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This paper presents a simple quasi-common path point diffraction interferometer (PDI) that allows fringe contrast and fringe spatial
frequency to be adjusted conveniently. The novel aspect of this PDI is the use of a polarizer with pinhole as the PDI mask - and then, with
a compact circular optical setup, reference and measurement waves are obtained. Furthermore, a linear tilting modulation is added into
two interfering waves and adjusted easily by tilting the polarizing beam splitter - and hence the Fourier transform method can be perfectly
applied to extract the wavefront phase from the captured fringe pattern, with the highest fringe contrast and suitable carrier frequency.
Detailed theoretical analysis and experimental results are presented.
[DOI: http://dx.doi.org/10.2971/jeos.2015.15042]

Keywords: Phase measurement, point diffraction interferometer (PDI), fringe contrast, carrier frequency

1 INTRODUCTION

The point diffraction interferometer (PDI) is a self-referencing
interferometer wavefront sensor (SRI WFS) with high spatial
resolution, because each pixel corresponds to a sub-aperture
in the interferogram. At the same time, this interferometric
wavefront sensor based on PDI principles can carry out the
absolute wavefront measurement without a requirement for
precision reference optics and can directly obtain the wave-
front information without the need for a reconstruction algo-
rithm similar to that used in the shearing interfermoter [1, 2].
Also, it can be applied to detect the wavefront phase in strong
scintillation [2, 3] and irregular pupil situations. Therefore,
this wavefront sensor based on PDI principles is a very impor-
tant component for improvement of the performance of adap-
tive optics (AO) systems. Various PDIs have been developed
and applied in accurate phase measurement and fluid flow di-
agnostics since Smart et al. [4] proposed the PDI, in which the
reference wave is generated by diffraction from a tiny pinhole
and it has features like common-path and self-referencing.

The PDI with common-path structure is insensitive to vibra-
tion, has long coherence lengths and can minimize the influ-
ences of air turbulence or thermal fluctuation. However, tra-
ditional common path PDI also has some drawbacks in its dif-
ficulty of phase shifting [5] or wavefront extraction, poor real-
time measurement and poor technology for making the PDI
mask [6]–[8], as well as low fringe contrast [1, 4, 5, 9, 10].

On the basis of the structure of the circular-path radial shear-

ing interferometer [11]–[13] and the use of a polarizer with
pinhole as the PDI mask, a circular quasi-common path PDI
is proposed. The new PDI system allows fringe contrast and
fringe spatial frequency to be simply adjusted, and then, by
using the Fourier transform method (FTM), the wavefront
phase is extracted in real-time. Compared with the traditional
common path PDIs, the proposed PDI is compact in size and
simple in configuration - as well as easily adjusted. Addition-
ally, for the different wavefront phases under test, the fringe
with the highest fringe contrast and suitable carrier frequency
can be obtained in this PDI. Therefore, another potential ad-
vantage is that it can measure different wavefront phases with
higher accuracy.

2 PRINCIPLES OF THE PROPOSED PDI

The arrangement of the proposed common path PDI is pre-
sented in Figure 1. A linearly polarized laser beam including
the measured phase information passes through a polarizing
beam splitter (PBS) and is divided into a reflected beam and
a transmitted beam with orthogonally polarized orientations.
At the same time, the amplitude proportion of the two op-
tical beams is adjusted as the half-wave plate (HWP) placed
in front of the PBS is rotated. Then the transmitted and the
reflected beams traverse into a circular telescope system com-
posed of two reflecting mirrors (M1 and M2) and two lenses
(L1 and L2) with equivalent focal lengths. These two beams
travel along nearly the same optical path but along oppo-
site directions - namely, the transmitted beam traverses along
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FIG. 1 Schematic diagram of quasi-common path PDI. HWP, half-wave plate; PBS, polar-

ization beam splitter; L1-2, lenses; M1-2, mirrors; QWP, quarter-wave plate; P, polarier.

