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Electromagnetic field intensity distribution along focal
region of a metallic circular reflector covered with a
plasma layer
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Theoretical analyses has been carried out to study the deviation of the electromagnetic field intensity distribution in the focal region of
a long metallic circular reflector that contains a uniform cold collisional plasma layer on its surface. The electromagnetic field intensity
expressions along the focal region have been obtained using Maslov’s method. Maslov’s method is systematic procedure, which combines
the simplicity of ray optics and the generality of transform methods. The derived analytical field expressions in the focal region have been
solved numerically. The reflected and transmitted field intensity distributions from the plasma layer along the focal point were examined.
The effects of some physical parameters such as the plasma frequency, the thickness of plasma layer and the effective collision frequency
on the transmitted field intensity distribution along the focal region are studied. The results are found to be in a good agreement with
results obtained using Kirchhoff’s approximation.
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1 INTRODUCTION

In recent years the study of analysis of electromagnetic waves
in the focal region by plasma as absorbers or reflector [1, 2] re-
ceived substantial attention from researchers. Analysis of such
fields is important in the current arena of advanced technolo-
gies for microwave, millimeter-wave, and optical device ap-
plications. The analysis of focal region filed is useful for op-
tical spectroscopy, medical treatment and hyperthermia. The
image field may be also useful to generate images of the
human body with the help of radio frequency technologies.
Such type of analysis is very significant to find out the suit-
able parameters of the plasma which affect the reflection, ab-
sorption, and transmission of the electromagnetic energy [3].
When cylindrical and spherical metallic structures, as reflector
antennas for example, enter into the Earth’s atmosphere with
high velocities, plasma layer forms on their surfaces [4].Thus,
usually antennas of space vehicles are in the surface contact
with the plasma layer and this layer affects the radiation char-
acteristics of such antennas. Also, the existence of the plasma
layer on a metallic target changes the reflected wave energy,
which is an important issue especially in the study of the in-
teraction of intense electromagnetic waves with a metallic sur-
face.

Many types of reflectors have been investigated in the open
literature for efficiently focusing electromagnetic waves for
different applications. Among these reflector shapes are ellip-
tical reflectors, cylindrical reflectors, hyperbolic reflectors, and
parabolic reflectors [5, 6]. These reflectors are used as reflec-
tive devices used to collect or project the power of the electro-
magnetic waves. The opposite is also true; an electromagnetic

wave source placed at the foci of a reflector produces a par-
allel beam of electromagnetic waves. The circular reflector is
commonly used for microwave, millimeter-wave, and optical
device applications.

The geometrical optics (GO) approximation is a well-known
technique used to analyze high frequency electromagnetic
fields. However, in many problems, such as describing fields
in the vicinity of focal region, geometrical optics (GO) does not
provide satisfactory results [7]. To overcome the defect of GO,
Maslov’s method is used. Maslov’s method is a combination
of asymptotic ray theory (ART) and Fourier transform method
[8]–[11]. According to Maslov’s method, the ray is expressed
in terms of six coordinates i.e., components of wave vectors
and space coordinates. The conventional ray expression may
be considered as its projection in the space coordinates. At the
singular point of the ray-expression in space coordinates, the
six-component expression is employed. The expression in the
hybrid coordinates may be transformed into that of space co-
ordinates through Fourier transform. This technique has been
used to study high frequency fields in the focal region suc-
cessfully by many authors [12]–[15]. Huygens Kirchhoff’s in-
tegral is another alternative technique. It is based on a short
Fresnel approximation. Generally, Huygens Kirchhoff’s inte-
gral and Maslov’s method are of comparable accuracy. How-
ever, Maslov’s method has a distinct advantage for specific
problems, such as the transmission through a focusing system
with multiple interfaces [16].

In this paper, we consider a long metallic circular reflector cov-
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ered with a cold collision plasma layer on its surface. It is pre-
sented that reflected field intensity from this circular reflector
and by assuming circular plasma layer on the surface of the
reflector, a deviation of field intensity distribution occur along
the focal point.The effects of some physical parameters such
as the plasma frequency, the thickness of the plasma layer
and the effective collision frequency on the transmitted field
intensity distribution along the focal points have been stud-
ied. The results of the presented formulations have been com-
pared to Kirchhoff’s integral, which confirms the accuracy of
the presented analysis.The time-harmonic (iωt) dependence is
adopted and suppressed in what follows.

