) — ygr) fort = 1,...,T. The mapping
can be obtained using many classification methods. In what
follows, we attempt to find the most efficient classifier for a
given classification problem.

The efficiency of the training is evaluated in the testing pro-
cess: F(x() — y(), where x(*) is the testing sample, and y(*)
is the index of the class returned by the trained classifier F.
The quality of classification can be easily evaluated, e.g., by
using the n-fold cross-validation (CV) technique [31, 32].

3.1 Principal component analysis

Let the training vectors {xgr)} be regarded as realizations of
a multivariate stochastic process X = {x; : t = 1,...,T}.
They form an inhomogeneous cloud of points in the space R’.
The heterogeneity is justified by the spiky nature of LIBS spec-
tra (see, e.g., Figure 4); only a few variables (emission lines) in
each random vector x; are highly active. The low-activity vari-
ables generate the background, which is partially removed
in the preprocessing stage. If the observed spectra have high
resolution and the number of analyzed materials (classes) is
much lower than the number of spectral points I, the vari-
ance of the random variables in x; can be quite diverse. In
this case, we can easily find such orthogonal directions in the
high-dimensional cloud of data points along which the vari-
ance is maximal. Such directions in R! will be referred to as
feature vectors. Hence, the data points in R! can be modeled
by a low-dimensional geometric object, which motivates the
use of PCA [56, 57].

The random variables in x; are assumed to be correlated by
the covariance matrix

clV=¢ (xtxf) e RIXI, (1)
where % = x; — E(x¢) is the vector of centralized random
variables, and £(+) is the expectation operator. Assuming that
the stochastic process is ergodic, we can approximate the co-
variance matrix Cg(t) by its empirical version Cx, which is
symmetric and positive semidefinite. Thus, by using eigen-
value decomposition, we have Cx = VAVT where VIV = I.
The eigenvectors of Cyx, which are expressed by the columns
of V.= [vy,...,91] € R*I, determine mutually orthogo-
nal feature vectors. The entries of the real diagonal matrix
A = diag{A;} € RP*! are the corresponding eigenvalues. Let

16006i- 4
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FIG. 4 LIBS spectra of soft solder alloy: (a) normal and (b) overheated. Spectra are recorded at an energy of 12 mj using mask 12 (98 x 98 umz) on the third shot.

Vj = [v1,...,v;] € RI*J be a submatrix created from the first ~ column vectors in V} span the basis for the following orthog-
] eigenvectors that correspond to the largest eigenvalues. The
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onal linear mapping;:
2 = vTa", )

(r)

where X, ' are realizations of %;. The row vectors of

z) = [zgr),...,z;r)] € R/*T determine the principal com-
ponents (PCs). They are mutually uncorrelated, and because
the eigenvalues are sorted in decreasing order, we have
Var{ggr)} > Var{;y)} > > Var{g;r)}, where g}r) is the

j-row vector of Z ("),

Because ] << Iand | < T, there is no need to calculate all the
eigenvectors of Cx. To calculate only a few dominant eigen-
vectors, we can use the stabilized version of the Lanczos it-
erations [58], which is implemented in MATLAB in the eigs
function.

The number | can be roughly estimated by observing the be-
havior of the eigenvalues {A;}. The ratio of the variance ex-
plained by ] PCs to the total variance is given by

YA
(=

i=1"Y

100%. 3)

Hence, | should be as small as possible but, on the other hand,
it should also be selected to maximize ¢. The problem of deter-
mining the optimal number of PCs has been widely discussed
in the literature, e.g., [59]-[61]. In our approach, we set | = 30,
for which ¢ = 90%. Thus, this choice considerably reduces the
dimensionality while retaining nearly 90% of the explained
variance.

3.2 K-nearest neighbor

The k-nearest neighbor (KNN) method [31, 32] is a fundamen-
tal method for classification and regression. Given the unla-
beled testing sample xtet) and the set D containing labeled
training samples, the aim of KNN is to find k samples from
the set D that are the most similar to x(*!) according to some
metric. The predicted class of the sample x(¢) is determined
by majority voting.

The number k can be regarded in terms of penalty or regular-
ization. For k = 1, the method is the simplest, and it is recom-
mendable when the number of training samples is large and
unperturbed with outliers. If k = T, KNN predicts the class of
majority voting, which leads to strong oversmoothing. When
some outliers are expected to occur, a few nearest neighbors
should be used (often k < 10). Our observations show that the
LIBS data obtained for many soft solders are not considerably
perturbed with spiky outliers. We also check experimentally
that for our measurements, the best classification accuracy is
obtained for k = 1. For this case, the decision rule is given
by y) = argminj<;<7 D(x(t"“>|\x£r)), where D(x(t“t)”xgr))
is the dissimilarity measure between both arguments. The Eu-
clidean distance is the most frequently used, and it is optimal
for samples normally distributed in classes. The LIBS spec-
tra have a spiky nature, and the classes can sometimes differ
in the magnitudes of only few emission lines. Hence, the Eu-
clidean distance does not seem to be optimal for this appli-
cation. In our tests, we also used the cosine measure, which

expresses the similarity in terms of the angle between the unit
length vectors. In contrast to the former, the cosine measure is
normalized and may be more suitable for comparing nonneg-
ative data, such as LIBS spectra.

KNN can be directly applied to observed LIBS spectra, but in
this case, it might be inefficient, especially because the number
of spectral subbands (I) is very large. In our experiments, we
analyze both cases, i.e. when KNN is applied directly to the
high-dimensional LIBS data as well as to the PCs given by

Eq. (2).

3.3 Linear discriminant analysis

PCA assumes the convexity and linear separability of classes,
but the information on their labels is neglected. In supervised
learning, class-specific linear models usually work better than
linear dimensionality reduction alone. This motivates us to
use LDA [31, 32], which is based on Fisher’s linear discrim-
inant, for the multiclass classification problem.

In PCA, we attempt to orthogonally diagonalize the empirical
covariance matrix Cyx by maximizing the Rayleigh quotient:

T
v; Cxv;
PCA ]
v](. CA) _ arg max ! , st v]-Tv]- =1, 4)
0; ZJ]- v

forj=1,...,].
In LDA, the generalized Rayleigh quotient is maximized:

Te

(LDA) v; Cpo;

o = arg max
] v;

®)

T~ .I
v; Cwo;

forj = 1,...,C — 1. The matrix Cp represents the empirical
covariance matrix of the class means. It is expressed as

Ne(z) — 20y (2" — 27T, ©)

agls!

s =

c=1

(r)

where %;’ is the sample mean of the cth class, x(") is the to-
tal empirical mean, and N, is the number of training samples
in the ¢ class. The matrix Cp represents between-class scat-
tering or the mean distance between the centroids of classes.
Obviously, this quantity should be maximized. The matrix Cyy
in Eq. (5) expresses the within-class scattering, which can be
modeled as follows:

A < (1) 0yl )
Cw = Z Z (xk — X )(xk — X )T/ )
c=1keN,

where N, is the set of indices of the training samples that be-
long to the ¢ class.

