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The ability of phase modulation enables liquid crystal spatial light modulator (LCSLM) to control wavefront. However, the disadvantage of
its inherent nonlinear phase response will decrease the wavefront control accuracy. In this paper, a compensation for the nonlinear phase
response is proposed based on Inverse Interpolation method. Characteristic curve of phase retardation versus gray levels for a 256×256
pixels phase-only LCSLM has been measured and calibrated by Inverse Interpolation. A mapping relationship between input gray levels and
driving gray levels has been built and recorded by a linear look-up table ANTI2.LUT. The nonlinear error of the phase drops from 15.9% to
2.42% by using ANTI2.LUT. Further more, the mapping curve of ANTI2.LUT is almost consistent with 290.LUT from the manufacturer, which
proved the efficiency of the compensation of phase nonlinearity. Finally, the distorted wavefront caused by a liquid crystal flake is corrected
using LCSLM based on ANTI2.LUT. Experimental results show that the peak-valley value of the distorted wavefront decreases from 1.56λ to
0.26λ (λ = 0.6328 µm), the root-mean-square value decreases from 0.25λ to 0.02λ and the Strehl ratio of diffractive spots increases from
0.08 to 0.97. So LCSLM can be applied to realize high-precision and high-resolution wavefront correction with linear phase response.
[DOI: http://dx.doi.org/10.2971/jeos.2015.15036]
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1 INTRODUCTION

Liquid crystal spatial light modulator (LCSLM) is regarded as
a perfect wavefront controller because of its advantages such
as low-power consumption, high-resolution, non-mechanical
and programming control. As a dynamic diffraction device,
LCSLM has wide applications in adaptive optics [1, 2],
laser beam shaping and scan [3]–[7], real-time hologram
display [8, 9] and holographic optical tweezers [10, 11].
However, the inherent nonlinearity of phase versus gray
level addressed by LCSLM limits its performance in these
applications. Especially in the field of adaptive optics, when
LCSLM is used as a wavefront corrector, phase nonlinearity
leads to the complex transform of feedback signals, which will
reduce the data processing efficiency and further introduce
a transform error. To overcome the existed shortage, most
manufacturers of LCSLMs have already provided linear look-
up tables (LUTs) to meet the requirement for linear driving.
However, after many times of operation, the linear look-up
tables should be calibrated again to meet the precision
requirement. Therefore, it is necessary for users to develop a
phase nonlinearity compensation method independently for
high-precision wavefront correction.

A method of Gamma correction is a mature method for liq-
uid crystal displays [12, 13]. In order to satisfy the subjective
sense of human eyes to object light, it is necessary to gener-
ate a power function relationship between the output light
intensity E(x, y) and input signal D in the liquid crystal dis-
play, which is called a Gamma curve. It can be expressed as
E(x, y) = Dγ. But the actual curve of liquid crystal transmit-
tance versus control voltages show a S-shaped distribution. So
the Gamma correction curve can be obtained by a nonlinear
transformation of reverse S-shaped point by point. Gamma
correction needs a long time-consuming and is not suitable
for phase-only LCSLM which asks a linear driving relation-
ship between the phase retardation and the control voltage. In
addition, another simple method of phase nonlinear compen-
sation is an approximate correction method for the phase-only
LCSLM [14, 15]. An approximate linear length of the curve of
the phase retardation versus control voltage can be chosen as
the linear work curve. The approximate linear curve can be
directly used to drive LCSLM without setting the linear LUT.
However, the resolution of control commands cannot meet
the requirement of high-resolution phase control. Except for
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above methods, some researchers compensate phase nonlin-
earity point by point [16, 17]. The process is to put the mea-
sured phase curve and the ideal linear curve into one coordi-
nate system, and then find the mapping relationship of cor-
responding grayscale values of two groups, at last write the
mapping relationship into a LUT to obtain a linear driving to
LCSLM. This method increases the resolution of controllable
phase, but it is hard to calibrate LCSLM rapidly due to the
complex operating process and low efficiency.

This paper proposes a compensation method for the phase
nonlinearity based on an Inverse Interpolation method. An
inverse interpolation function is used to build the mapping
relationship between input gray levels and driving gray lev-
els which is written into a LUT for the linear driving to LC-
SLM. A 256×256 pixels phase-only LCSLM from American
BNS Company is used as the device of compensation of phase
nonlinearity. A high resolution wavefront correction is com-
pleted using LCSLM with the linear LUT.

