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An analytical model for top-hat long transient
mode-mismatched thermal lens spectroscopy
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It has been shown that a top-hat excitation beam gives rise to a more sensitive signal for the thermal lens spectroscopy (TLS). Recently,
a numerical model has been presented for a top- hat excitation beam in a dual-beam mod-mismatched TLS [Opt. Lett. 33(13), 1464-1466
(2008)]. In this work, we present a full analytical version of this model. Our model was based on a new solution of time-dependent heat
equation for a finite radius cylindrical sample exposed to a top-hat excitation laser beam. The Fresnel diffraction integration method was
then used to calculate on-axis probe-beam intensity variations due to thermal lensing by taking the aberrant nature of the thermal lens
into account. The model was confirmed with experimental data of LSCAS-2 with an excellent agreement.
[DOI: http://dx.doi.org/10.2971/jeos.2016.16004]
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1 INTRODUCTION

Lasers are powerful tools for spectroscopic studies due to their
specific properties such as narrow beam divergence, high de-
gree of spatial and temporal coherence, well-defined polariza-
tion, and high intensity. One of the most sensitive spectro-
scopic techniques which is based on the laser induced heat
is thermal lens spectroscopy (TLS) [1]. From superior appli-
cations of TLS, one can name the capability of detecting ac-
tinides at submicromolar concentrations in aqueous solution
[2]. TLS is well-used to measure the optical absorption and
thermal characteristics of materials [3]–[8].

Thermal lens (TL) effect was first discovered when Gordon
et al. [9] observed a transient power and beam divergence
change in the output of a helium-neon laser after placing
transparent samples in the laser resonator. The thermal lens
has been realized to be a photo-thermal effect arising from
the fact that the refraction index is changed with tempera-
ture. A spatial distribution of temperature happens when a
focused light beam passes through an absorbing medium. So,
the change of refractive index with temperature, or dn/dT ef-
fect, turns the medium into a lens which is experienced by
the probe beam [10]–[12]. The development of the thermal
lens in the medium causes a spread in the beam and a drop
in its intensity [13]. For a transparent sample, by measur-
ing the beam divergence or intensity drop at the beam cen-
ter with a small photo-detector placed at the other end of
the sample, the thermal and optical properties of the sam-
ple can be measured [13, 14]. The so-called thermal lens spec-
troscopy is being used in many applications including ma-
terial testing [15], combustion studies [16], plasma diagnos-
tics [17], heat diffusion researches [18] and phase transitions
studies [19, 20]. In some researches, such as Ref. [21], appli-

cations of TLS in food and environmental analysis have been
reported.

Whinnery and Hu [22, 23] were pioneering authors who
proposed a model to calculate the thermal lens. They treated
the thermal lens as a perfect thin lens, that is, the thermal
lens was approximated by a parabolic distribution. Sheldon
et al. [11] presented a more completed model including the
thermal lens aberrations. Their model has covered the single-
beam as well as the mode-matched dual-beam TLS. Power
[24] developed a mode-mismatched dual-beam TLS model
for a short pulse excitation laser beam. Further study and
development of models led to a more precise model in 1992
by Shen et al. [14]. They generalized the work of Sheldon et al.
[11] for continuous wave (CW) mode-mismatched dual-beam
TLS. It should be noted that the dual-beam TLS is more
sensitive than single-beam method [3, 15]. This is because,
in the dual-beam technique, one beam acts as the pump
beam (absorbed by the sample) while the other beam acts
as the probe (without significant absorption in the sample).
Unlike the dual-beam TLS, the single-beam TLS technique
is difficult to estimate the TL signal [25]. Furthermore, dual-
beam mode-mismatched TLS is more sensitive than other
methods, i.e. single-beam and dual-beam mode-matched
TLS [26].

Bialkowski and Chartier [27] by developing the work of Shen
et al. and considering the effects of optical geometry on the
photo-thermal lens signal, presented a model in which, un-
like to work of Shen et al., did not use the Fresnel diffrac-
tion integral [11, 28]. Their model was based on the assump-
tion of cumulative electric-field phase shifts of a series of
Gaussian refractive index perturbations caused by the photo-
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thermal effect [27]. Nevertheless, this model did not possess
the capability of application in dual-beam mode-mismatched
TLS.

Further progress on TLS has led to introduce a top-hat
beam excitation with pulsed beams as reported by Li et
al. [29, 30]. They theoretically showed that with a top-hat
excitation beam, the TL instrument is more sensitive than
the Gaussian beam TL instrument, with a potential dou-
bling of the sensitivity. Astrath et al. [15], in addition to
present a numerical model for mode-mismatched TLS with
a top-hat profile, showed that the experimental data are
consistent very well with theoretical model and literature
values of thermo-optical properties of LSCAS-2, ZBLAN and
Soda-lime.

