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This paper describes the dielectrophoretic potential created by the evanescent electric field acting on a particle near a photovoltaic crystal
surface depending on the crystal cut. This electric field is obtained from the steady state solution of the Kukhtarev equations for the
photovoltaic effect, where the diffusion term has been disregarded. First, the space charge field generated by a small, square, light spot
where d < [ (being d a side of the square and [ the crystal thickness) is studied. The surface charge density generated in both geometries
is calculated and compared as their relation determines the different properties of the dielectrophoretic potential for both cuts. The shape
of the dielectrophoretic potential is obtained and compared for several distances to the sample. Afterwards other light patterns are studied
by the superposition of square spots, and the resulting trapping profiles are analysed. Finally the surface charge densities and trapping

profiles for different d/1 relations are studied.
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1 INTRODUCTION

Recently, techniques for trapping and manipulation of parti-
cles with size as small as possible have become an important
research field. Several strategies have been proposed and de-
velopped that rely on optical [1, 2], electrokinetic [3, 4] and
pyroelectric [5, 6] effects. One of these techniques, the so-
called photovoltaic tweezers, recently proposed, is based in
the bulk photovoltaic (PV) effect of certain ferroelectric mate-
rials [7] and is becoming important for its capacity to manip-
ulate many particles in parallel using low-intensity light pat-
terns [8]. These techniques make use of the evanescent elec-
tric fields generated by the PV effect on the surface of cer-
tain ferroelectric materials [9]-[12]. This effect makes it possi-
ble to manipulate particles via electrophoretic (EP) or dielec-
trophoretic (DEP) forces, for charged and uncharged particles,
respectively. In particular, lithium niobate (LN) is a reference
photovoltaic material whose capabilities to trap and manip-
ulate particles, have been thoroughly studied [4, 12] and it is
being used in many experiments [13]-[18]. It is well known
that optical anisotropy of ferroelectric materials makes them
to behave differently depending on the direction on their C-
axis. But there is no work studying the dependence of the
particle-trapping features on the crystal cut. However, in or-
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der to take full advantage of these capabilities, such analy-
sis becomes necessary to choose the best crystal geometry for
each purpose.

This paper aims to describe the evanescent electric field that
acts on a particle near a PV crystal surface depending on the
crystal cut. Light interaction with photovoltaic materials is a
complex process and each cut has its own particularities. So, it
is not possible to undertake an in-depth study of the evanes-
cent electricfield generated by a light pattern without account-
ing for details such as the concrete light pattern or the impu-
rity concentration of the material, which implies a lack of gen-
erality and makes it difficult to draw conclusions. This paper
aims to describe how the crystal cut affects particle trapping
and to offer a general outlook to help the researcher choose
the best configuration for a particular purpose. To make the
description valid for as many situations as possible, we will
start from a steady state solution of the Kukhtarev equations
for the photorefractive effect [19, 20]. Next, we disregard dif-
fusion term as it is much smaller than the photovoltaic term.
Also, it has no preferred direction, so its effect does not de-
pend on the crystal cut. The obtained space-charge field gives
rise to the evanescent electric field, but the movement of the
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FIG. 1 Charge distribution due to a square light pattern for X-cut and Z-cut geometries.

particles under this field is not straight forward. To give the
reader a clear idea of the particle trapping, in this paper we
will show the attractive potential the particles experience due
to this electric field. We call it DEP Potential (Vpgp).

For the sake of simplicity, a small homogeneously illumi-
nated square is considered in both geometries, with a size
much smaller than the sample thickness. This geometry has
been chosen to compare with the resolution of the spatial
light modulators (SLM) -from now on a pixel, considering
that these devices are used in many particle trapping exper-
iments [11, 13, 21]. More complicated patterns could be gen-
erated using a pattern of such small pixels as it is shown in
Section 3.2. Also, different ratios between pixel size and crys-
tal thickness are analyzed in Section 3.3.