The problem in Eq. (5) can be rewritten in an equivalent form
that involves the Fisher criterion:

det(VICpV
V(LDA) — argmax M, (8)
V det(VICyV)
where V = [vy,...,vc_1]. The nominator in Eq. (8) represents
the variance of the class means, and its denominator refers

16006i- 6



J. Eur. Opt. Soc.-Rapid 11, 16006i (2016)

R. Zdunek, et al.

to the variance of individual classes. Hence, LDA attempts to
find the projection that maximizes the variance of the class
means and minimizes the variance of individual classes.

It is well known that any solution to the maximization prob-
lem in Eq. (5) satisfies the generalized eigenvalue equation
(LDA)

CB’(J](»LDA) = A'va]- ’

; for j=1,...,C—1, 9)

where A; is the generalized eigenvalue that corresponds to

the jth generalized eigenvector v/(.LDA). Assuming that Cw

is nonsingular, the equation reduces to the standard eigen-

;LDA) = )Ljv](.LDA). Because the matrix

A—ln . . .
Cy Cp is not symmetric, the eigenvectors {v](.LDA)} are not
mutually orthogonal.

. a1
value equation Cyy Cpv

Note that rank(Cp) = C — 1, but rank(Cy) = min. (N, — C),
which is usually much smaller than the length of x,(:). Thus,
the matrix Cyy is singular in our application, if LDA is ap-
plied directly to observed LIBS spectra. To tackle the singu-
larity problem, several stability techniques can be applied, in-
cluding various forms of regularization. In our approach, we
combined LDA with PCA; i.e.,, LDA is applied to the low-
dimensional samples that are obtained using Eq. (2).

After PCA is used, the matrix

y(LDA) _ [ngDA) (LDA)} c R/*(C-1)

PR )

contains the basis for the following linear projection:
yELDA> _ (V(LDA))TZEV) € RC1, (10)

(r)

where z,/ is given by Eq. (2).
Th (LDA) . . . -

e set {y; } contains the low-dimensional training vec-
tors, where the classes should be linearly separable. Note that
for any testing sample x("***) € R!, we need to apply a similar
projection:

ygtLeZ?) _ (V(LDA))TV}"x(test) c ]RC—l’ (11)

where V]T is obtained by PCA.

Then, the decision on the class to which the sample x(fest)
belongs can be taken using the KNN classifier with the Eu-
clidean or Mahalanobis distance.

LDA assumes that the within-class scattering is modeled by
one matrix, given in Eq. (7). However, this assumption does
not have to be satisfied generally. Modeling it separately by
one covariance matrix for each class leads to the quadratic dis-
criminant [31]. This approach is used in the QDA classifier.

3.4 Partial least-squares discriminant
analysis

The partial least squares (PLS) method is used for modeling a
statistical relationship between two sets of observed variables.
Originally, it was designed for solving regression problems in
the social sciences [62], but recent studies demonstrate that it

has become increasingly popular in the classification of LIBS
spectra [24, 25, 36, 44], [63]-[68].

The PLS regression aims to determine orthogonal latent vari-
ables that best explain the set of observed variables and si-
multaneously predict the output variables. In classification,
the latent variables should maximize the covariance between
the training variables and the output variables associated with
the indices of classes.

Let X = [xy), . .,x(Tr )} € R'™*T be the matrix of training LIBS
spectra, and Y = [ygr), . .,y(Tr )} € R“*T contain the samples
of output variables that can be defined in many ways. If Y is a
vector of indices of classes, then we have PLS1. In general, the
output variable can be statistically dependent. In our multi-
class classification tests, Y = [y] is a binary matrix with the
following entries: y = 1if c = ygr), and y = 0 otherwise,
where ¢ = 1,...,C. The index of the class to which the #th
training sample belongs is denoted by yfr). The observed vari-
ables should be centralized, as in PCA. Hence, X = [#%:] and
Y = [,], where % = x; — E(x¢) and 9, =y, — E(y,). If C > 2,
the PLS regression used for classification is referred to as the
PLS-DA (PLS discriminant analysis).

The fundamental model for the PLS regression has the form
of bilinear equations:

X =
Yy =

PTT 4+ E, (12)
QuT +F. (13)

Similarly to PCA, P € R™J'and Q € R*J are referred to as
the loading matrices, but they are not orthogonal. The matrix
T € RT*J contains | latent vectors or X-scores. The Y-scores
are represented by the matrix U € RTJ. If ] << I, PLS
can be regarded as a dimensionality reduction technique. The
residual errors are modeled by the matrices E € R/*T and
F € RE¥T,

There are many computational strategies for estimating the
matrices T, P, U, and Q in the models in Egs. (12) and (13).
In the nonlinear estimation by iterative partial least-squares
(NIPALS) algorithm [62], the column vectors of these matrices
are estimated recursively from the deflated matrices:

< < T
Xj) X(j-1) = Pjtj, (14)

Y, _ T
Y = Yo —am, (15)

wherej=1,...,],and {p]-, tj, g, u]-} are the jth columns of the
rflatrices~P, T, Q, and U, respectively. Initially, X 0 = X and
Y () = Y. The X- and Y-scores are assumed to belong to the
corresponding spaces of the observed and predicted output
variables. Thus,

- %I ) Ty
t = (j-nHwj st t]- ti=1, (16)
T
uj = Y(]-,l)C]' s.t. u]Tu] =1, 17)

where w; € R’ and ¢j € R® are the weight vectors. To pre-
dict Y from X, the X-scores should be maximally correlated
with the Y-scores, which leads to the constrained optimization
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problem:

max
weR!, ||[w|=1
ceRE, lc]p=1

(w'e (X(;‘fl)’?(Tf—l))C)z
(wlw)(cTe)

(wj,c;) = arg cov? (t,u)

maxXx
w € R!
ceRC

= arg

Tcl=1 (=1 T
c'C C w)'c
= arg max (w w) ! max rx @(Cyx )

weR! CERC cle

(-1) ~(-1)
wTCXY Cyy 'w
wTw

= arg max , (18)

weR!

where Cg;l) = S(X(j,l)Y(Tj_l)) € RIC is the covari-
ance matrix between the variables in X(]»,l) and Y(]-,l),
Cg(];l) = (ng;l))T, and ¢; = Cg;l)wj. Assuming Cg;l is a
full-rank matrix, formula (18) shows that w; is the eigenvector
of the symmetric and positive-definite matrix ngl)ngl),
associated with the leading eigenvalue. The largest singular
value of ngf1> determines the covariance between t; and
uj. The loading matrix P in Eq. (12) can be estimated by
formulating the ordinary least-squares (LS) problem, which
minimizes the residual error E in the Euclidean metrics.
Considering Eq. (16), the j column vector of P is given by
< oT 1% T

p; = (@ Xy Xjyw) " X Xjyw. (19
The rank-one estimate of X; 1) associated with the first latent
variable is given by

X = pjth. (20)

In the first iterative step, X j is also the rank-one estimate of X.