In all mentioned works, in particular those that are mostly
related to this work, such as Refs. [9, 14, 15, 31], the sample
was treated as an infinite medium in radial direction. This is
a weakness for thermal model, because in factual situations,
the samples are finite in radial direction, so that the heat en-
ergy flows into the ambience. From the theoretical point of
view, if a sample is considered to be infinite while the heat
source is in operation, at very large time, the temperature goes
to infinity, i.e. the temperature is diverged. As stated by Gor-
don [9], the weakness of considering the sample as an infi-
nite medium is that the temperature diverges at long enough
times instead of converging to a steady-state value. Further-
more, a “Ln” term is appeared in basic model of TL signal
which have to be ignored when fitting the TLS model on the
experimental data [14]. To solve this problem, Shen et al. [32]
derived a finite radius thermal model by using the finite ra-
dius Green’s function presented by Carslaw and Jaeger [33].
However, this model led to a numerical model. Sabaeian and
Nadgaran [34] more recently have presented a full analyti-
cal TLS model based on a thermal model for finite radius
cylindrical samples exposed to a Gaussian excitation beam.
They showed that at large enough time, the thermal model
gets close to steady-state model, and therefore they con-
cluded that this discrepancy on time has been removed. Their
model could very well yield unknown thermo-optical data
mostly closed to expected data of pure water and methylene
blue.

As mentioned earlier, Astrath et al. [15] presented a TLS
model with a top-hat excitation beam. Nevertheless, they
used a numerical approach to reach a TLS signal. Due to
the importance of top-hat TLS configuration which has been
shown to be more sensitive than Gaussian one [3, 15], and
since so far no analytical solution has been reported, there-
fore, we, in this work, present an analytical version for top-
hat long transient dual-beam mode-mismatched TLS. The
TLS model is well-known that contains two unknown pa-
rameters, namely θ and D, which with a good fit on ex-
perimental data, yields these unknown parameters. In or-
der to confirm our model, we will use the expected data
of LSCAS-2 reported in Ref. [15] to fit our model on ex-
perimental data of Astrath et al. The results show an ex-
cellent fit of our model with expected data on experimental
data.

2 THEORY

2.1 Thermal model

The time-dependent heat equation governing the heat transfer
in an isotropic medium is given by [32]:

cρ
∂ [∆T(r, t)]

∂t
− K∇2 [∆T(r, t)] = Q(r) (1)

where ∆T(r, t) is the temperature change relative to ambience,
and c, ρ and K are the specific heat, mass density, and thermal
conductivity of the sample, respectively. For a continuous-
wave excitation beam which is switched on at t = 0, the initial
condition of ∆T(r, t) = 0 is appropriated. Also, for a cylin-
drical finite radius sample, which is large enough compared
to the excitation beam spot size, the boundary conditions of
∆T(r = a, t) = 0 is used. Q(r) is the heat source and since in
this work we are going to consider a top-hat excitation beam
for a low absorbent media, it is assumed to be [15]:

Q(r) =
Pe Aeφ

ρcπω2
e

U(ωe − r) (2)

where U(ωe − r) is a unit-step function, Pe is the excitation
beam power, Ae is the optical absorption coefficient of the
sample at the excitation beam wavelength, ωe is the excitation
beam radius at the sample, φ = 1 − ηλe/〈λem〉 is the frac-
tion of absorbed pump which is converted to the heat with λe
as the excitation beam wavelength, 〈λem〉 the average wave-
length of the fluorescence emission, and η as the fluorescence
quantum efficiency [15].

In order to solve Eq. (1) for a cylindrically-shaped sample with
a radius of a and a length of l, we start by rewriting Eq. (1) in
the circular cylindrical coordinates as

cρ
∂ [∆T(r, t)]

∂t
− K

(
∂2

∂r2 +
1
r

∂

∂r

)
[∆T(r, t)]

=Q0U(ω0e − r) (3)

where Q0 = Pe Aeφ/(ρcπω2
e ).

In the next two subsections, we will consider two cases of in-
finite radius sample and finite radius sample and find solu-
tions for temperature distribution. We will show although our
approach towards finding a solution for temperature distribu-
tion for infinite radius sample is quite difference with the pre-
vious works done, however, it eventually coincides exactly on
Gordon’s method (for top-hat heat source), having the weak-
ness of divergence at long enough time. Therefore, the model
of finite radius sample which is shown to not diverge and co-
incides on the steady-state solution at long elapse time is cho-
sen and the TLS model is based on it.