the anti-clockwise direction and the reflected beam traverses
along the clockwise direction, which are represented as the
solid line and the dotted line in Figure 1, respectively. A po-
larizer (P1) with a pinhole as the PDI mask is placed in the
focal plane of L1 and L2 and the transmission axis of P1 is
perpendicular to the polarization direction of the transmit-
ted beam but parallel to that of the reflected beam. There-
fore, the transmitted beam focused on the pinhole in the P1
will produce diffraction and makes a reference wave after-
wards, whereas the reflected beam will be focused outside of
the pinhole (i.e., focused on the P1) while the PBS is tilted.
Thus the reflected beam passes through the P1 with almost
no attenuation and makes a test wave. Then, once again, the
reference and the test waves will be wholly transmitted and
reflected from the PBS, respectively. The interference fringe
pattern between the reference and test waves is captured by
a CCD camera after a quarter-wave plate (QWP) with its
fast axis at 45◦ and a polarizer (P2) for qualitative analy-
sis. Each wave is represented by a Jones matrix for mathe-
matical interpretation. The incident linearly polarized light
expressed as E = exp(iφ) is divided into two orthogonal
beams: the transmitted beam cosα

[
1
0
]

exp(iφ) and the re-
flected beam sinα

[
0
1
]

exp(iφ) , where i =
√
−1 , φ is the

wavefront phase to be measured, and α ranging from 0 to 90◦

is the fast axis direction of the HWP. The Jones matrix of the P1
with its transmission axis at 90◦ is

[
0 0
0 1
]

. It is assumed that the
phase filtering after pinhole diffraction is perfect, so the trans-
mitted beam will become a plane wave and is then regarded
as the reference wave, which is expressed as:

Er =
√

Tcosα

[
1
0

]
(1)

namely the phase information included in the factor exp(iφ)
in the above expression is eliminated. By pinhole filtering, the
optical intensity passing through the pinhole will reduced -
and the parameter T in Eq. (1) denotes the intensity transmis-
sion of the pinhole under a given wavefront aberration φ. The
undiffracted test wave from the reflected beam will hold the
same amplitude and polarization direction with respect to the

reflected beam and its Jones matrix is given by

Em =

[
0 0
0 1

]
sinα

[
0
1

]
exp(iφ) = sinα

[
0
1

]
exp(iφ) (2)

The reference and the test waves become right-circularly and
left-circularly polarized after the QWP with its fast axis at 45◦

for which the Jones matrices are 1√
2

[
1 −i
−i 1

]
, and are expressed

respectively as

E′r =
1√
2

[
1 −i
−i 1

]√
Tcosα

[
1
0

]
=

√
Tcosα√

2

[
exp(i0)

exp(−iπ/2)

] (3)

E′m =
1√
2

[
1 −i
−i 1

]
sinα

[
0
1

]
exp(iφ)

=
sinα√

2

[
exp(−iπ/2)

exp(i0)

]
exp(iφ)

(4)

Then two circularly polarized waves are recombined as fol-
lows, [

Ex
Ey

]
=

1√
2

[ √
Tcosα + sinαexp[i(φ− π/2)]√

Tcosαexp(−iπ/2) + sinαexp(iφ)

]
(5)

The recombined wave passes through P2 with its transmis-
sion axis at 0◦ for which the Jones matrix is

[
1 0
0 0
]
, so only the

component in the x-direction is passed and the following ex-
pression is obtained:

Ex =

√
Tcosα√

2
+

sinα√
2

exp[i(φ− π/2)] (6)

So the intensity of the interferogram is expressed as:

I = ExE∗x =
Tcos2α

2
+

sin2α

2
+
√

Tcosαsinαsinφ (7)

Assume that Ir =
Tcos2α

2 and Im = sin2α
2 , Eq. (7) is rewritten as:

I = Ir + Im + 2
√

Ir Imsinφ (8)

When the PBS is rotated slightly, a linear tilting modulation
is introduced between the two interfering waves. In this case,
the interference fringe pattern can generally be described as:

I = Ir + Im + 2
√

Ir Imsin(φ + 2π f0x) (9)

where f0 is the spatial carrier frequency introduced in the x-
direction. By using the FTM, the wavefront phase can be ex-
tracted from the fringe pattern, as shown in Eq. (9).