For the Y-variables, we have uj = Y(T]-,l)c]»,

Ty T -1 vyl
q; = (¢ Y(j-1)Y(j-1)¢) Y(i-)Y(j-1)¢)r
and Yj = qju]-T.

In many versions of the NIPALS, the weight vectors {w;}
are not directly estimated by the eigenvalue decomposition of
the covariance matrix ng 1 Cyg l); rather, the concept of the
power method is applied. The weight vectors are computed

with the following iterative rules:

X(i_1)Uj
w; %, Normalization : [|w;[] — 1, (21)
Y1t
¢ = (]T1> !, Normalization : lleilla — 1. (22)
tTt;

The vectors ¢; and u; are updated according to Eqgs. (16) and

(17). Initially, #; can be chosen as one column of Y'. Note
S o T o o T
that w; o Xj_pyuj & X(jop)¥(j-1)¢j « X(j)¥ j-1) Y (j-1)tj

X(]-,l)Y(]-,l)Y(j,l)X(Tj,nwj. Hence, w; is an eigenvector of

Cgé; 2 Cg; U The column vectors in T satisfy the orthogonal-
ity condition, i.e., Vi # j : tth]' =0.

In our tests, we used a modified version of NIPALS called the
statistically inspired modification of PLS (SIMPLS) [69]. This

method is computationally more efficient and easier to inter-
pret. In this approach, the covariance matrix ng/ is updated
recursively, but it is not calculated from the deflated matrices.
Thus, Vj : 5((]») =X, Y(j) =Y, and ngl)/ - xy" The latent
vectors {;} are assumed to be orthogonal:

Vi j:tlt = w! XX wj = 0. (23)

From Egs. (23) and (19), we have Vi # j : piij = 0,
which means that the current w; should be orthogonal to
all previous X-loading vectors {p;,...,p;} for i < j. Next,
the X-loadings are projected onto the base {v1,...,v;}, cre-
ated with the Gram-Schmidt orthogonalization. It means that
Vi<ij: viTv]- = 0. In such a base, the covariance matrix ng;l)
is deflated by the following rule:

ey =i —vi(vie), 24)

where V; = [01,... ,vj]. Finally, the Y-scores are orthogonal-
ized with respect to the X-scores:

Vj:ujeu/—(tiTuj)ti for i=1,...,i—1. (25)

The relationship between the output and input variables can
be described by the multivariate regression model:

I
Y:B[fﬂ, (26)

where B = [13, B} € RE*(+1) s the matrix of regression co-

efficients, and 17 = [1,...,1] € RT is a vector of all ones.
Inserting the equations (12)-(13) to the model (26), we have

— ow?’ CxI i [ w; wy } Ix]
B QW' € R**, where W Tl TEL e R™J.

The vector b = T~'(Y1y — BX17) € RRC expresses the inter-
cept term.

In the testing stage, the response for the testing sample
x(test) ¢ RI can be readily calculated using the model (26).
Thus,

= 1
yliest) = B [ ltest) :| , (27)

where x(fest) = x(test) _ g (x(test)) Finally, the index of the test-

ing sample is determined as y(!) = max, {yéf“*) }.

One of the main advantages of the PLS regression is its high
efficiency in working with a large set of input variables that
can be partially dependent, whereas the number of observed
samples may be relatively small. It is therefore particularly
useful in the classification of LIBS spectra, where the num-
ber of spectral subbands is pretty large. Moreover, the emis-
sion spectrum of the analyzed material (solder alloy) usually
contains a few emission lines that determine a spectral signa-
ture. Hence, some variables in any source signal (endmemebr)
might be correlated. The set of observed spectra is also not
very large in practice. PLS also works well for collinear prob-
lems. It is also the case for the LIBS technology, where the dif-
ference between the LIBS spectra of various materials might
be very small. Similarly to PCA, PLS extracts some hidden
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factors (components) from the training LIBS spectra, but PLS
extracts factors much more informative for classification. The
factors not only capture the largest variance (as in PCA) but
are the most correlated with the responses (output variables).
The PLS regression is therefore much more robust in classify-
ing LIBS spectra than the ordinary orthogonal regression with
the PCs.

3.5 Soft independent modeling of class
analogy

The soft independent modeling of class analogy (SIMCA) is
a well-known supervised machine-learning method that was
proposed for statistical pattern recognition by Wold in the
1970s [70, 71]. Since then, it has found many real-world ap-
plications, including the classification of LIBS spectra [43, 49,
50, 72].

It is based on the concept of PCA, but it does not search for
global features holistically representing the whole set of train-
ing LIBS spectra. The global PCs do not necessary provide dis-
criminant information. In SIMCA, PCA is applied separately
to each class, which gives us relevant information on individ-
ual group structures. The testing sample is orthogonally pro-
jected onto the space spanned by PCs of each class, and the
residual distances are calculated to evaluate the similarity of
the testing sample to each class.

Let X£r> = [xt<:>] € R™Te contain T, training samples that be-
long to the ¢t class. By applying PCA to each Xﬁ”, we obtain
(©)

the matrix V] e RI¥J containing | feature vectors, and the

PCs given by zg) according to the mapping (2). Selecting |
PCs for the ¢ class, the residual error between the training

samples and the PC model is given by
(9 70), (28)

where X! = [XE:)], Ve igr) = x£:> — E(xE:)) and

7zl = [zg) ] € R/*Te. The mean distance between the

samples assigned to the ¢ class and the space spanned by

their PCs can be expressed by the standard deviation of the
(©

residual error E(¢) = le; i ):

B

As the error e( ) follows a normal distribution, the F-test is
used to determme the critical distance at a given level of

(€(C>)2

it

Gy y L @)

significance. Thus, s = 1/cho, where F; is the F-value for

(I—7J)and (I —])(T, — ] —1) degrees of freedom at the signif-
icance level a. This parameter determines a confidence region
around each class, which can be interpreted as the threshold
for the classification of a training sample as an outlier.

To classify the testing sample x(!*) to any group, it is first
sequentially projected onto the spaces spanned by the PCs of
each class. The projection is defined as follows:

(test) -

a0 = 20 L v (VDT (liest) 500y, (30)

where %(©) is the mean of the ¢t class. The residual error
egtm) = xltest) _ %Etm) is normally distributed with the stan-
dard deviation

et _ ()Tl (31)
(I=7)
If
s < s, (32)
the sample x(**) is considered to belong to the ¢t class. Note

that the condition (32) may be satisfied for multiple classes.
Thus, SIMCA provides soft classification. If the hard classifi-
cation is expected, then the sample xltest) g assigned to the

2
c* class, if c* = argming<.<c FC(“-’ st) , where p(ffst) _ (S,c) is

50
the F-value for x(fest).