2.1.1 Infinite radius approach

In order to solve Eq. (3) by assumption of an infinite radius
sample, the temperature difference, ∆T(r, t), in the cylindrical
coordinates is expanded in terms of orthogonal Bessel func-
tions as:

∆T(r, t) =
∫ +∞

0
J0(kr)τ(k, t)dk (4)

where J0(kr) is the zero-order Bessel function and τ(k, t) is an
unknown function to be determined. Having regarded to the
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above solution, the second term in Eq. (3) would be equal to
K
∫ +∞

0 τ(k, t)[−k2 J0(kr)]dk. This allows us to rewrite Eq. (3)
as:∫ +∞

0
J0(kr)

[
ρc

dτ(k, t)
dt

+ Kk2τ(k, t)
]

dk = Q0U(ω0e − r) (5)

Multiplying both sides of Eq. (5) by rJ0(k′r) and integrating
over r from 0 to ∞, we end up with:

dτ(k, t)
dt

+ Dk2τ(k, t) =
Q0ωe J1(kωe)

ρc
(6)

where D = K/ρc is the thermal diffusivity and J1(x) is
the first order Bessel function. With initial condition of
∆T(r, t = 0) = 0, the solution of Eq. (6) is as follows:

τ(k, t) =
Q0ωe J1(kωe)

K

[
1− exp(−Dk2t)

]
(7)

So by substituting Eq. (7) in Eq. (4), the temperature differ-
ence, ∆T(r, t), is obtained as:

∆T(r, t)

=
1
4

Q0ω2
e

K

[∫ +∞

0
J0(kr)

1
k

e−αk2
dk−

∫ +∞

0
J0(kr)

1
k

e−βk2
dk
]

(8)

where α = ω2
e /8 and β = ω2

e /8 + Dt. By solving the above
integration with a laborious approach, finally we end up with
the following solution:

∆T(r, t) =
Q0ω2

e
8K

[
Ei
(

1,
2r2

ω2
e + 8Dt

)
− Ei

(
1,

2r2

ω2
e

)]
(9)

where Ei(a, z) is the exponential integral. Eq. (9) is exactly the
equation that was obtained in the work of Gordon et al. [9].
A detailed discussion of above solution have been come in
Ref. [34]. As Gordon et al. have reported, this solution has the
weakness of divergence at large enough time instead of clos-
ing to steady-state solution. In the next subsection, we derive
a solution for temperature distribution with a factual assump-
tion of finite radius for sample. As we will see, this solution is
free of that shortage seen in infinite solution.

2.1.2 Finite radius approach

In this subsection, similar to that done to solve Eq. (3), the
temperature difference, ∆T(r, t), is expanded in terms of or-
thogonal Bessel functions in the cylindrical coordinates, but
by using a summation instead of an integration, as:

∆T(r, t) =
∞

∑
n=1

J0 (rαn/a) τn(t) (10)

where J0 (rαn/a) is the zero-order Bessel function and τn(t)
is an unknown function to be determined. If a >> ωe (e.g.
a/ωe ∼ 10), the assumption of constant temperature at the
sample boundaries requires that αn’s being the roots of zero-
order Bessel function. With above primary solution, the sec-
ond term in Eq. (3) would be equal to (αn/a)2 J0 (rαn/a). This
allows us to separate the variables r and t in Eq. (3) as is done
as follows:

∞

∑
n=1

J0 (rαn/a)
[

ρc
dτn(t)

dt
+

Kαn

a2 τn(t)
]
= Q0U(ωe − r) (11)

FIG. 1 Temperature distribution versus the radial distance. From bottom to top, the

curves shows ∆T(r, t) for t = 1 s (dotted curve), t = 10 s (dashed-dot curve),

t = 20 s (dashed curve), and t = 200 s (solid curve), respectively.

Multiplying both sides of Eq. (11) by rJ0
(
rαn′

/
a
)

and integrat-
ing over r from 0 to a, we end up with

ρc
dτn(t)

dt
+

Kαn

a2 τn(t) =
2Q0

a2 J2
1 (αn)

In (12)

where In is defined as

In =
∫ a

0
U(ωe − r)J0 (rαn/a) rdr

=
∫ ωe

0
J0 (rαn/a) rdr =

aωe J1 (ωeαn/a)
αn

(13)

Eq. (12) is a linear first-order differential equation and has a
straightforward solution of

τn(t) =
2Q0 In

Kα2
n J2

1 (αn)
[1− exp(−Dα2

n
a2 t)] (14)

with initial condition of ∆T(r, t = 0) = 0.

