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In this paper, complex deterministic sensing matrices are explored to sample the signals in the single pixel imaging (SPI). A new analysis-
synthesis scheme is proposed to realize the complex deterministic sensing matrix for the DMD-based SPI. The analysis process divides
the complex sensing matrix into real sensing matrix and imaginary sensing matrix, and multiple imaging is performed with these sensing
matrices. After synthesizing the real and imaginary measurements, the final image of complex deterministic sensing matrix is reconstructed.
The performance of deterministic sensing matrix is investigated through simulation and experiment. Compared with the random sensing
matrix, the deterministic sensing matrix gives more favorable reconstructed images.
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1 INTRODUCTION

Single-pixel imaging (SPI) uses detector with one single pixel
to acquire object information instead of the millions of pixels
used in the imaging sensors of conventional digital cameras.
In SPI the two-dimensional spatially coded patterns can be
employed before or after the object. Generally, illuminating
objects with patterns can be associated with ghost imaging [1,
2] and filtering the light reflected from object with patterns
refers to single-pixel camera [3, 4].

The signals recorded by the single-pixel detector are corre-
lated with spatially coded patterns so that the objects can be
reconstructed from a series of time-synchronized coded sam-
plings. For the intensity-based SPI, the coded patterns are gen-
erally a rapidly-shifting sequence of binary (black-and-white)
patterns similar to crossword puzzles. This binary pattern can
be generated by a spatial light modulator (SLM) or a digital
micro-mirror device (DMD).

The emerging theory of compressive sensing (CS) offers a po-
tential solution to SPI, where an image of the scene can be re-
constructed from far fewer data/measurements than the num-
ber of reconstructed pixels. Several reports have introduced
CS into SPI to enhance the performance of SPI. Single-pixel
camera is the first application of compressive sensing used in
SPI. It utilizes a DMD to displaying a time sequence of ran-
dom binary sensing patterns, and captures the average light
with a single-pixel photodetector. Since then, random sensing
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matrix has served as the first choice in the imaging process of
SPI. With the development of CS theory, deterministic sensing
matrices are proposed, and compared with the random sens-
ing matrices, they show more promising performance [5]-[7]:
1) The deterministic matrices are guaranteed to satisfy the co-
herence condition when they are constructed. 2) Exploiting
the structure of deterministic matrices, it is possible to save
them in a more storage-saving manner. 3) Its structure may
help to devise specific fast recovery algorithm.

In this paper, we present the use of deterministic sensing
matrices to sample the signals in the SPI and the aim is to
prove the superiority of deterministic sensing matrices in SPI.
In addition, the first-hand report, which uses an intensity-
modulated DMD to achieve complex-valued sensing matri-
ces, is presented. A combination of DMD-based SPI system
and a Noiselet-based complex-valued deterministic sensing
matrix is experimented to demonstrate our proposal.

2 DETERMINISTIC SENSING FOR SPI

2.1 Performance of Deterministic Sensing
Matrix

Consider a Length-N signal x, M measurements y are ob-
tained in the data acquisition process. In matrix notation, it
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is described as:

y = ®x 1)

where @ represents an M x N sensing/measurement matrix.
If the signal x is a 2-dimension image, its vector notion x is ob-
tained by stacking the pixels of the image x, and the row of ®
is the stacking of the corresponding 2-dimension sensing pat-
terns. When x is sparse or can be sparsely represented in some
sparsity basis ¥, the CS theory asserts that if the coherence be-
tween sensing matrix ® and sparsity basis ¥ satisfies certain
conditions [8], the signal x can be perfectly reconstructed from
y, even if M < N.

The sensing matrix @ plays an important role in CS, and it has
a profound impact on the quality of the reconstructed image.
To have an insight of the performance of random and deter-
ministic sensing matrices in SPI, we perform a series of simu-
lations. Two sensing matrices are used in the simulation: one
of them is the classical Bernoulli random sensing matrix, and
the other is deterministic noiselet sensing matrix. Noiselet,
which is firstly presented in [9], is perfectly incoherent with
the Haar wavelet transform [10, 11]. This means that we can
sample the scene with noiselet sensing matrix, and reconstruct
the image via the Haar wavelet basis. The noiselet sensing ma-
trix may be a good candidate for SPI, since: 1) the real and
imaginary parts of noiselet matrix is binary (only -1 and 1), so
it can be efficiently performed by DMD. 2) The noiselet matrix
is symmetric and unitary and the generation of noiselet en-
joys fast algorithms (computational complexity is O(N log N),
where N is the size of matrix), which can facilitate the process
of data processing. 3) For each row of the noiselet matrix, the
energy of signal will be spread out, rather than concentrated
on several pixels, in the measurement domain, which enables
a better recovery condition. 4) The image is always sparse in
the wavelet domain, and thus the wavelet is a good sparsity
basis.