3 THE PINHOLE DIAMETER AND FRINGE
CONTRAST

According to Fourier optics theory, the influence of the pin-
hole size on the precision and transmission intensity of the ref-
erence wave can be analyzed. Detailed analysis on the deriva-
tion of the reference wave in the PDI is given in our previ-
ous work reported in the literature [14, 15]. Here, only two
important conclusions are presented. We use 3 to 25 Zernike
modes to describe the original wavefront phase, and their
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FIG. 2 Pinhole size required for different Zernike modes to produce the reference phase

with given RMS value.

peak-to-valley (PV) values are normalized withs respect to
wavelength. These different wavefront aberrations are filtered
by the pinhole - and then the root-mean-square (RMS) value of
the reference phase is calculated and is described as ΦRMS. For
different Zernike modes to produce the reference wavefront
with a given ΦRMS, the required pinhole diameter is shown in
Figure 2. The simulated results show that, for all Zernike
modes, to obtain a higher accuracy reference phase a big-
ger pinhole is needed. Furthermore, in the case of the same
ΦRMS, the pinhole sizes required for low-order Zernike modes
are generally less than those required for high-order modes.
Therefore, for optical testing, the requirement of a high accu-
racy reference wave suggests that the pinhole should be not
greater than half of the Airy disk for the unaberrated wave. In
this case, the accuracy of the reference phase will reach λ/100.
At the same time, for certain Zernike aberrations, the accuracy
may even reach λ/104.

The pinhole in the PDI structure not only produces a ref-
erence phase that is near to a plane wave but also reduces
the transmission intensity. An unaberrated plane wave with
unity amplitude is taken into account. It can be concluded
from Figure 3 that when the pinhole diameter equals half of
the Airy disk the intensity transmission equals 63%. More-
over, a smaller pinhole will restrict more light energy to be
passed. In addition, it is obvious from Figure 4 that, for an
aberrated wavefront, the transmission intensity will decrease
further and the transmission intensity is completely different
for every Zernike mode. Therefore, to improve the fringe vis-
ibility we need a significant time to adjust the intensity of test
wave. However, that is not a practicable scheme in common
path systems.

The fringe contrast is one of the important factors affecting the
accuracy of an interferometer [16]. According to the intensity
formula of the interferogram shown as Eq. (9), the fringe con-
trast is given by

K =
2
√

Ir Im

Ir + Im
=

2Tcosαsinα

Tcos2α + sin2α
=

2
√

Ttanα

T + tan2α
(10)

If we let K in Eq. (10) be equal to one, then the relationship
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FIG. 3 Intensity transmission of reference wave versus increasing pinhole size.
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FIG. 4 Intensity transmission of different Zernike modes traveling through a pinhole

with half of the Airy disk.

between parameters α and T is described as

α = arctan
(√

T
)

(11)

From Eq. (10) it can be deduced that the rotation angle α of
the HWP influences the fringe contrast K, namely, the fringe
contrast in the proposed PDI can be adjusted by rotating the
HWP. At the same time, Eq. (11) indicates that, in the case of
a given transmission intensity, T one can obtain a value of α

that makes the fringe contrast of the interferometer reach its
highest value (i.e. one). Furthermore, it has been shown in the
above analysis that the transmission intensity is influenced by
two factors, i.e. the pinhole size and the measured wavefront
phase. Therefore, the transmission intensity T will vary, along
with the measured wavefront phase φ. In this case, the maxi-
mal contrast K can be obtained by adjusting the angle α.