Figure 1 shows the temperature distribution, ∆T(r, t),
obtained in this subsection at several times including
long elapsed time and compares the result with its
steady state regime. The steady-state solution can be
found in Refs. [9, 34]. The parameters used for plotting
the curves are as follow: ωe = 275 µm, Pe = 66 mW,
Ae = 1.70 cm−1, η = 0.84, λe = 532 nm, < λem >= 1064 nm,
D = K/ρc = 5.7× 10−3 cm2s−1,a = 5 mm, l = 1.5 mm which
are taken from Refs. [3, 15]. The number of 50 terms has been
retained in the summation of Eq. (10) to reach an accurate
solution and to agree with numerical solution. Figure 1
reports a reasonable behavior for temperature at long elapsed
time, that is, the temperature approaches its steady state.

2.2 Thermally induced phase shift

Unlike the liquids, in the solid samples, besides the dn/dT ef-
fect, the end effect and thermal stresses result from the local
inhomogeneous temperature rise inside the sample. In the TL
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experiments, the end effect causes a bulging of the end faces
through axial expansion of the sample [35]. Also the cooler
outer part of the sample prevents the expansion of its hotter
central region generates the stresses [36]. These effects are dis-
cussed in detail in the literature [36]–[39]. In these studies, in
order to account for these effects, dS/dT is used instead of
dn/dT. These effects are accounted by the first, second and
third term in Eq. (16). So, in solid samples, such as LSCAS-2,
the temporal and radial distributions of the temperature rise
inside the sample induces a refractive index gradient, acting
as an optical element and causing a thermal induced phase
shift to the probe beam that for thin-disk or long-rod geome-
try, can be written as follows [36, 39]:

ϕ(r, t) = kpl
∂S
∂T
× [∆T(r, t)− ∆T(r = 0, t)] (15)

where ∂S/∂T that depends on the geometry of the sample is
the temperature coefficient of the optical path length at the
probe beam wave number, kp. For sample with thin-disk ge-
ometry, the plane-stress approximation can be used, and the
thermal coefficient of optical path can be written as:

∂S
∂T

=
∂n
∂T

+ (n− 1)(1 + υ)α +
n3Eα

4
(q‖ + q⊥) (16)

where α is the linear thermal-expansion coefficient, E is the
Young’s modulus, ν is the Poisson’s ratio, q‖ and q⊥ are, re-
spectively, the stress-optical coefficients for the parallel and
perpendicular orientation relative to excitation beam polar-
ization [36]. Using temperature distribution calculated in Eqs.
(10) and (14), the phase difference is obtained as

ϕ(r, t) = kpl
∂S
∂T

∞

∑
n−1

τn(t) [J0 (rαn/a)− 1] (17)

The variations of thermally induced phase shift versus r are
plotted in Figure 2 for three different times which shows the
typically small value for the thermally induced phase shifts.
This is the case for low absorbent samples. Here, the parame-
ters of Figure 1 are used.

One of the outstanding points of the present work is inclu-
sion of all aberrations term in the thermal phase shift which is
brough in thermal lens signal calculated in the next section.

3 Thermal lens signal

Figure 3 illustrates a schematic diagram of dual-beam mode-
mismatched TLS setup. In this setup, a sample is exposed to
two laser beams having beam waists of ω1p(for probe beam)
and ωe (for excitation beam).The details of this setup has been
explained in Ref. [34]. If the sample is located at z, using the
Fresnel diffraction theory, the propagation of a TEM00 Gaus-
sian probe beam through the sample to the detector plane can
be obtained as [14]:

U2(z + z2, t) = C
∫ ∞

0
exp[−(1 + iV)g]× exp(−iϕ)dg (18)

where C = B[ikpω2
1p/(2z2)] exp(−ikpz2), z2 is the distance

from the sample to the detector and can be written as

FIG. 2 Thermal phase shift versus the radial distance for t =0.1 s (solid curve), t = 0.5 s

(dotted curve), and t = 10 s (dashed curve). The parameters used are the same as in

Figure 1.

FIG. 3 A schematic diagram of the probe and excitation beams in a dual-beam mode-

mismached TLS setup. The sample cell is exposed to a laser beam with a spot size of

ωe. The beam spot size of probe beam over the sample is ω1p. The detector plane is

located at the distance L from the origin (z = 0) [34].

z2 = L − z, where L is the detector position shown in the
Figure 3,

B =
√

2Pp/πω2
1p exp(−ikpz) ,

V = z/zp + zp[1 + (z/zp)
2]/(L− z) ,

zp = πω2
0p/λp , g = (r/ω1p)

2

and ω0p is the probe beam waist.