2 COMPENSATION OF PHASE
NONLINEARITY

According to the birefringence effect, liquid crystal (LC)
molecules tilt at angle θ when an electric field is applied
over the LC layer which causes the decrease in effective
extraordinary refractive index ne(θ). The relation between
ne(θ) and θ can be expressed as

ne(θ) =
n0ne√

n2
0 cos2 θ + n2

e sin2 θ
(1)

where no and ne are refractive indexes of ordinary and extraor-
dinary light of LC respectively.

According to the theory of refractive index of anisotropic crys-
tals, the liquid crystal material is optically anisotropic which is
similar to a uniaxial crystal. A phase retardation δ will gener-
ate by an applied voltage when a beam of light passes through
the LC layer, which can be expressed as

δ =
2π

λ
ne f f L =

2π

λ

L∫
0

ne(θ) dz (2)

where λ is the wavelength of the incident light, ne f f is the
equivalent refractive index and L is the thickness of the LC
layer.

The characteristic curve of phase retardation versus driving
voltage is shown in Figure 1. Because the nematic LC material
only responds to the strength of the electric fields instead of
the voltage polarity, both of the control voltages V0 ∼ V2π and
−V0 ∼ −V2π can cause the same phase retardation and the re-
lationship between phase retardation and voltage is nonlinear.
According to the theory of crystal refractive index the phase
retardation depends on the change of the equivalent refractive
index of the liquid crystal when a beam of light goes through
liquid crystal layer. The equivalent refractive index has a non-
linear response on the driving voltage so the relationship of
phase retardation versus voltage is nonlinear [18, 19]. In order
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FIG. 1 Curves of phase retardation versus voltage.

to simplify the manipulating of LCSLM, the manufacturers
convert the driving voltages of LCSLM into grayscale values
which range from 0 to 255. When loading a gray image with a
grayscale value, LCSLM can generate a phase retardation.

The nonlinear function of phase versus gray level is assumed
to be a discrete function yi = f (xi) (i = 1, 2, 3, . . . , n), where
xi is the grayscale value, yi is the phase and the number of
discrete data n is less than or equal to 255. In order to get a
smooth interpolation curve, the interpolation polynomial of
Cubic Spline which can be constructed by known data [xi, yi]
is shown as follows

P(x) = f (xi−1) + f [xi−1, xi](x− xi−1)

+ [ai(x− xi−1) + bi(x− xi)](x− xi−1)(x− xi) (3)

where ai and bi are interpolation coefficients in the range
[xi−1, xi] and the mean difference of one degree f [xi−1, xi] is
defined as

f [xi−1, xi] =
f (xi)− f (xi−1

xi − xi−1
(4)

When some grayscale values xi+1, xi+2, . . . , xi+k, (xi+k < xn)

are interpolated into Eq. (3), the corresponding phase val-
ues yi+1, yi+2, . . . , yi+k can be calculated. If it is needed to in-
versely solve grayscale values, an inverse interpolation cal-
culation xi = f−1(yi) can meet the requirement. The inverse
interpolation polynomial is as follows

P(x) = f−1(yi−1) + f−1[yi−1, yi](y− yi−1)

+ [ci(y− yi−1) + di(y− yi)](y− yi−1)(y− yi) (5)

where ci and di are inverse interpolation coefficients in the
range [yi−1, yi] and f−1[yi−1, yi] is the mean difference of one
degree.

Another ideal linear function relationship between phase and
gray level is constructed as below,

Yj = F(Xj) =
2π

N
Xj + Y0 (j = 1, 2, 3, . . . , N) (6)

where Xj is the theoretical grayscale, Yj is the phase which
will be used as inverse interpolation node, Y0 is initial phase
and the number of discrete data N is less than or equal to 255.
Y0 is dependent on the initial value of measured phases. For
instance, Y0 equals φ as the initial value of measured phases
is φ.

Phase Yj is substituted into the inverse interpolation polyno-
mial (Eq. (5)), as a result, the inverse interpolation grayscale
can be obtained X′j = P(Yj). The mapping relationship
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FIG. 2 Gray images for Twyman-Green interferometry and interferograms (a) gray im-

ages; (b) interferograms.

X′j = E(Xj) between X′j and Xj is also established with the
aid of the middle variables Yj, which will be written into a
linear LUT later. Xj is regarded as the input gray level from
users and X′j is the driving gray level which will be converted
into voltage. So the linear LUT can be used to compensate
phase nonlinear and meet the requirement for linear driving
to LCSLM.