2 THEORETICAL MODEL

2.1 Bulk and evanescent space charge field

The main purpose of this work is to analyze the DEP trapping
generated by a particular light pattern, depending on the crys-
tal orientation. In order to obtain a qualitative description of
the space charge field generated in the crystal, we will sim-
plify as much as possible the physical processes involved in
the charge distribution inside the material under illumination.
This can be done just by analyzing the current density from
the Kukhtarev equations, J, disregarding the diffusion term,
much smaller than the photovoltaic one [22]. That is:

] = qunE + gsINpLpyiipy 1)

where Np is the donor concentration, s the photo-ionization
cross section, I the light intensity, 1t the mobility, E the total
electric field, Lpy the photovoltaic transport length and iipy
the unit vector in the direction of the polar axis. Note that, in
the steady state, provided an open circuit situation, J = 0, and
E,» _ SINDLPV ﬁpv

un

in saturable media E = Equ # E (I) (note that, in the above
expression, n o I). Therefore, within this approach, when the
crystal is illuminated with an homogeneous square light pat-
tern, the charges will distribute homogeneously on the walls
of an illuminated cuboid, in the direction of the polar axis as
it is shown in Figure 1. Consequently, for an homogeneously
illuminated spot on the surface of the crystal, the charge will
be distributed in two planes. This planes are perpendicular
to the surface for X- or Y-cut configuration and contained on
the surface for Z-cut. This difference between both distribu-
tions results in very distinct DEP forces. As X-cut and Y-cut
are equivalent for our purposes, from now on X-cut geometry
will be used to represent both of them.

@)

FIG. 2 Coordinate system for each point (P) outside the crystal. Points (1) and (2) are

opposite corners of the illuminated cuboid.

The evanescent field produced by the internal electric
field modifies the electronic cloud of the particles in the
surroundings of the crystal and moves them accordingly.
The interaction can be described in terms of the multipolar
expansion of the particle: charge, dipole, quadrupole, and
higher-order multipoles. For electrically neutral particles,
with no permanent multipoles, the strongest interaction
with the spacecharge field of the crystal comes from the
induced dipole. In this work, we will assume that particles
are electrically neutral, isotropic and small compared with
the illuminated region, so the dipole approximation can be
safely applied [23, 24].

This leads to an DEP force given by:
F=vV (fﬁ E) =V (feoocEz) 3)

where 7 is the induced dipolar moment and « is the scalar
particle polarizability. [8, 9, 25]. As DEP force is equal to the
gradient of a spatial function, a DEP potential, Vpgp, indepen-
dent of the particle polarizability «, can be defined:

Vpep = —€oE? 4)

Once the electric field is known, Vpep is easily obtained from
Eq. (4).

2.2 Electric field outside the crystal

To fulfill the conditions of section 2.1, the illuminated area (d2)
of the crystal is assumed to be square and very small com-
pared to the thickness (/) of the crystal, so that d < [ (Where
d =x—x3 = yp—y; and | = zp — z;, see Figure 2). In
the present approximation the charge is homogeneously dis-
tributed at opposite faces across the C-axis in the light cuboid
(top and bottom for Z-cut and vertical walls for X-cut), acting
like a finite-area plane capacitor. To obtain the electric field
outside the cuboid at point P, let 7, = (xp;yp;zp) be the po-
sition vector of point P in a reference system (Oxyz) stuck
to the crystal, in which the edges of the cuboid have coordi-
nates X1; X2;Y1;Y2;21; Z2. Let’s define another coordinate sys-
tem PXYZ parallel to Oxyz and centered at P. The cuboid ver-
tices in PXYZ are:

Xi:xifxp
Yi=vyi—yp
Zi:Zi—Zp

and the distance from P to each vertex is

Rij = ,/XIZ + Y]-2 + Z,% where i; j;k = {1,2}. The evanescent

electric field EF at point P writes: where oy and o are the
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2.2.1 X-cut
=p Oy ZZYZ > < ZzYl ) ( Z1Y2 ) ( Z1Y1 )
= arctan — arctan — arctan -+ arctan
T dmepey { (Xszzz X2Ro12 X2Rp1 X2Ro11
ZrY> ) ( ZoYq > ( Z1Y, > < Z1Y )]
— arctan + arctan “+arctan — arctan
( X1R122 X1R112 X1R121 X1Rim 5)
2p_ _ Ox log ((Zz + Ro12) (Z1 + Roo1) (Z1 + Rinn) (o + R122))
Y 4meper (Z1+ Ro11) (Z2 + Roo) (Z2 + Ri12) (Z1 + Ryan)
#p_ _ Ox log ((Yz + Ro21) (Y1 + Ron2) (Y1 + Rinn) (Ya + Ruz))
“ drmeper (Y1 + Ro11) (Ya + Raa) (Y2 + Ria1) (Y1 + Ri12)
2.2.2 Z-cut
g _ 0 log ((Yz + Ri22) (Y1 + Ro1z) (Y1 + Rup) (Yo + R221)>
=
4reger (Y1 + Ri12) (Y2 + Razz) (Y2 + Riz1) (Y1 + Ronr)
B 0 . ((Xz + Ro12) (X1 + Rizp) (Xq + Rin) (Xa + R221)>
Y™ ameger (X1 + Ri112) (X2 + Rozn) (X2 + Ro11) (X1 + Rim) ©)
EP = [arctan( X2Y2 ) — arctan( X ) — arctan( X1Y2 ) + arctan( X1 )
“ dmeger ZoRom Z3Ro12 ZrR1p ZrR112
XoY, ) ( XoYq ) ( X1Y, ) < X111 )}
— arctan + arctan | ———— | +arctan — arctan
(Zl 221 Z1Ron Z1Rim Z1Rim
surface charge densities for the X- and Z-cut, respectively 103
2.3 Surface charge density L v2 ()t ~ (Id)?
. 2
To compare the evanescent fields for X- and Z-cuts, it is nec- Qﬁ 10
essary to obtain the oy /0, ratio. This relation can be deter- [_u: o, ——
mined taking into account that the steady-state electric field & 1 Oy
inside the light cuboid, Es;, only depends on photovoltaic :':/ 10
. . . . . s}
length, not on C-axis orientation. Therefore, this field, given
by Eq. (2), has the same module for both cuts and is propor- 4/Tt
tional to the surface charge density. In addition, as we have 10° Form
assumed negligible diffusion transport, the bulk electric field 3 > 1 o : > 3
is parallel to the polar axis and so the x-component of the elec- 10 10 10 :b(; 10 10 10

tric field for the X-cut sample equals the z-component of it for
the Z-cut sample. Applying the same reasoning, in the center
of the cuboid, where no edge effect is expected and no other
component of the electric field but the above-mentioned ap-
pears, both fields are equal in module:

X—cut Z—cut
Egqt = EX—# = EZ

7)

As in the center of the cuboid X; = Y —d/2,

Xo =Y, =4d/2,7Z1 = —-1/2, Zy = 1/2, Egs. (5) and (6) sim-
plify. In this case the electric field for a finite-area plane capac-
itor writes:

EX-cut — ziarc’can __bd (8)
TTEQNEY 24 (l/d)2
Eé(fcut _ Eg(fcut =0 (9)
Eyzfcut _ Effcut =0 (10)
EZ—out — ctan ! (11)
meger (1/d)\/2 + (1/d)?

From the expresions above, one can obtain the surface charge
densities
1

1/d
2+(1/d)?

Oy o
1€0€rEsat /2

(12)
arctan (

FIG. 3 Logarithmic plots of the dimensionless surface charge densities for Z-cut and
X-cut as functions of [ /d. Asymptotic values and tendency for the limits I /d — o and

1/d — oo are also shown.

(% -
neOGrEsat /2

(13)

arctan [ —— 1
(1/d)\/2+(1/d)?

)

The evolution of the dimensionless surface charge density
0f = 0,/ (megerEsat/2) and 0 = 04/ (megerEsat/2) with 1/d
is shown on the logarithmic plot of Figure 3. 0, grows like
(1/d)? for 1/d = 1 whereas 0y remains constant in this region
os — 4/m. On the other hand, for I/d < 1, the values for o,
tends to a constant (¢ — 2/7), and o, behaves as (I/d) L.
This figure shows the dependence of the surface charge den-
sity created by a square illumination spot on the size of this
spot (assuming that / is constant and d varies). Each geometry
shows two different regimes that must be considered in order
to estimate the trapping capability of an illumination pattern.
This dependence will be used later in this work to study the
dependence of Vpgp with I/4.

To study the relation between Vpgp values of X- and Z-cut
crystals it is necessary to calculate the ratio between the sur-
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Vpep (a.u.)

(a)

Vpep (a.u.)

(b)

Vpep (a.u.)

Vpep (a.u.)