To the best of our knowledge, the analytical solution of Eq.
(18), does not exist [34]. However, for a low absorbent case,
which is the case in our work, we can used the approxima-
tion of exp(−iϕ) ≈ 1 − iϕ [11, 14] where ϕ contains aber-
ration terms. The higher-order expansion terms are neces-
sary for accurate signal prediction only in highly absorbing
samples or when high-power excitation source are used [27].
Furthermore, Sheldon et al. [11] argued that because the in-
duced phase shift in the most photo-thermal lens experiments
is much less than unit, higher-order series approximations are
not necessary. We have shown earlier that this phase shift is
small enough (see Figure 2) for safe use of this approximation.

16004- 4



J. Eur. Opt. Soc.-Rapid 11, 16004 (2016) M. Sabaeian, et al.

After calculating U2(z+ z2, t) via Eq. (18), then multiplying by
U2(z+ z2, t)∗, we get the on-axis normalized beam intensity at
the location of the detector as:

I(t)
I(0)

=

(
1− θ

∞

∑
n=1

J1(
αn
m′ )
(

1− e(−β2
nt/tc)

)
α2

n J2
1 (αn)

· e(−δα2
n) sin(α2

nδV)

)2

+

(
θ

∞

∑
n=1

J1(
αn
m′ )
(

1− e(−β2
nt/tc)

)
α2

n J2
1 (αn)

·
(

1− e(−δα2
n) cos(α2

nδV)
))2

(19)

where θ ≡ Pe Ael φ (∂S/∂T) (4m′/ρcKλp), m′ = a/ωe,
δ = ω2

1p/[4a2(1 + V2)], βn = αnωe/2a and tc = ω2
e /4D. In

the case where the absorption is very low, i.e. when θ � 1,
we can ignore the terms including θ2 in Eq. (19) safely. So by
expanding Eq. (19) and ignoring θ2 term, we have

I(t)
I(0)

=1− 2θ
∞

∑
n=1

J1(αn/m′)[1− e(−β2
nt
/

tc)]

α2
n J2

1 (αn)

· e−δα2
n sin(α2

nδV) (20)

3.1 Confirmation of model with
experimental data

In order to validate our analytical model, we used the ex-
pected dada for θ and D reported in the literature [40] to fit
our model on experimental data of Astrath et al. [15] obtained
from LSCAS-2. As mentioned, Astrath et al. [15] in their work
developed a numerical method to extract physical properties
of the sample.

The parameters used in the work of Astrath et al. [15] are
as follows: excitation laser spot size at cell ωe = 275 µm,
container length l = 1.5 mm, probe laser spot size at cell
ω1p = 920 µm, excitation laser power Pe = 66 mW, absorp-
tion coefficient Ae = 1.70 cm−1, V = 15.2, and Z2 = 5 m.
Figure 4 shows the experimental data of Astrath et al. (circles)
which are I(t)/I0 at various times. The data of Astrath et al.
are 155 points which were extracted point-by-point from their
original paper [15]. In Figure 4, solid line shows our model
(Eq. (20)) with Θ = −7.0 [W−1] (Θ = θρc/(PelAe4m′) ) and
D = 5.8× 10−3[cm2 / s] which are given in Ref. [40]. The fit-
ting of our model (with expected Θ and D) on experimental
data of Astrath et al. reveals an excellent agreement. The ex-
pected data and those extracted through numerical model of
Astrath et al. are listed in Table 1. Apart from reporting an
analytical model, our model shows a better fitting on experi-
mental data.

4 CONCLUSION

In conclusion, in this work, we have presented a full analytical
model for top-hat CW excitation beam for dual-beam mode-
mismatched thermal lens spectroscopy (TLS). The model was
based on an analytical thermal model for finite radius sample

FIG. 4 Experimental data [15] (circles) along with fitting results of our model (solid

curve) for the LSCAS-2.

without divergence at long elapsed times which is reported in
the previous model. Furthermore, for low absorbent samples,
all aberration terms associated in thermal lens were taken
into account in Fresnel integration. Our full analytical model
has been fitted very well, with expected date for two un-
known parameters in the model, on the experimental data for
LSCAS-2 sample. In this regard, this analytical model can be
very well suited for low absorption materials when more sen-
sitive TLS with top-hat excitation beams is needed for calcu-
lation of thermo-optical parameters.
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Samples D [10−3cm2/s] Θ [W−1]∗

The work of Astrath et al. 5.7 -7.1
Expected data [40] 5.8 -7.0
*Θ = (δS/δT)φ/KλP

TABLE 1 Experimental data from Astrath et al.’s numerical work [15] and expected data

[40] for LSCAS-2.
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