Here, we use an atmospheric phase screen consistent with
Kolmogorov theory to simulate the situation numerically. The
phase screen with D/r0 = 5 consists of 3 to 25 Zernike modes,
where D is the input aperture diameter and r0 is the Fried pa-
rameter, and a wrapped phase is shown in Figure 5(a). A pin-
hole with 60% of the Airy disk diameter for the unaberrated
wave is used to generate the reference wave and moderately
improve the transmission intensity. In the case of a given pin-
hole size and an aberrated phase as shown in Figure 5(a), the
fringe contrast K as a function of the rotation angle α of the
HWP is illustrated in Figure 5(b).
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FIG. 5 Simulated results of fringe contrast. (a) wrapped atmospheric phase screen with D/r0 = 5, (b) fringe contrast versus rotation angle of the HWP under the phase shown

in (a).

From Figure 5(b) it can be deduced that, by varying α, the in-
tensity ratio of the two interfering beams can be adjusted in
order to maximize the fringe contrast, which can reach unity
in the case of any an input wavefront aberration. As a result,
in the proposed common path PDI, the fringe contrast can be
adjusted easily - whereas this is very difficult in many previ-
ous common path PDI systems [1, 4, 5, 9, 10].

4 EFFECT OF CARRIER FREQUENCY TO
THE FTM

The FTM was originally introduced and demonstrated by
Takeda et al [17, 18], and only one frame fringe pattern is re-
quired, which makes it the easiest method capable of dealing
with dynamic situations. To descript briefly the principle of
the FTM, generally, the carrier frequency fringe shown as Eq.
(9) can be rewritten as

g(x, y) = a(x, y) = b(x, y)cos [φ(x, y) = 2π f0x] , (12)

where a(x, y) and b(x, y) are the background and the modula-
tion intensity, respectively. Assuming that a(x, y), b(x, y) and
φ(x, y) are slowly varying functions compared with the spa-
tial carrier frequency f0, that is

f0 >
δa(x, y)

δx
,

δb(x, y)
δx

, and
δφ(x, y)

δx
(13)

In this case, the three terms in the Fourier transforms of
Eq. (12) will be separable. Thus a suitable frequency filter is
used to isolate any single fundamental frequency composi-
tion. Then the phase φ(x, y) can be retrieved with the FTM.
Figure 6 shows a frame of simulated fringe patterns with
f0 = 25. Through variation of the carrier frequency, a series of
fringe patterns can been generated. With the use of FTM, the
phases of all the simulated fringes are extracted. The differ-
ence between the extracted and the given phases is obtained
and defined as the residual phase. Also, the RMS values of
the residual phases are calculated. So the behavior of the RMS
value versus the carrier frequency under the given aberration
is plotted in Figure 7.

 
 

 
FIG. 6 Simulated fringe pattern with f0 = 25. 
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FIG. 7 RMS value of residual phase versus carrier frequency under a series of simulated

fringe such as Figure 6.

The result from Figure 7 reflects the affecting law of carrier
frequency to the FTM, namely, a suitable carrier frequency is
of great importance for the FTM especially while the practi-
cal aberration to be measured is unknown, which holds wide-
range alterability such as different aberration modes or vary-
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FIG. 8 Experimental results. (a) original phase introduced by the SLM, (b) fringe pattern captured by the proposed PDI, (c) wavefront phase extracted from (b), (d) residual phase

error.

ing magnitude. In fact, in the case of total separation of the
zero-frequency and fundamental-frequency compositions, the
lower carrier frequency may increase the spatial sampling res-
olution to one fringe period. As a result, a higher phase extrac-
tion accuracy can be obtained.

However, the determination of the carrier frequency depends
mainly on the varying speed of a(x, y), b(x, y) and φ(x, y) in
Eq. (12). Therefore, an interferometer system with adjustable
carrier frequency is very helpful in improving the accuracy of
the FTM to the maximum. This characteristic is very useful, es-
pecially in the case where the PDI is used in a closed-loop AO
system. In the beginning of closed-loop correction, the spatial
variation of the incident wavefront is faster. In this case, the
higher carrier frequency may increase the accuracy of phase
measurement, accelerating the closed-loop correction speed.
When the correction process is close to completion, the resid-
ual wavefront is slowly varying. In this case, the lower carrier
frequency may increase the number of samples acquired for
each fringe period, improving the precision of the final cor-
rection result. As a result, the adjustable carrier frequency can
be achieved easily in the proposed quasi-common path PDI -
whereas it was very difficult in some previous common path
PDIs [1, 10].