2 FORMULATIONS

Consider a circular reflector made of perfect metal in the pres-
ence of a plasma layer as shown in Figure 1. It is assumed
that an electromagnetic plane wave is incident normally on
the surface of the reflector parallel to its symmetry axis. The
equation of the metallic circular reflector is given by

ζ =
√

a2 − ξ2 (1)

where a is the radius of the metallic circular reflector. Then, the
equation of the circular plasma layer placed on the metallic
circular reflector is defined as follows:

ζ =
√

p2 − ξ2 (2)

where p =
√

a2 − d2 is the radius of the circular plasma layer,
a is the radius of the circular metallic circular reflector and d
is the thickness of the plasma layer. Coordinates of a point on
the circular surface of the plasma layer P(ξ0, ζ0) in terms of a
point on the metallic circular reflector Q(ξ, ζ) are defined as
[4]

ξ0 = ξ − dsinα (3)

ζ0 = ζ − dcosα (4)

Now, we consider a monochromatic electromagnetic wave po-
larized in the y-axis normally incident on the circular plasma
layer, parallel to its symmetry axis as

E0i = Eiêy exp(−jkiz) (5)

The refractive index of the collisional plasma is defined as

n =

√
1−

jω2
p

(v + jω)ω
(6)

where ωp is the plasma frequency and V is the effective col-
lisional frequency. The wave vector of the reflected wave and
the transmitted wave can be worked out using Snell’s laws
whose mathematical expression is described in the following
form

pr = pi − 2(pi.N)N (7)

qr = pi +
√

n2 − 1 + (pi.N)2N− (pi.N)N (8)

where pi is the wave vector of the incident wave, n is refractive
index of the plasma medium and N is unit vector normal to

FIG. 1 Circular reflector made of perfect metal with a layer of plasma on its surface.

the surface of the plasma coated circular reflector and it can
be written as

N = êzcosα + êxsinα (9)

By applying Snell’s law of reflection and refraction, the wave
vector p1 of the reflected wave from the plasma layer, the
wave vector q1 of the refracted wave into the plasma layer,
the wave vector p2 of the reflected wave from the metallic re-
flector, and the wave vector q2 of the refracted wave out of the
plasma circular layer into free space are given by [11]

p1 =− êx sin 2α− êz cos 2α (10)

q1 = sin α(− cos α +
√

n2 − sin2 α)êx

− (cos α(− cos α +
√

n2 − sin2 α) + 1)êz (11)

p2 =− êx(K1 sin α + cos α sin α)

− êz(K1 cos α− sin α sin α) (12)

q2 =− êx(K2 sin α + n cos α sin α)

− êz(K2 cos α− n sin α sin α) (13)

where

K1 =
√
(−1 + 2n2 + cos 2α)/2

K2 =
√
(2 + n(−1 + 2(−1 + n)n) + n cos 2α)/2 .

Using the components of the reflected wave and the transmit-
ted wave respectively, the solutions of the Hamilton’s equa-
tions are

x = ξ + p1xτ1 z = ζ0 + p1zτ1 (14)

x = ξ + q1xτ2 z = ζ0 + q1zτ2 (15)

The Jacobian associated with the wave reflected by the circular
plasma layer is obtained as

J1(τ1) =
D1(τ1)

D1(0)
= τ1 −

cos α

2
p (16)

The Jacobian associated with the wave refracted by the plasma
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circular layer is obtained as

J2(τ2) =
D2(τ2)

D2(0)

=
1√

2αK2
2

(
√

2α(2 + n(−1 + 2(−1 + n)n))

+ K2(−2 + n + n2 − 2n3)τ2

− 2
√

2n(1 + (−1 + n)n2)τ2 cos α

+ n(
√

2α + K2(−1 + n)τ2) cos 2α) . (17)

The field expressions for the reflected and transmitted rays
out of the plasma layer in geometric optics are obtained as