3.6 Naive Bayes

The LIBS spectra that belong to the ¢ class can be re-
garded as samples from the conditional probability dis-
tribution p(x|Y = c), where the discrete random variable
Y € {1,...,C} takes the value c. Let us assume that we have
prior knowledge on the distribution p(Y), usually inferred
directly from the training data. For the ¢! class, it is given by
the ratio

p(Y=c)=— (33)

where N is the number of training samples in the cth class. By
applying the Bayes rule, the probability of the class c, given
the observation x, can be represented by the posterior distri-
bution:

p(xlY = )p(Y =0)

PO =) = S v = opir =0

(34)

Neglecting the marginal distribution in Eq. (34), the Bayes
classifier for the testing sample x(**!) is given by

]_-(x(test)) _
= argmaxi<c<c p(x"N|Y = c)p(Y = ¢). (35)

arg maxj<.<c p(Y = c|x(th)

The distribution p(x|Y = ¢) needs to be estimated; this can be
done in many ways. In the naive Bayes (NB) classifier [31, 32],
the random variables in x = [xq,..., x;]T are assumed to be
statistically independent, i.e., p(x|Y = ¢) = [T_; p(x;]Y = ¢).
This assumption considerably simplifies the model and de-
ceases computational cost but is often not fully satisfied in
practice. As already mentioned, the emission lines of certain
materials might be correlated, which violates the condition of
independence. Nevertheless, NB often works well in many
applications, especially for sparse features. LIBS spectra are
nonnegative and have a spiky nature. Hence, the variables
x; should not be modeled by a Gaussian distribution. If the
intensities of spectral lines were modeled by discrete values,
then p(x;|Y = c) could be expressed by the multinomial distri-
bution. However, such a model involves high computational
cost. A good solution in practice is the use of a non-parametric
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density estimation method, such as the kernel-smoothing den-
sity estimator:

(r)
Xj — Xl
p(xi]Y =¢) = N1 Zh T* ) (36)
te=1 ;

The parameters of the model (36) are estimated from the train-

<)1sthe1

() 4

associated with the it varlable, and K(-) is the kernel function.
To enforce local smoothing, the kernel K is modeled with the

ing samples {xgr }, where x

()

vector x;
c

entry of the training

from the ™! class, h is the smoothing parameter

Gaussian distribution. For simplicity, hl(c) hg ( ), where

()

h(%) is a constant in the ¢! class and o; " is the empmcal stan-

dard deviation of the i variable in the vectors {xg) }. To es-
timate p(x|Y = c), the multidimensional kernels can also be
used. In such a case, p(x|Y = ¢) can be modeled by

N
p(x|Y =¢) = N1 Y Ky (xfxg)) . 37)

te=1
The multidimensional kernel is given by

Kp () = det(H)'/2K(H /%), (38)
where H € R™*! is a symmetric and positive-definite smooth-
ing matrix and K(-) is a standard multivariate Gaussian dis-
tribution. Note that if H is a diagonal matrix, the model (37) is
equivalent to the product of Eq. (36).

NB also has some disadvantages that should not be neglected
for our application. The probability density in Eq. (37) is es-
timated from training samples, and the estimate is better if
the dimension x is smaller and more samples is used. How-
ever, the case in LIBS technology is usually the reverse. More-
over, on summing the same number of training samples in
each class, the priors (33) are identical for each class, which
is not informative. Hence, from the theoretical viewpoint, NB
may not be optimal for classifying LIBS spectra.

3.7 Probabilistic neural network

The probabilistic neural network (PNN) is intrinsically related
to the Bayes classifier, but it is implemented with the architec-
ture of a feedforward multilayer neural network. It was pro-
posed by Specht in 1990 [73] and is particularly useful for solv-
ing classification problems. PNN belongs to a family of artifi-
cial neural networks that are also applied for the classification
of LIBS spectra [42, 63], [74]-[76].

Similarly to NB, PNN attempts to estimate the conditional dis-
tribution p(x|Y) for each class. In the testing stage, PNN clas-
sifies x('¢3!) according to the rule (35), given the prior p(Y).
However, the result of classification can be different from that
with NB owing to a different implementation of the Bayes
classifier.

PNN consists of four layers. The input layer contains I neu-

(test))

rons: each of them receives one subband (the entry x;

from the observed spectrum x(**), The input signals, after be-

ing centralized and normalized, are then given to the second

layer named the pattern layer. It consists of many hidden neu-
rons grouped into C categories. In each category, there are as
many neurons as the number of training vectors in this class.
Each training vector is assigned to one neuron that has I input

synapses receiving the signals from all subbands {xfteSt) }. The

neuron computes the Euclidean distance between the testing

sample x("¢3!) and the training sample x§r>, and then the Gaus-

sian radial basis function is used for activation. The output
signals from all neurons in the pattern layer are then yielded
to the third layer that performs the summation over each class.
Hence, the summation layer contains C neurons. The outputs
from these neurons are normalized to obtain estimates of the
probability density function for each class. The hidden lay-
ers therefore play the role of the Gaussian kernel density esti-
mator that was discussed in Subsection 3.6. The final (output)
layer contains one output neuron, which compares the activa-
tions from the third layer, weights with the prior, and provides
the index of the class to which the testing sample is assigned
with the highest probability.

In the training stage, parameters such as standard deviations
in the Gaussian activation functions are learned. They play
a role similar to that played by the smoothing parameters in
NB and can be estimated, e.g., using the cross-validation tech-
nique. Hence, one of the main advantages of PNN is fast train-
ing, which is much faster than in a backprojection network.
Such a distributed architecture can also be readily parallelized
but requires large memory resources.

3.8 Support vector machine

Many recently published studies [38], [51]-[53], [76]-[78] have
shown that the SVM classifier [31, 32, 79] is also very efficient
in a statistical analysis of LIBS spectra. The fundamental ver-
sion of this classifier performs binary classification with linear
separability of classes. It aims to find the hyperplane in the
sample space that has the largest distance to the nearest train-
ing sample of any class.

Let xgr) € R! be the training sample, and V¢t : y; € {—1,1} be
the indicator of the class to which the ' sample is assigned.
The aim is to find the hyperplane H = {x : w’x+b = 0} that
best separates both classes. The vector w € R! is normal to H,

and H’WH is the perpendicular distance from H to the origin in

R’. The data points located closest to # are referred to as the
support vectors (SVs). The best separating hyperplane should
maximize the distance between the SVs in both classes. Thus,
it should satisfy the conditions wafr) +b>+1lfory; = +1

and w x( " 4b < —1for yt = —1. This gives us the constraints

vty (w2 +b) > 1. (39)

The equality in Eq. (39) occurs only for the SVs. The margin
between the classes, i.e., the shortest distance between the SVs
from opposite classes, is equal to IIWH . Obviously, the margin
should be maximized, which leads to minimization of ||w]|5.
Regarding the constraints in Eq. (39), the task of finding the
best separating hyperplane reduces to the quadratic program-

ming (QP) problem, subject to the following inequality con-
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straints:
1
mi? EHW‘ 3, st Vi: yt(wa£r> +b)—1>0. (40)
w,

The Lagrangian associated with the problem in Eq. (40) has
the form

1 2 v T,.(r)
L(w,b) = Sllwl3 = Y a (yi(@x" +b)-1), @D
t=1

where Vt : a; > 0is the Lagrangian multiplier. It has a station-
ary point when %ﬁ(w, b) = 0, which leads to

= )
w=Y wyx,”’, (42)
=1
and the condition aa—b[,(w, b) = 0 gives us

T
2 aryr = 0. (43)
=1

By inserting Egs. (42) and (43) into Eq. (41) and performing
straightforward computations, we obtain the dual QP prob-
lem:

1
n}xin <§:xTHa — eToc) , st yTa =0 and a«>0, (44)

where H = [hy] € R™*T, by = yoy, (x{”) T2\, & = [a] € RT,
y=[y] € RT,and e = [1,...,1] € RT. The QP problem in
Eq. (44) is convex and can be easily solved by many solvers
using, e.g., the active set or interior point algorithm. Having
found the Lagrangian multipliers «, we obtain the optimal
vector wopyin from Eq. (42) and then calculate the optimal in-
tercept bpyip from

(r)

T L0 : T
maX.y,=—1 W ppim ™t +mingy, = Woptim™t
boptim = > . (45)

The parameters wpyip, and bypri uniquely determine the best
separating hyperplane .