5 EXPERIMENTAL RESULTS

In the experimental system, the collimated-plane laser out-
put is reflected from a reflective liquid-crystal spatial light

modulator (SLM) and then is incident into the PDI system, as
shown in Figure 1. The SLM that works in phase-only modula-
tion mode is used to introduce the aberrated wavefront to be
tested. The SLM used has an array of 256×256 pixels across
a 4.61 mm square aperture and the relationship between the
phase retardance and the gray levels has been calibrated accu-
rately in our previous work [19]. In the PDI, a 60 µm pinhole is
used, which equals about 60% of the Airy disk for unaberrated
wave, namely 1.46λ f /D , where f (250 mm) is the focal length
of L1 and L2 in Figure 1, λ (632.8 nm) is the laser wavelength,
and D (4.61 mm) is the aperture size.

At first, an aberrated wavefront is produced by the SLM with
a phase wrapping operation (modulo 2π). Then it is mea-
sured by a Zygos interferometer with a vibration-isolating
platform and the measured result, as shown in Figure 8(a),
is also used as the original phase distribution. While this
aberrated wavefront is introduced, the corresponding fringe
pattern is captured by the CCD camera in the PDI. Next,
by rotating gradually the HWP a series of fringe patterns
with different contrast are captured and their correspond-
ing contrast values are calculated. According to the fitting
results, the rotation angle of the HWP associated with the
highest contrast is determined - and then, by rotating the
HWP and tilting the PBS, a fringe pattern with the highest
fringe contrast and a suitable carrier frequency is captured
and shown in Figure 8(b). Finally, By using the FTM the wave-
front phase is extracted from Figure 8(b) and is shown in
Figure 8(c). The residual phase, i.e., the difference between
the extracted and the original phases, is calculated and also
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shown in Figure 8(d). The RMS value and the peak to val-
ley value for the residual phase shown in Figure 8(d) are
equal to 0.03λ and 0.44λ respectively. It can been seen from
Figure 8(d) that the error of the inner area in the extracted
result is very low, except for the border part of the analyzed
fringe pattern. The maximal errors that appear in the area near
to the borders are mainly due to the well-known border ef-
fect [20] from the FTM. This problem can be overcome using
techniques such as the published literature [21] for improving
the accuracy of phase extraction, especially in the border part.

The experimental procedure illustrates that this simple and
compact PDI system is convenient to set up and use. Also, the
experimental results show that the proposed quasi-common
path PDI can realize the adjustment of fringe contrast and
fringe carrier frequency, and hence higher accuracy phase ex-
traction is obtained. Moreover, it is known that the fringe con-
trast is directly related to the parameter of intensity transmis-
sion. When this parameter is obtained, the accurate rotation
angle of the HWP can be known. In this case, automatic rota-
tion to the HWP may realize the maximization of fringe con-
trast so as to reach real-time measurement in the future.

6 CONCLUSIONS

This paper has presented a new quasi-common path PDI to
extract the wavefront phase from a carrier frequency fringe
pattern. Detailed analysis of principles and experimental
work has been carried out - and it is shown that the fringe
contrast and the carrier frequency can be adjusted easily
and hence one can obtain a fringe pattern with the highest
fringe contrast and suitable carrier frequency when this PDI
operates. Another main virtue of this PDI is that it is simple
to set up and use, compact in structure, has easy fabrication
of the PDI mask, is flexible to use, and is a low cost system.
The PDI proposed in the paper is also of great practicality as
an SRI WFS using closed-loop AO, because the fringe contrast
and the carrier frequency need to be adjusted as the input
phase varies gradually.
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