Er(x, z) = Ei[J1(τ1)]
−1/2exp[−jk(Ψ0 + τ1)] (18)

Et(x, z) = Ei[J2(τ2)]
−1/2exp[−jk(Ψ0 + τ2 + t)] (19)

where Ψ0 = p cos a, τ1 and τ2 are parameter along the ray
reflected from the circular plasma layer and transmitted ray
out of the circular plasma layer to focal point respectively and
t =

√
(ξ0 − ξ)2 + (ζ0 − ζ)2 is the distance between P(ξ0, ζ0)

and Q(ξ, ζ). It is observed that the GO reflected and trans-
mitted fields become infinity at the caustic or focal points as
expected when J(τ) = 0. We can derive the expression which
is valid at the focal point using the Maslov’s method. The ex-
act location of the focal or caustic point can be obtained at
J(τ) = 0. According to Maslov’s method field expressions
valid in the focal region can be written as below [12]–[15].

Er(r) =

√
k

j2π

∫ ∞

−∞

[
D(τ)

D(0)
∂(pz)

∂(z)

]− 1
2

exp {−jk [S0 + τ − z(px, z)pz + pzz]} dpz (20)

Integrands of the integrals of the reflected and transmitted
fields from the plasma layer are obtained, respectively, as

I1 =
D(τ1

D(0)
∂(p1x)

∂(x)
=

2 sin2 2α

p cos α
(21)

I2 =
D(τ2

D(0)
∂(p2x)

∂(x)
=

1
2pK2

(2n2 cos α(K2 + cos α sin2 α

+ K2 sin α(4K2n sin α + n(1 + n) sin 2α

+ 2K2(K2 + n cos α) tan α)) (22)

The phase functions of the integrals for the reflected and trans-
mitted fields from the plasma layer are obtained, respectively,
as

S1 =S0 + τ1 − z(x, pz)pz + pxx

S1 =p cos α +
√
(x− p sin α)2 + (z− p cos α)2 (23)

S2 =S0 + τ2 + t− z(x, pz)pz + pxx

S2 =p cos α + pK2 −K2r cos α + α cos α

+ nr sin(α + θ) sin α + t (24)

Using Eqs. (19) and (21) into (18) and changing the variable
p1z into a , given in Eq. (10), yields the final finite reflected
field expression valid along the focal point a

E(x, z)
Ei

=

√
kα

π

∫ l/2

−l/2

1− n
1 + n

√
cos α exp[−jkS1]dα (25)

Again using Eqs. (19) and (21) into (17) and changing the vari-
able p2z into α, given in (11), yields the final finite transmitted
field expression valid along the focal point as

E(x, z)
Ei

=

√
kα

π

∫ l/2

−l/2

2n cos α

n cos α +
√

1− n2 sin2 α
(26)

×
√

1
q2x

dq2z

dα
cos α× exp[−jk(p cos α + pK2

− K2r cos α + α cos α + nr sin(α + θ) sin α + t]dα

3 HUYGENS-KIRCHHOFF’S INTEGRAL

It is interesting to compare the above expression with the fol-
lowing formula implied by Huygens- Kirchhoff’s Integral

E(x, z)

=

√
k

j2π

∫ ∞

−∞

e−jR

R
E0(ξ0, ζ0) exp(−jkS0)dξ0 (27)

Where R = q1x(x− ξ0) + q1z(z− ζ0) =
√
(x− ξ0)2 + p2 and

E0(ξ0, ζ0) = J−
1
2 .

Therefore

E(x, z) =

√
k

j2π

∫ l/2

−l/2

J−
1
2

R
× exp[−jk(S0 + R)dξ0 (28)

4 RESULTS AND DISCUSSION

Results of reflection and transmission of a normal incident
perpendicular polarized electromagnetic plane wave by a cir-
cular reflector covered with a plasma layer are presented in
this section. The frequency of the incident electromagnetic
wave is taken in the microwave region. Numerical results ob-
tained from Maslov’s method are compared with the results of
the Huygens-Kirchhoff integral to check the correctness of the
analytical calculations. Figure 2 shows the comparison of the
numerical result using Maslov’s method (solid line) and using
Kirchhoff’s approximation (dashed line) which show that the
agreement is very good.