Let x(**s*) ¢ R! be the testing sample. The class of x("**) can
be determined from the decision rule

.F(x(t“t)) = sign (onptimx(tes” + bop,,-m) . (46)

If the training samples are not perfectly separable, i.e., if out-
liers exist, the constraint in Eq. (39) can be relaxed to the form
Vit yt(waEr) +0b) > 1— &, whereVt: ¢ > 0is the slack vari-
able. Obviously, the outlier samples are assumed to be rare in
the entire training set; hence, the vector ¢ = [{¢] is sparse. In
this case, the primal QP problem in Eq. (40) takes the form

1 :
min =[] |3 + Cell2]1, st ye(w"x() +0) =148 20, 47)
where § > 0,and Cz > 01is the soft-margin penalty parameter.

Surprisingly, the problem in (47) transforms to the very simple
dual form

n}xin (%aTHoc — eTtx> , s.t. yTa =0 and CC >wr >0, (48)

which can also be solved using many well-known QP solvers.

When the classes are not linearly separable, nonlinear SVM
[31, 32] can be applied. In this classifier, the training sam-
ples are nonlinearly mapped to a higher-dimensional space
using the so-called kernel tricks. In classification, several ker-
nels are commonly used, e.g., the Gaussian, polynomial, sig-
moidal, and multilayer perceptron kernels. If SVM is applied
to the output from PCA, nonlinear separation seems unnec-
essary. The PCs are linearly uncorrelated, and the clusters are
convex. This motivates the use of linear SVM. We have also
experimentally confirmed this assertion by using nonlinear
singular value decomposition with various trained kernels. In
each case, the box constraint C; in the soft margin was esti-
mated from the training set with the quasi-Newton method
(the Broyden—Fletcher-Goldfarb—Shanno method). A similar
optimization tool was used to estimate the variance in the
Gaussian kernel. We also tested various degrees of the poly-
nomial from one to four. In each case, the best results were
obtained for the linear classifier or when the polynomial de-
gree was set to one.

The standard linear SVM is a binary classifier. Thus, it can be
directly applied to binary decision problems, e.g., to decide
whether a given solder alloy is overheated. When a sample
can be classified into more than two classes, we can use one
multiclass SVM or a larger number of standard SVM classi-
fiers. We selected the latter; i.e., we use as many classifiers
as there are classes. Each classifier is trained to recognize one
class against the rest. Then, in the testing process, a testing
sample is verified separately by each classifier. Note that this
methodology incurs higher computational cost than the use
of one multiclass classifier, but it offers many additional ad-
vantages. For example, if a testing sample cannot be identi-
fied by any trained classifier, we can apply another classifier
only to the unrecognized sample, or we can assign this sample
to some unknown class. Similarly, if a testing sample is recog-
nized by more than one classifier, we can also repeat the classi-
fication with another, more efficient, classifier. This approach
is particularly useful in practice, when outliers or other per-
turbations occur.

4 CLASSIFICATION RESULTS

In this section, we compare the algorithms discussed in Sec-
tion 3 in terms of their efficiency in classifying the LIBS spec-
tra of soft solder alloys. In the experiments, we used the soft
solder alloys discussed in Section 2.3 and the LIBS device
described in Section 2.2. The classification tools were imple-
mented in MATLAB 2012 and run on a computational server
equipped with two CPUs [Intel Xeon(R) X5650, 2.66 GHz].

We analyzed two classification problems:

* A: 2 classes: the samples of the normal solder alloys
(listed in Table 1) form one class, and their overheated
versions belong to the other class,

¢ B: 10 classes: the labels 1-5 correspond to the solder al-
loys listed in Table 1, and the labels 6-10 refer to their
respective overheated versions.

The quality of classification is evaluated using the misclassi-
fication rate (MCR) and the confusion matrix implemented in
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MATLAB 2012. The MCR measure (as a percentage) is taken
from the Statistics Toolbox, and it accounts for the proportion
of misclassified samples. The confusion matrix is calculated
by the confusion function in the Neural Network Toolbox, and
then it is plotted in a Hinton diagram.

The classification results obtained with the tested algorithms
are statistically compared using 100 repetitions of n-fold CV.
For problem A, 20% of the samples are selected for training,
and the rest for testing. In the other case, a five-fold CV is ap-
plied, i.e., 40 samples from each class are taken for training,
and 10 are taken for testing.

Several measurement scenarios are tested. In each case, we
set the following parameters of the excimer laser system: the
mask size, energy, and number of laser shots in each location
(see Section 2.1). We selected four masks, four energy values,
and five shots, which gives us 80 measurement scenarios. In
the following, we use the following notation: m, mask (size);
e, energy (in mJ); s, shot. For example, the scenario labeled
m12e10s1 uses mask 12, an energy of 10 m]J, and the first shot.

For solving both classification problems, we selected the fol-
lowing algorithms: KNN(E) (KNN with Euclidean metrics)
and KNN(C) (KNN with the cosine similarity) (Section 3.2),
LDA (Section 3.3), QDA (Section 3.3), PLS-DA (Section 3.4),
SIMCA (Section 3.5), NB (Section 3.6), PNN (Section 3.7), and
SVM (Section 3.8). For the KNN family, we set k = 1. In gen-
eral, classification algorithms can be applied directly to high-
dimensional LIBS data or low-dimensional PCs. We analyze
both cases. The former is restricted only to the selected al-
gorithms. When PCA is not used, LDA and QDA fail ow-
ing to the singularity of the covariance matrices (as men-
tioned in Section 3.3). The methods, such as NB and PNN,
are also intractable owing to their computational complex-
ity when applied to high-dimensional data. Hence, we could
classify the high-dimensional LIBS spectra using only PLS-
DA, SVM, and KNNs. The latter case is more flexible be-
cause low-dimensional and orthogonal data are easier to han-
dle. The above algorithms, except for SIMCA, are combined
with PCA, i.e., applied to the low-dimensional PCs (see Sec-
tion 3.1). SIMCA is intrinsically related with PCA; hence, there
is no need to apply it to PCs. Each tested algorithm is applied
in each measurement scenario and run according to the CV
rule mentioned above. The statistics of the MCR of the sam-
ples is presented in various forms: box plots and cumulative
results in tables, bar charts, and confusion matrices. A box
plot shows the median and 25" and 75t percentiles (marked
by the edges of the box), extreme data points (indicated by
whiskers), and outliers.