The original image is a 64x64 binary image where the let-
ters “DMU” are ones and the background is zero. The mea-
surements y are simulated based on Eq. (1), and added with
1% Gaussian noise. Figures 1(a) and (b) show the reconstruc-
tion results of the two sensing matrices, and Figure 1(c) gives
a quantitative comparison of the recovery quality of the two
sensing matrices. The reconstruction results of Bernoulli sens-
ing matrix are very blurry, even when subsample rate is close
to 1(M = 4000). On the contrary, the results of noiselet sensing
matrix show more excellent performance in the image recon-
struction, where 50% subsample rate (M = 2000) can still per-
fectly reconstruct the Letters. In addition, note that the noiselet
sensing matrix shows the advantage of visual quality in its re-
constructed image. When the subsample rate is beneath 25%
(M = 1000), neither the random matrix nor the noiselet ma-
trix can give a satisfactory result. In Figure 3(c), it is straight-
forward to find that the deterministic noiselet sensing matrix
outperforms the random sensing matrix in terms of PSNR per-
formance.

Although the performance of the deterministic matrices is
promising, how to use it in the SPI is a non-trivial work. SPI
relies on the DMD to modulate the light. And, DMD can only
realize the positive-valued sensing matrix due to its working
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FIG. 1 Comparison of the recovery quality of random and deterministic sensing ma-
trices in SPI. (a) Bernoulli randomsensing matrix, (b) deterministic noiselet sensing

matrix, (c) Peak signal-to-noise ratio (PSNR) performance of the two sensing matrices.

mechanism. But, most of the deterministic matrices are not
positive-valued, and some may be complex-valued.

2.2 The proposed analysis-synthesis
scheme

Since only the positive-valued pattern can be projected by
the DMD, a straightforward method is to transform the com-
plex sensing matrix into positive-valued sensing matrix. As
we know, the complex number is the sum of a real number
and an imaginary number. In the same way, we analyze the
complex sensing matrix @ into the sum of four matrices, that
is:

D =Py — Py +iPy —iPy; (2)

where, ®,r, —®g,i®,; and —i®, are the positive-real part,
negative-real part, positive-imaginary part and negative-
imaginary part of complex sensing matrix respectively, and
@y, Pyr, Pp; and @, are the positive-valued matrices.
When we sample the scene with complex sensing matrix ®, it
can be written as:

y = ®&x
= ((DpR — @R+ iq)pl —i®,)x
= d)pRX—CI)nRX—l-i(I)p]X—i(I)n]X (3)
If we denote yyr = @urX, yur = PurX, yp1 = Ppix,

Ynr = Puix, where ® g, ®,g, ®,; and @, are the positive-
valued sensing matrices, then the measurements:

Y = YpR = ¥nR T 1Y, — iy, (4)

This means that we can firstly perform the measurements us-
ing the four positive-valued sensing matrices respectively, and
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FIG. 2 The proposed analysis-synthesis scheme. Complex sensing matrix is analyzed
into four positive-valued sensing matrices, which are used to perform the measure-

ments. Measurements data is synthesized and used to reconstruct the final image.
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FIG. 3 Experimental setup. A DLP with DMD projects the sensing patterns onto the
scene, and the photodetector measures the reflected light synchronously. The com-

puter records the measured data and reconstructs the final image.

then synthesize the collected data by multiplying with 1, —1, 1,
and —i and adding up. Since the measurement process of com-
pressive sensing is linear, the synthesized data is same as the
acquisition of complex-valued sensing matrix. And thus we
can reconstruct the final image with the synthesized data. The
proposed AnalysisSynthesis scheme is illustrated in Figure 2.