Figures 3(a)–(b) shows the comparison of the field in-
tensity distribution of the reflected (solid line) and the
transmitted (dashed line) field intensities from the circular
reflector in presence of the plasma layer along the focal
points with respect to kx and kz, respectively, at ka = 5,
ωp = 1.7829 × 108 Hz, V = 1 × 105 Hz, and
ω = 3.14 × 108 Hz. From this figure, it is observe that
the maximum field intensity of the reflected field is higher as
compared to the maximum field intensity of the transmitted
field. It is also observed that the location of the maxima field
intensity of both the transmitted and the reflected fields do
not change along the x-axis but the location of the maximum
field intensity of the transmitted field intensity slightly shifts
toward the reflector.

Figures 4–6 show, respectively, the effects of the plasma layer
thickness, the plasma frequency, and the effective collisional
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FIG. 2 Normalized field intensity by Maslov’s method (solid line) and by Kirchhoff’s

integral (dashed line).

FIG. 3 Normalized field intensity distribution of the transmitted field (dashed line) and

the reflected field (solid line) using Maslov’s method (a) versus kx (b) versus kz.

frequency on the distribution of the transmitted field inten-
sity from the plasma layer versus kx and kz respectively. Fig-
ures 4(a)–(b) shows the transmitted field intensity versus kx
and kz, respectively, for different values of the plasma layer
thickness kd. These figures have been plotted for a constant
radius of the metallic circular reflector ka = 5, wave frequency
ω = 3.14× 108 Hz, plasma frequency ωp = 1.7829× 108 Hz,
and effective collisional frequency V = 1× 105 Hz. It is clearly
observed that if thickness of the plasma layer increases the
maximum value of the transmitted field intensity increases
along x-axis and slightly decreases along the z-axis. The loca-
tion of maximum field intensity shifts away from the curved
surface along the z-axis.

Figures 6(a)–(b) shows the changes of the transmitted field
intensity versus kx and kz, respectively, for different value
of the effective collision frequency V for a constant radius
of the metallic circular reflector ka = 5, wave frequency

FIG. 4 Field intensity distribution of the transmitted field from the plasma layer for

different values of the plasma layer thickness (a) versus kx (b) versus kz.

FIG. 5 Field intensity distribution of the transmitted field from the plasma layer for

different values of the plasma frequency (a) versus kx (b) versus kz.

ω = 3.14× 108 Hz, plasma layer thickness kd = 5, and plasma
frequency ωp = 1.7829× 108 Hz. It is demonstrated that the
effective collision frequency V of the plasma layer has no ef-
fect on the transmitted field intensity. It is due to that the ef-
fective collision frequency V is much smaller than the wave
frequency of the incident wave.
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FIG. 6 Field intensity distribution of the transmitted field from the plasma layer for

different values of the collision frequency of the plasma layer (a) versus kx (b) versus

kz.

5 CONCLUSIONS

In this paper, the nonconformity in the field intensity distri-
bution in the focal region of a long metallic circular reflector
caused by a plasma layer covering the reflector surface has
been studied. Using Maslov’s method, the reflected and the
transmitted fields out of the plasma layer were obtained. The
results were found in to be in a good agreement with results
obtained using Kirchhoff’s integral approximation. The effects
of the plasma layer thickness, the plasma frequency, and the
effective collisional frequency on the energy distribution were
presented. It was shown that the transmitted field intensity
has a lower value as compare to the reflected field intensity
from the plasma layer. Furthermore, it is observed that when
the plasma layer thickness increases, the maximum value of
the transmitted field intensity decreases with respect to the z-
axis and increases with respect to the x-axis, whereas if the
plasma frequency increases, the maximum value of the trans-
mitted intensity decreases at both axes. In the studied cases,
it is noted that if the thickness of the layer increases, then the
maximum peak shifts away from the curved interface and that
the effective collisional frequency has no effect on the trans-
mitted field intensity. These observations should be useful in
the study and design of modern optical devices.
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