4.1 Problem A

All the above algorithms can be used for solving problem
A. We consider two cases. First, the algorithms (except for
SIMCA) are combined with PCA. Table 2 lists the number of
measurement scenarios that satisfy various MCR thresholds
(rows) for this case. It can also be interpreted as the cumula-
tive MCR with respect to the number of measurement scenar-
ios for each algorithm.

The results demonstrate that SIMCA, LDA, PLS-DA, and SVM
significantly outperform the other methods. These algorithms
make it possible to attain an accuracy of 100 % (MCR = 0%)
for many measurement scenarios. There are 62 scenarios for
SIMCA, 39 for LDA and PLS-DA, and 21 for SVM. We have
observed that SIMCA is more resistant to fluctuations in the
laser energy and inexact setting of the mask. This observa-
tion also confirms the theoretical assumption that it is suitable
for the data disturbed with outliers. Its performance dimin-
ishes with increasing energy for large masks, i.e., for mask 28
when the energy exceeds 18 m] and for mask 32 when the en-
ergy exceeds 15 m]. The condition MCR < 3% is satisfied for
98.75% of the samples (see Table 2). The statistics of the MCR
for LDA and PLS-DA are comparable, i.e., the same number
of measurement scenarios satisfying a given MCR threshold,
and nearly identical accuracy for each scenario. This observa-
tion is surprising because the algorithms orthogonalize differ-
ent covariance matrices. The highest accuracy (MCR = 0%) in
the entire energy range is observed for mask 12. The remain-
ing scenarios give MCR > 0%. The threshold MCR < 3%
is satisfied for 96.25% of the cases. SVM can also yield the
highest accuracy, but for not as many measurement scenarios.
Like LDA and PLS-DA, this algorithm works best for mask
12 in the entire energy range. Increasing the mask number
and energy also lowers the performance. It satisfies the con-
dition MCR < 3% in 92.5% of the samples . Independent
of the measurement scenario, all four algorithms — SIMCA,
LDA, PLS-DA, and SVM - give results that satisfy the thresh-
old MCR < 5% (see Table 2).

The KNN algorithms, despite their simplicity, do not exhibit
the worst performance. Indeed, the LDA applies KNN to the
feature vectors. When the Euclidean distance was used, we
could obtain MCR = 0.18% for m12e10s4, but only five sce-
narios give MCR < 1%. When the cosine similarity was
used, nine scenarios satisfy this threshold, but for one case
m12e12s4, we could obtain MCR = 0.17%. Both KNN algo-
rithms give MCR < 3% for at least 30% of the scenarios.

The performance of PNN in classifying the LIBS spectra is
slightly worse than the performance of KNN algorithms. The
lowest MCR = 0.69% is obtained for the scenario m12e12s5,
and it was the only result below 1%. NB and QDA give
MCR values one order worse than those of the other algo-
rithms. The best scenario for NB and QDA is m20e18s4, for
which MCR = 3.13% and MCR = 3.66%, respectively. For
MCR € [5,10]%, NB is more efficient than QDA. The com-
parison of the results obtained with NB and PNN shows that
the feedforward neural-network implementation of the Bayes
classifier seems to be more efficient.

In summary, SIMCA gives the best accuracy in the binary clas-
sification of the LIBS spectra. Owing to its high resistance to
outliers, it is not so sensitive to the choice of measurement sce-
nario. It classifies all the samples correctly in approximately
30% more scenarios compared to LDA and PLS-DA. SVM can
also be used for solving problem A, especially when imple-
mented with one extra class. The other algorithms are not rec-
ommendable for classifying the LIBS spectra in problem A.

In the experiments, we also test the algorithms with the high-
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MCR
Method ——G—T—%0o1 T <01 | <05 | <1 | <3 | <5 | <100
LDA | 39 (48.75) | 50 (625) | 58 (725) | 63 (78.75) | 66 (82.5) | 77(96.25) | 80 (100) | 80 (100)
QDA = = - - - - 2(25) | 44(55)
SVM | 21(26.25) | 37 (46.25) | 54 (67.5) | 63 (78.75) | 66 (82.5) | 74(92.5) | 80(100) | 80 (100)
NB - - - - - - 8(10) | 67(83.75)
KNNI(E) - - - 5(6.25 | 12(15) | 24(30) | 41(51.25) | 74 (92.5)
KNN(C) - - — | 9(1125) | 14(17.5) | 27(33.75) | 47 (58.75) | 75 (93.75)
PLS-DA | 39 (48.75) | 50 (625) | 58(725) | 63 (78.75) | 66 (82.5) | 77(96.25) | 80(100) | 80 (100)
SIMCA | 62(775) | 62(77.5) | 66(825) | 69 (86.25) | 70 (87.5) | 79 (98.75) | 80(100) | 80 (100)
PNN - - - - 1(125) | 17(21.25) | 38(47.5) | 74 (92.5)

TABLE 2 Number of measurement scenarios (in parentheses, percentage) that satisfy a given MCR threshold for binary classification, where the algorithms are combined with

PCA.
MCR
Methed ™——5—T <001 [ <01 [ <05 | <1 <3 <5 | <10
SVM | 59 (73.75) | 61(76.25) | 64(80) | 70(875) | 70(87.5) | 74(925) | 80(100) | 80 (100)
KNNGE) | - - 1(125) | 6(75) | 13(16.25) | 25(31.25) | 43 (53.75) | 74 (92.5)
PLS-DA | 70(87.5) | 70(87.5) | 70(87.5) | 70 (87.5) | 71(88.75) | 80(100) | 80(100) | 80 (100)

TABLE 3 Number of measurement scenarios (in parentheses, percentage) that satisfy a given MCR threshold for binary classification without using PCA.

MCR
Method =005 [ <01 | <05 [ <1 | <3 [ <5 | <10
LDA — [ 1(1.25 [ 17(21.25) | 46 (57.5) | 75(93.75) | 79 (98.75) | 80 (100)
QDA - - - - | 11(13.75) | 49 (61.25) | 80 (100)
SVM - - 2(25) | 10(125) | 58(725) | 75(93.75) | 80(100)
NB - - - - 4(5) | 46(575) | 80(100)
KNN(E) | - - - - - 5(6.25 | 28(35)
KNN@©) | - - - - - 5(6.25) | 37 (46.25)
PLSDA | - - | 9a12) |27(37) | 69(862) | 77(96.25) | 80 (100)
SIMCA | 2(25) | 4(5) | 32(40) | 52(65) | 77(96.2) | 79(98.75) | 80 (100)
PNN - - - - - 1(125) | 21(26.25)

TABLE 4 Number of measurement scenarios (in parentheses, percentage) that satisfy a given MCR threshold for problem B (10 classes) using the algorithms combined with PCA.

dimensional LIBS data (without using PCA). In this case, we
selected only three algorithms: PLS-DA, SVM, and KNN(E).
As already mentioned, SIMCA intrinsically projects the input
data on the local PCs; therefore, it is not considered in this test.
The results of such a classification are summarized in Table 3.