(d)

FIG. 4 3D plot of the Vpgp for a dimensionless distance to the surface z/d = 0.1 in (@) X-cut and (b) Z-cut. Vpgp curves along the x-axis for different z/d values in (c) X-cut

and (d) z-cut.

face charge densities for both geometries, which is:

- arctami2 Jlr /( ‘li/d)z
o= T (14)
arctan
* (1/d)\/21(1/d)?

When I /d > 1 the numerator of the previous equation tends
to arctan(d /1) ~ /4 (since d/1 < 1 and for small arguments
arctan(e) = €) and the denominator tends to (I/d)? so

. o\ _ m /(] 2

S <c7x> T4 <3> (45
. 0z \ \/E 1

pm () =% (3) i

In order to give numerical values in the next section we use
oy = 1land I/d = 1000, so 0, /0y ~ 8-10° (these values are
given only as a reference). 0y depends on the PV field of the
material and 0, /0y onl/d.

3 RESULTS

3.1 Electric field generated by a single
pixel

The evanescent electric field outside the crystal, near the illu-
mination pattern can be calculated using Egs. (5) and (6), and
Vpep can be obtained using Eq. (4). The results of these cal-
culations for X- and Z- cut are shown in Figure 4(a) and 4(b),
respectively.

In Z-cut samples, (Figure 4(b) and 4(d)), all the illuminated
area has a significant value of Vpgp, which increases as we ap-
proach the material until we reach a plateau. If we continue
approaching some edge effects appear, though only for posi-
tions very close to the crystal (Z/d < 0.05). For example, for
an illuminated spot of 1 square micron, edge effects will ap-
pear at a distance Z = 50 nm and they will only affect particles
with a size in the order or smaller than this distance. In X-cut
samples the potential shows two peaks above each charged
side of the light cuboid and decreases almost with the same
slope at both sides of it (Figure 4(a) and 4(c)). If we study the
potential as a function of the distance (Figure 4(c) and 4(d))
it can be seen that Vpgp decreases at a similar rate for both
orientations. Finally, due to the big difference in the values of
o, the potential well is much deeper in Z-cut samples for the
same illumination intensity.

Therefore, the potential generated by an X-cut crystal has sig-
nificant values only at the edges of the illuminated zone while
Z-cut crystals can trap particles over all the illuminated area.
This fact generates very different trapping patterns depending
on the orientation of the crystal. The main differences between
both orientations are:

e Z-cut crystal accurately traps particles along the illumi-
nated region, but it is important to notice the possible ap-
pearance of edge effects, as can be observed in the short-
est distance in Figure 4(b).
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(a)

(b)

FIG. 5 Photograph and particle concentration profiles of the experimental pattern of aluminum nanoparticles trapped over a Fe:LiNbO3 crystal previously exposed to a light

pattern of 2x2 squares of 240 wm side. (a) Z-cut geometry, (b) X-cut geometry.

(a)

Vpep (a.u.)

(b)

FIG. 6 X- (a) and Z-cut (b) Vpgp at a distance to the surface of z/d = o0.1. The animation shows the evolution of Vpgp from z/d = 2 to z/d = o for both cuts.

¢ In Z-cut crystal trapping pattern is analogous to the light
pattern.

¢ In X-cut crystal trapping only occurs along the direc-
tion perpendicular to the Z-axis providing thin trapping
zones normal to the polar axis.

¢ The Vpgp minimum is much deeper in Z-cut samples.

In order to compare the theoretical predictions with experi-
ment we have carried out two simple experiments of particle
trapping using the two crystal geometries. In this experiment
a X-cut and a Z-cut samples of 1 mm thick Fe:LiNbOj3 crystal
highly doped with iron (0.1% wt) have been illuminated by a
cw doubled Nd:YAG laser (A = 532 nm). A light pattern (con-
sisting in a matrix of square ligth spots of 240 um side, sep-
arated by 1 mm) is projected onto the sample using a spatial
light modulator (Holoeye LC R1080 model). The intensity of
the light that reachs the sample is 500 mW /cm? and it is main-
tained for 10 minutes. After substrate illumination, neutral
aluminium nanoparticles (diameter ~ 70 nm) were deposited
from a non-polar hexane suspension in which the substrate
is immersed for 30 s (aluminium concentration 0.1 g/1). The
obtained particle patterns do not depend on the specific sur-

face (+Z or -Z) illuminated, as expected from dielectrophoretic
trapping of neutral particles. Figure 5 show clear differencies
on the trapping patterns corresponding to each crystal ge-
ometry that are in good agreement with the theoretical Vpgp
shown in Figure 4.