3 EXPERIMENT AND ANALYSIS

3.1 Measurement and compensation of
phase nonlinearity

The 256×256 pixels phase-only reflective LCSLM from Amer-
ican BNS Company is measured by using Twyman-Green in-
terferometry [20]. The gray images are generated as shown in
Figure 2(a), in which the grayscale values on the left sides of
the gray images are always set to be zero, and the grayscale
values of the right sides are increased with an increment of 5
from 0 to 255. 52 gray images are loaded to LCSLM in turn and
a group of interference fringe patterns are obtained through
the interference measurement as shown in Figure 2(b).

The characteristic curve of phase shift versus gray level can be
obtained by calculating through the following expression

δi =
2π∆i

Λ
(7)

where ∆i is the moving distance and Λ is the width of one pe-
riod of interference fringes. In Figure 3 the monotonous rising
curve of phase response corresponds to the grayscale scope
0 to 127 and the monotonous dropping curve corresponds to
127 to 255, so there exist two monotonous and symmetrical
curves in the range of 0 to 255.

The phase curve in Figure 3 is nonlinear in the gray level range
from 0 to 255 with symmetrical distribution and the maxi-
mum phase retardation is 3.16π. The linear driving relation-
ship expected by users is the linear correspondence between
grayscales 0∼255 and phases 0∼2π. Due to LCSLM is a re-
flective type grayscales 0∼128 can driving phase 0∼2π. The
linear correspondence between grayscales and phase can be
calculated through Eq. (6) and the values are as show in col-
umn 1 and 2 of Table 1. But the experimental grayscales from
column 3 of Table 1 correspond to phase nonlinearly. The rea-
son of the nonlinear correspondence between experimental
grayscales and phases has been explained in Section 2. The
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FIG. 3 Characteristic curve of phase modulation versus gray level.

Phase Theoretical Experimental
(rad) grayscales grayscales

0 0 26
π/2 32 39
π 64 53

3π/2 96 63
2π 128 71
2π 128 185

3π/2 160 194
π 192 205

π/2 224 221
0 255 255

TABLE 1 Theoretical and experimental data of phase versus grayscales.

nonlinear phase response will increase the difficulty of wave-
front control. So the phase nonlinearity correction is necessary.

An Inverse Interpolation algorithm can be used to compen-
sate phase nonlinearity. In Figure 3 a part of the phase curve
corresponding to gray levels 0 to 70 is chosen as inverse inter-
polation nodes. In order to reduce the influence from random
error, it is necessary to fit the measured data with least squares
algorithm and then to subdivide the interpolation nodes to 71
pairs of discrete data [xi, yi] to decrease the gray level interval
from 5 to 1. The other group of data [Xi, Yi] which has linear
correspondence is established by Eq. (6). Phases Yi are used to
inversely interpolate the measured phases yi to build the map-
ping relationship between grayscales Xi and xi through In-
verse Interpolation. The mapping relationship is written into
a look-up table ANTI1.LUT and the curve is as shown in Fig-
ure 4(c). The curves of phase retardation before and after using
ANTI1.LUT are shown in Figure 4(a) and (b) respectively.

The phase nonlinearity is significantly reduced and the non-
linearity error is reduced from 21.15% to 2.64% after compen-
sation. The formula of nonlinearity error is defined as

e =
|δi − δ̄i|max

δmax − δmin
× 100% (8)

where δi is the measured phase, δ̄i is the ideal value corre-
sponding to δi and δmax− δmin is the maximum of phase retar-
dation.
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FIG. 4 Phase retardation curves before and after using ANTI1.LUT and mapping curve of

ANTI1.LUT (a) Phase retardation curves without ANTI1.LUT; (b) Phase retardation curves

with ANTI1.LUT; (c) Mapping curve of ANTI1.LUT.

Therefore, an approximate linear driving to LCSLM can be
achieved through the linear look-up table ANTI1.LUT which
is built by Inverse Interpolation algorithm. The resolution of
controllable phase corresponding to 70 gray levels is increased
clearly. The experiment result indicates that phase nonlinear-
ity of LCSLM can be effectively compensated by Inverse In-
terpolation algorithm.

The linear look-up table 290.LUT of LCSLM from American
BNS Company is used as a comparing example to prove the
accuracy of Inverse Interpolation algorithm. Firstly, a part of
the phase curve in Figure 3 corresponding with grayscales
from 185 to 255 is corrected by Inverse Interpolation algorithm
and a linear look-up table ANTI2.LUT is built. The mapping
relationships of input grayscales and driving grayscales cor-
responding to 290.LUT and ANTI2.LUT are almost in agree-
ment with each other in Figure 5(c). The phase retardation
curves before and after using ANTI2.LUT are shown in Fig-
ure 5(a) and (b) and the phase nonlinearity error decreases
from 15.9% to 2.42%.