We observed that if SVM and PLS-DA are not used with
PCA, the number of best measurement scenarios (for which
MCR = 0%) is substantially higher, i.e., by 38 and 31, respec-
tively. A particularly good result was obtained with PLS-DA,
for which 70 scenarios ensure the highest accuracy. SVM is
more sensitive to outliers (even with the soft margin) but also
gives much better results than with PCA. The accuracy could
be even better if a kernel version of SVM is applied without
PCA, but the learning of the kernel on such high-dimensional
data is very time-consuming. With the use of KNN(E), the im-
provement in the number of scenarios is not very large (only 2
for MCR < 5%). For the best scenario m12e10s4, MCR dimin-
ishes from 0.18 to 0.14. Thus, all the tested algorithms with-
out PCA offer better accuracy of binary classification but ob-
viously at higher computational cost. It is justified by the fact
that 30 PCs explain only about 90% of the total variance. The

small difference in the intensity of spectral lines is included in
the unexplained variance.

4.2 Problem B

For problem B, similar measurement scenarios are tested.
First, we analyze the classification algorithms combined with
PCA. Figure 5 illustrates the box plots of the MCR samples ob-
tained with each algorithm for the best measurement scenario.
The confusion matrices for the best measurement scenarios
are presented in Figure 6 in the form of Hinton diagrams. The
titles give the lowest MCR values.

For problem B, the number of measurement scenarios that sat-
isfy a given MCR threshold are listed in Table 4.

The results show that the tested algorithms can be assigned
to four groups on the basis of their performance, and they are
ordered in the decreasing order of performance as follows: (1)
SIMCA; (2) LDA, SVM, and PLS-DA; (3) QDA and NB; (4)
the KNN family and PNN. The groups have different sensitiv-
ity to the spectral shape. When low energy and a small mask
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FIG. 5 MCR statistics (box plots) obtained by the classification algorithms combined with PCA and applied to problem B (10 classes) for their best measurement scenarios (given

in the titles).

(particularly m12) are used, the spectrum is weakly noisy, and
its emission lines have low intensity. Increasing the energy or
mask size causes the intensity of emission lines and the back-
ground to increase, which may emphasize the spectrum in
one or more observed channels. For all the algorithms, at least
three shots should be used. The first two shots remove unde-
sirable pollution or oxides.

The first algorithm, regarded as the individual group, is
SIMCA. As in problem A, the SIMCA gives the best results for
multi-label classification. It classifies one scenario (1m28e12s4)
with 100% accuracy, and MCR < 0.1% for 4 scenarios (see
Table 4). LDA can reach this level of MCR with only one sce-
nario (m20e18s4). It is the second best algorithm for solving
problem B but noticeably worse than SIMCA. The condition
MCR < 0.5% is satisfied by LDA in 17 scenarios, whereas
SVM and PLS-DA satisfy it in 2 and 9 scenarios, respectively.
The performance of SVM and PLS-DA is considerably worse
than with LDA. PLS-DA also has some occasional problems
in the classification of solder alloys with labels 8 and 9. This
means that it has a lower sensitivity to the difference in con-
centration of Cu and Sn in the overheated solder alloys, de-
spite one of them containing Ag. The emission lines of Ag may
not contain meaningful information owing to the low concen-
tration of this element. The problem does not occur for the sol-
ders with labels 8 and 10, as well as 9 and 10, which addition-
ally shows that PLS-DA is the most sensitive to the difference
in concentration of Cu in the overheated soft solders.

The performance of the third group is one order worse. QDA
and NB allow us to obtain MCR < 2% in one case. NB
gives slightly worse results for MCR < 3%. In the range
MCR € [5,10]%, their performance is comparable. For both
algorithms, we observed some difficulty in the classification
of overheated lead-free solders that contain Sn and Cu. They
are labeled 8, 9, and 10 (see Figure 6). The effect is even more
noticeable when we compare solders with the labels 8 and 10,
which have a very similar proportion of Sn and Cu, and there
is no other relevant element. The solder labeled 9 contains the
third significant element, Ag, but it is also often misclassified
because of the similar proportions of Sn and Cu. Similar clas-
sification errors are observed for NB.

The fourth group is very sensitive to Ag. The KNN algo-
rithms classify the samples with MCR > 3.4%, and they
cannot distinguish well the overheated solders with Ag from
their healthy versions. This problem occurs for the solders
Pb7051nAg3, labeled 2 and 7, and 5196.5Ag3Cu0.5, labeled 4
and 9 (see Figure 6). The phenomenon is easier to observe for
KNN(C). We also noticed some problems in the classification
of the overheated leaded solders (labeled 6 and 7), despite
the presence of Ag. The emission lines of Pb have consider-
ably higher intensity than those of Ag. Hence, the latter are
ignored, which results in the low classification accuracy. The
KNN family is weakly sensitive to the difference between the
solders in 8 and 10 (with similar proportions of Sn and Cu).
However, with reference to NB and QDA, these algorithms
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FIG. 6 Hinton diagrams of the confusion matrices for the best measurement scenario for each algorithm combined with PCA. The title of each panel gives the corresponding MCR

value.

recognize the lead-free solders labeled 9 (5196.5A¢3Cu0.5)
well. PNN, in spite of having similar problems as the KNN
algorithms, cannot classify well the solders labeled 8, 9, and
10. Consequently, PNN shows the highest classification error
(MCR = 4.6%).

In summary, the condition MCR < 3% is satisfied by LDA,
QDA, SVM, NB, PLS-DA, and SIMCA in at least one measure-
ment scenario. All the algorithms are able to yield MCR < 5%
for the selected parameter settings, but this condition is met by
LDA, SVM, PLS-DA, and SIMCA in 98.75%, 93.75%, 96.25%,
and 98.75% of all the cases, respectively.

For problem B, the changes resulting from the direct appli-
cation of the classification methods to the high-dimensional
LIBS data are more gentle than for problem A. There is sig-
nificant correlation in the MCR statistics between the results
obtained with and without the use of PCA — compare Figure 5
with Figure 7 for SVM, KNN(E), and PLS-DA. Similarly, the
Hinton diagrams shown in Figures 6 and 8 appear very simi-
lar. However, the best MCR values are not the same.