3 EXPERIMENTS

3.1 Experiments Setup

The experimental setup is shown in Figure 3. The scene used
in the experiment is three printed white letters “DMU” in a
black curtain. Digital light projector (DLP) provides spatially
incoherent structured illumination on the scene. The DLP we
used is the LightCrafter 4500 (produced by Texas Instruments
Inc.), whose central core is the digital micro-mirror device
(DMD), and it can be controlled to form the desired sensing
pattern. For each incident pattern, the total intensity reflected
from the scene is synchronously measured by a single-pixel
photodetector(produced by Thorlabs Inc., Model:PDA100A).
The photodetector signal is converted to digits via a data ac-
quisition device, and recoded by a computer. After all of the
sensing patterns are displayed, the measurements are synthe-
sized via Eq. (4) to form the complex data, through which the
reconstruction algorithm is performed to obtain the final im-
age.

In the experiment, the nosiselet sensing matrix is employed
to demonstrate our proposal. According to the proposed
scheme, we can analyze the noiselet sensing matrix into four

FIG. 4 A set of positive-valued sensing patterns corresponding to (a) the positive real
part, (b) the negative real part, (c) the positive imaginary part, and (d) the negative

imaginary part, of the first row of noiselet sensing matrix.

binary valued sensing matrices. Each row of these matrices is
the sensing pattern, which is then displayed by DMD. Figure 4
shows an example of the four sensing patterns analyzed from
the first row of noiselet sensing matrix.

3.2 Experimental Results and Discussion

A total of 3000 noiselet measurement data is collected, where
each data is averaged over 5 times measurements to reduce
the noise. The image is reconstructed via SpaRSA algorithm
[12]. The reconstruction results are shown in Figure 5. As ex-
pected, the reconstructed images are sharp. Seen from Fig-
ures 5(a) and (b), there is little visual difference between 3000
measurements and 2000 measurements. It means that 2000
measurements are sufficient to recover the “letter” image, and
there are at least 1000 redundant measurements in the total
data. Such conclusion is matched with our simulation results.
Besides, it is obvious that the image quality is decayed with
the decreasing number of noiselet measurement data. We can
see from Figures 5(c) and (d) that the image artifacts become
increasingly apparent when the measurements M is lower
than 1500. In order to achieve a faithful reconstruction, the
measurements M shouldn’t be less than 1500.

For comparison, the Bernoulli random sensing matrix is
performed in the experiment. The reconstructed results
are shown in Figure 6. Similar to the simulations, the re-
constructed images are still blurry. In addition, the images
become more blurred with respect to the decrease of the
measurements M. Comparing Figure 5 with Figure 6, we can
find that the noiselet sensing matrix is able to recover the
sharp features of scene, and thus presents more satisfactory
results than the random sensing matrix. In conclusion, de-
terministic sensing matrix has shown excellent performance
in experiment. We expect that more deterministic sensing
matrices will be used in SPI.
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FIG. 5 Reconstructed imagesof M measurement data with noiselet sensing matrix.
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FIG. 6 Reconstructed imagesof M measurement data with random sensing matrix.

We can see from Figure 1, Figure 5 and Figure 6 that the ex-
perimental results are degraded comparing to the simulated
results, whether it is the random sensing matrix or determin-
istic sensing matrix. This is because the light projector is not
perfect: firstly, it can’t project the absolute blackness; secondly,
its light may flicker. All these errors are incorporated into the
final image reconstruction, and result in the degradation.

Finally, we should note that the proposed analysis - synthe-
sis scheme requires fourfold measurements compared to the
classical DMD-based single pixel imaging, since we have di-
vided the sensing matrix into 4 sensing matrices. However,
our scheme can be paralleled. For example, we can use four
pairs of DMD and photodetector to build up four single-pixel
cameras, where each DMD realizes one part of the noise-
let sensing patterns. And then the collected data of the four
single-pixel cameras is synthesized, and used to reconstruct
the final image.

4 CONCLUSION

In this paper, the deterministic sensing matrices are explored
to sample the signals in the single pixel imaging. A new
analysis-synthesis scheme is proposed to realize the complex
deterministic sensing matrix for the DMD-based SPI. And the
experiments based on our scheme are setup to investigate the
performance of the Noiselet-based deterministic sensing ma-
trix. The simulation and experiments demonstrate that the de-
terministic sensing matrix outperforms the random sensing
matrix.
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