Although the phase values are both 0∼2π corresponding
to grayscales 0∼70 and grayscales 185∼255 respectively, the
phase curves in Figure 3 are not completely symmetrical and
the initial nonlinearity errors are not similar either. However,
both of the nonlinearity errors are decreased to nearly 0.025
using Inverse Interpolation algorithm. The result shows that
the nonlinearity correction is effective and a good linear phase
response can be realized.

 
(c) 

FIG. 5 Phase retardation curves before and after using ANTI2.LUT and mapping curves

of 290.LUT and ANTI2.LUT (a) Phase retardation curves without ANTI2.LUT; (b) Phase

retardation curves with ANTI2.LUT; (c) Mapping curves corresponding to 290.LUT and

ANTI2.LUT.

Experimental results show that Inverse Interpolation algo-
rithm is quite available for LCSLM calibration with simplifica-
tion and speediness, moreover, it can increase the calibration
efficiency of LCSLM.

3.2 Correct ion of wavefront distort ion

A reflective LCSLM from American BNS and a Fizeau inter-
ferometer AK-100 are used to measure and correct the wave-
front aberration as shown in Figure 6. A liquid crystal flake (as
shown in Figure 7) is used as a distortion element. A wave-
front correction experiment is done by using the linear look-
up table ANTI2.LUT in order to prove that LCSLM can be
used to realize high-precision and high-resolution wavefront
correction under linear driving of phase.

Figure 8(a) shows the fringes from the interference between
an part of the edge of the liquid crystal flake and a reference
plane wave. The step planes of the edge of the liquid crystal
flake causes the fringes produce misalignment and the imper-
fect surface of the liquid crystal flake also makes the fringes
deformed. The PV value of measured wavefront aberration is
1.56λ (λ = 0.6328µm), the RMS value is 0.26λ and the Strehl
ratio of the diffraction light spots is 0.08.

According to the principle of phase conjugation a closed-loop
feedback control is used to correct the distorted wavefront to a
near plane wave. The linear look-up table ANTI2.LUT is used
to linearly drive LCSLM. The phase modulation can vary lin-
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FIG. 6 Experimental setup.

 

FIG. 7 Liquid crystal flake.

 
(a)                                 (b)  

FIG. 8 Interference fringes before and after correction (a) Fringes before correction; (b)

Fringes after correction.

early with the control grayscales through ANTI2.LUT, so the
measured wavefront aberration can be directly transformed
into a gray level image with phase conjugation information.
And then the gray level image is loaded on LCSLM to gen-
erate phase modulation. The closed-loop control is performed
circularly for five times till reaching the minimum RMS error.

The experiment results are shown in Figure 8 and Figure 9.
Figure 8(a) and (b) are interference fringes before and after
wavefront correction and Figure 9(a) and (b) are diffraction
light spot patterns before and after correction. The PV value
of the wavefront aberration decreases from 1.56λ to 0.26λ af-
ter correction, the RMS value decreases from 0.25λ to 0.02λ

and the Strehl ratio increases from 0.08 to 0.97. The distorted
wavefront can be corrected to a near plane wave using LCSLM
with the linear look-up table ANTI2.LUT and the closed-loop
feedback control.

4 CONCLUSION

The phase nonlinearity of a 256×256 pixels phase-only reflec-
tive LCSLM from BNS company is measured and calibrated.

 
(a)                                  (b)  

FIG. 9 Diffraction light spots before and after correction (a) Diffraction light spot before

correction; (b) Diffraction light spot after correction.

By using the Inverse Interpolation method to build a linear
look-up table ANTI2.LUT, the nonlinear error of phase has
been decreased from 15.9% to 2.42%. When further compar-
ing the linear look-up table ANTI2.LUT obtained in this pa-
per and the table 290.LUT offered by the BNS manufacturer, it
shows that the mapping relationships between the input gray
levels and driving gray levels in two tables are almost consis-
tent. The results show that we can use Inverse Interpolation
method to calibrate the phase nonlinearity of LCSLM once
more for linear driving when the look-up table built by the
company is not accurate due to the long-time use and is not
able to meet the needs update. Finally, by using ANTI2.LUT,
the compensation of wavefront distortion from a liquid crys-
tal flake has been realized by a closed-loop feedback control.
The experimental results show that the RMS value of the dis-
torted wavefront is reduced by 12.5 times, from 0.25λ to 0.02λ

and the Strehl ratio increases from 0.08 to 0.97 which is close
to the diffraction limit. Therefore, the nonlinearity of phase
versus driving grayscale of LCSLM can be calibrated indepen-
dently by users and LCSLM can be used for higher-precision
and higher-resolution wavefront correction.
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