Table 5 lists the results obtained for problem B without us-
ing PCA. For the multi-class classification, the difference in
accuracy is less than that for problem A. The lowest MCR
for SVM increases from 0.37% to 0.45%, and the best scenario
changes from m20e18s5 to m28e12s5. The number of scenarios
in the range MCR € [1,3]% is comparable. For KNN(E), the
minimal MCR slightly decreases from 3.47% to 3.42%. PLS-
DA is rather advantageous; its lowest MCR diminishes from

0.192% for m20e18s4 to 0.026% for m28e12s5 (the same sce-
nario as for SVM without PCA). The condition MCR < 0.05%
is satisfied for two scenarios. The number of scenarios falling
into the range MCR < 0.5% triples to 27. Thus, when con-
sidering the accuracy of classification, PLS-DA should not be
applied to the PCs. Indeed, PLS-DA intrinsically performs
model-dimensionality reduction on the observed data; hence,
it need not be applied to already reduced PCs.

Figure 9 illustrates the mean MCR obtained in testing each al-
gorithm combined with PCA versus the number of folds in
n-fold CV, where n = 2,...,10. The best measurement sce-
nario is selected for each algorithm according to Figure 5. By
increasing the number of CV folds, we observe a decrease in
the MCR with a decay rate depending on the algorithm. This
behavior is explained by the fact that the training set has fewer
samples for smaller . The results show that the MCR does not
change significantly for n > 5. Hence, the use of five-fold CV
is justified by this fact.

A similar analysis is performed for problem A. We obtain
nearly the same mean MCR for each CV fold with SIMCA,
LDA, PLS-DA, and SVM. For the latter, we were able to ob-
tain satisfactory results even when the training set contains
10% of all the samples.

The classification algorithms are also compared with respect
to the mean runtime in MATLAB. This includes the averaged
time required for training and testing, which increases lin-
early with increasing number of CV folds. For n = 2,...,10,
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MCR
Method 505 T<0i] <05 | <1 | <3 | <5 | <10
SVM | - | 2@5 | 12(15) | 60(75) | 75(93.75) | 80 (100)
KNNE) | - - - - - 5(625) | 27 (33.75)
PLS-DA | 2(25) | 4(5) | 27(33.75) | 45(56.25) | 75(93.75) | 78 (97.75) | 80 (100)

TABLE 5 Number of measurement scenarios (in parentheses, percentage) that satisfy a given MCR threshold for problem B (10 classes) without using PCA.
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QDA appeared to be the fastest, with a runtime in the range
of 15—40ms. LDA has a similar runtime of 22 — 42 ms.
Among the fast algorithms, we can also include KNN(E),
with a runtime of 28 — 59 ms, and KNN(C), with a runtime
of 25 —63ms. NB and SVM are slower, with runtimes of
2.56 —9.26 s and 3.71 — 10.97 s, respectively. SIMCA appeared
to be the slowest with a runtime of 29.4 — 198.2 s.

Changing n in CV affects the MCR values and runtime. The
ranges of the absolute changes and relative changes are listed
in Table 6. Additionally, the last column presents the efficiency
as the ratio of the relative changes (MCR to runtime).

The results demonstrate that LDA not only exhibits very good
performance (the second best with respect to MCR) but also is
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| Algorithm | MCR [%] | RC-MCR Time [ms] | RC-T | Efficiency

LDA 0.42-0.8 81 15-40 167 0.49
QDA 1.75-1.15 37 22-42 91 0.41
SVM 0.87-0.28 69 3709-10973 196 0.35
NB 2.27-1.45 37 2555-9256 262 0.14
KNN(E) | 3.69-3.25 13 28-59 111 0.12
KNN(C) | 3.86-3.11 19 25-63 152 0.13
PLS-DA | 0.33-0.07 85 48-209 335 0.25
SIMCA 0.02-0 100 29400-198220 | 574 0.17
29400-125388* | 326* 0.31*

PNN 5.08-4.35 14 335-1222 265 0.05

TABLE 6 Efficiency and performance changes (MCR, time) versus number of CV folds (n = 2, ...,

10) for the tested algorithms combined with PCA. For example, the range

0.05 — 0.02 in the MCR means that the MCR values change from 0.05 to 0.02 as n changes from 2 to 10. RC-MCR is the relative change in the MCR values, and RC-T refers to the

relative change in time. The efficiency is computed as the ratio of RC-MCR to RC-T.

the most efficient. A large relative change in the MCR value
is also observed for SIMCA, PLS-DA, and SVM. SIMCA gives
the best classification results but is not so efficient due to its
computational time. This result is attributed to the fact that
SIMCA applies PCA separately to each class of the training
samples. For this algorithm, we noticed that the relative MCR
for the folds n = 2,...,5 is the same as for n = 2,...,10.
Hence, the case forn = 2,...,5is also included in Table 6 and
denoted with an asterisk. The worst efficiency is observed for
PNN. An increase in the RC-MCR by only 14% results in the
very low level of its efficiency.

5 CONCLUSIONS

We studied computational tools for the statistical classifica-
tion of solder alloys. Two classification problems were an-
alyzed: (a) supervised separation of healthy solder samples
from their overheated versions and (b) material identifica-
tion. Several statistical classification tools, such as LDA, QDA,
SVM, NB, KNN, PLS-DA, SIMCA, and PNN were discussed.
Experiments based on LIBS observations showed that SIMCA
outperforms the other algorithms for both classification prob-
lems. It yields the highest classification accuracy for the largest
number of measurement scenarios. Unfortunately, it is the
slowest algorithm with a runtime of dozens or even hun-
dreds of seconds. For the first classification problem, algo-
rithms such as LDA with PCA, SVM, PLS-DA, and SIMCA
can classify the samples in many scenarios with an accuracy
of 100%, where only 20% of samples are used for training. The
performance of SVM, PLS-DA, and KNN(E) can be improved
for a large number of the measurement scenarios if these al-
gorithms are applied directly to high-dimensional LIBS data.
i.e. without using PCA (especially SVM and PLS-DA). For the
other problem, the classification error (MCR) of SIMCA does
not exceed 1% for more than 60% of the samples. For one sce-
nario, m28e12s4, we obtained MCR = 0%. LDA and PLS-DA
leads to slightly higher values of MCR and a lower number
of scenarios, but their computational time is relatively short
and changes from dozens of milliseconds (LDA) to hundreds
of milliseconds (PLS-DA). With reference to SIMCA, they are
significantly faster — by a factor of hundreds to thousands.
PLS-DA should not be applied to PCs. If applied directly to
high-dimensional data, its MCR is one order lower. SVM ex-

hibits slightly worse performance, and in the multiclass im-
plementation, it is considerably slower than LDA and PLS-
DA. Nevertheless, SVM has other clear advantages. In our ap-
proach, it classifies one class versus the rest. If a tested solder
lies outside of any training group, it cannot be recognized by
any SVM classifier. Hence, it can be assigned to an extra class.
When LDA is used, it might be assigned to the most similar
class (according to some metrics), which leads to incorrect in-
terpretation. This case may occur in practice, e.g., if a laser
shot reaches the substrate or the solder has a chemical compo-
sition different from that of the training samples. With the use
of SVM, the testing samples that cannot be classified into any
training group can be quite diverse. To find some similarity
between them, we may try to cluster them using unsupervised
machine-learning algorithms. For nonnegatively constrained
samples such as LIBS spectra, we may use various models of
nonnegative matrix factorization [80]. This approach will be
analyzed in our future research.
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