3.2 Electric field generated by light
patterns

Once the features of a single pixel have been analyzed it is pos-
sible to predict the trapping pattern of a specific light pattern
like the one generated by a phase modulator, since it consists
of a set of light pixels. We consider that the shape resulting by
joining several pixels maintains the ratio of d/I < 1. We have
applied this simple method to simulate the example of a two
dimensional pattern using both X- and Z-cut geometries. The
results are shown in Figure 6 which includes an animation.
Both, figure and animation, shows the different Vpgp created
by a crystal illuminated with the acronym “EOS” for X- and
Z-cut, for a particular distance of z/d = 0.1 (in the figure) and
for different distances to the sample (in the animation). It can
be observed that the trapping zone (that with low values of
the Vpgp) is much larger in Z-cut crystals where, also, the po-
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FIG. 7 Vpep for different 1/d ratios at a distance of Z/d = 0.1 in (a) X-cut and (b) Z-cut

tential reproduces with fidelity the light pattern in the near
proximity of the crystal.

3.3 Different I/d ratios

Finally, although it is not the main purpose of this work, it can
be interesting to analyze the qualitative results for different
1/d ratios. The present study is valid for //d > 1 but, even if
this condition is not fulfilled, this analysis can also be useful
taking into account some considerations.

When | = d (nearly a cube) 05 /0y = 1 so Vpgp for a given dis-
tance will be similar for both geometries, and, therefore, the
distance between opposed charged faces are now in the or-
der of the face size. If we continue increasing the illuminated
spot, d becomes larger than  (i.e. a 1 cm? spot in a 1 mm depth
crystal). So, in Z-cut samples, opposite charged faces are very
near compared with d and its interaction becomes important.
On the other hand, in X-cut samples, charged faces are far
away and do not interact between them, also the proportion
of charges near the surface is bigger than in Z-cut crystals.

Figure 7 shows Vpgp for several I /d ratios for X- (Figure 7(a))
and Z-cut (Figure 7(b)) where the value of / remains constant
and d varies (i.e. the thickness of the crystal is the same and the
illumination spot varies). Although the units of the ordinates
axis are arbitrary, they are the same in both graphs so they
can be compared. Both cuts present a minimum value near
I/d = 1 but, while in Z-cut crystals this value remains almost
constant when [ > d, in X-cut samples it increases abruptly.
When | < d the value of the potential decreases with [ in both
cuts but it is more pronounced in Z-cut. Finally, in Z-cut crys-
tals, the shape of the potential is almost independent of //d.
Only the center of the spot presents a minimum, more pro-
nounced as //d becomes smaller. In X-cut crystals, the bigger
the distance between the charged faces, the steeper Vpgp de-
cays at the middle of both faces. Note that when //d is small,
as | remains constant, d is large.

4 CONCLUSIONS

A simple model that includes all the relevant mechanisms for
a qualitative and semi-cuantitative study of the external elec-

-16
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1/d=0.001
-12

-10
I/d=0.01

I/d=0.1

log(-Vpgp(a.u.))
o)
) \ \

-4

2T Jd=10 id=1

~
O
~
o
o

tric field generated by an homogeneously illuminated cuboid
in a photovoltaic crystal has been developed. It has been ap-
plied to study the differences in the DEP trapping capabili-
ties of the two possible crystal geometries -paralell and per-
pendicular. A DEP potential (Vpgp) has been defined and ob-
tained by an analytic expression for the electric field gener-
ated by the charge distribution of the crystal, comparing the
surface density charge of geometries parallel and perpendicu-
lar to the polar axis. It has been observed that Z-cut Vpgp has
a better spatial resolution and higher fidelity to reproduce (as
trapping) the illumination pattern than X-cut. However, in Z-
cut samples the existence of edge effects seem to make this cut
more sensitive to the size of the illuminated area. On the other
side X-cut crystals allows more defined trapping zones on the
sides of the illuminated areas. This model has been extended
to a more complex pattern where additional cooperative ef-
fects appear on the edges of the whole pattern.

Finally, it has been observed that the surface charge density
strongly depends on the crystal geometry and on the //d ra-
tio. As Vpgp depends quadratically on o, the estimation of its
value is very important to know a priori which cut will have
a bigger Vpgp well.
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