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Phase retrieval from carrier frequency interferograms:
reduction of the impact of space-variant disturbances
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Phase “extraction" by using temporal phase shifting is sensitive to vibrations and drifts, producing systematic phase errors periodic with
twice the fringe frequency. This error source may be avoided by evaluating only single carrier frequency interferograms, which makes
the procedure immune against vibrations and drifts provided that the integration time is short enough to freeze the fringe pattern.
However, the phases extracted from single interferograms in this way often show local irregularities depending on the mean phase of the
interference pattern. Such local phase irregularities are caused by local disturbances in the light path like specks and dust particles on
the optical components of the interferometer. Moreover, since digitized data are gathered, there is a nonlinear processing step involved
which is also responsible for the generation of such irregularities. Here, it is proposed to use a set of suitably combined phase-ramped
interferograms to reduce phase dependent irregularities. The proposed averaging technique also reduces edge ringing effects known from
Fourier evaluation procedures. Since the imaging optics also contributes to the phase to be measured when tilted wavefronts are used,
calibration is mandatory. The calibrated state is only valid if strict rules considering fringe number per diameter as well as the position of
the wedge in the interferometer are maintained in the measuring process.
[DOI: http://dx.doi.org/10.2971/jeos.2015.15003]

Keywords: Interferometry, phase retrieval, carrier frequency, synchronous detection

1 INTRODUCTION

The viability of interferometric methods strongly depends on
the immunity against environmental disturbances like vibra-
tions or drifts of the phase to be measured. This requires
short acquisition times for the interference patterns in order
to freeze the phase. Here, the use of carrier frequency fringe
patterns comes to the fore which means that the phase is
contained in a single fringe pattern which has to be evalu-
ated. Before the advent of array detectors and PCs fringe po-
sitions were determined using photometric methods [1]. Only
few fringes per diameter were used to keep systematic errors
within predetermined limits. A great variety of fringe evalua-
tion methods [2]–[6] were developed over the years compris-
ing fringe follower software of electronically detected inter-
ferograms, extraction of the phase via Fourier transform pro-
cedures and next neighbourhood operations as spatial phase
shifting or synchronous detection. Especially the most mod-
ern methods are using high spatial frequency fringe patterns
[7]–[10]. The main emphasis rests on evaluations with short
exposures avoiding degradations of fringe contrast and aver-
aging of a big number of measured phase distributions in or-
der to reach sufficient repeatability for the test of high quality
optics.

2 THE PHASE RETRIEVAL PROCESS

Here we want to discuss fringe evaluations for interference
patterns disturbed by small imperfections. An example for a
typical interferogram is shown in Figure 1.

Considering the choice of the carrier frequency it is known
from holography that the chosen carrier frequency limits the

FIG. 1 Carrier frequency interferogram taken with a planar Fizeau interferometer having

60 fringes/diameter with bell-shaped illumination impaired by specks on the illumi-

nating and imaging optics causing indentions of the fringe amplitude (on the left).

On the right: local variations of the visibility of the fringe pattern due to specks and

illumination variations (slanted view to show local blemishes more clearly).
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spatial resolution of the phase distribution to be measured.
There is a bargain between the carrier frequency and other
limitations set by the detector array and systematic errors
caused by the imaging optics. The discrete detection of the in-
tensity pattern limits the fringe period to more than 2 pixels
and in practical terms to 4 pixels per period or more. In op-
tical testing applications this gives a rather generous margin
for the detectable spatial frequency content of the phase dis-
tribution resulting from surface or other deviations of a test
piece in the interferometer. Furthermore, single frame evalua-
tions allow for averaging of a big number of evaluated phase
pictures minimizing all kinds of stochastic errors and even
drifts caused through atmospheric variations of the optical
path difference (OPD) in the interferometric cavity. Accessing
a big number of interference patterns combined with a sys-
tematic ramp variation of the reference phase will give the
best guarantee for an unambiguous phase average. State of
the art CMOS or CCD-cameras allow for the acquisition of
approx. 100 frames/sec with pixel-counts in the megapixel
range provided the light source delivers sufficient power. In
fact, such a procedure can be seen as a hybrid between tem-
poral and spatial phase shifting interferometry which will be
the main topic of this publication.

Let us assume that M = 2N (N being a whole positive num-
ber) interference patterns have been recorded with integration
times for each single frame in the order of 1msec and that dur-
ing the grabbing of the interferogram set the reference phase ϕ

is tuned through 2π (or multiples). The intensity distribution
Im of a single interferogram shall be:

Im(x, y)

= I0(x, y) [1 + V(x, y) cos(Φ(x, y) + 2πνcx− ϕm)] , (1)

where Φ(x, y) is the phase to be measured, νc is the car-
rier frequency adjusted in the interferometer and ϕm = 2πm

M
(m = 1...M) is the ramped reference phase. We choose here in
a first approach synchronous detection for the phase extrac-
tion in order to demonstrate the advantage of difference inter-
ferograms in the phase retrieval process later on. Synchronous
detection means that the data of the intensity pattern stored
in the computer memory are multiplied with cosine and sine-
functions of a local oscillator provided via software having the
carrier frequency νs:

Im(x, y) cos(2πνsx)

=I0(x, y) cos(2πνsx) + [I0(x, y)V(x, y) cos(2πνsx) cos(Φ(x, y)

+2πνcx− ϕm)]

=I0(x, y) cos(2πνsx) +
1
2

I0(x, y)V(x, y) [cos(Φ(x, y)

+2π(νs + νc)x− ϕm) + cos(Φ(x, y)

+2π(νs − νc)x− ϕm)] (2)

and

Im(x, y) sin(2πνsx)

=I0(x, y) sin(2πνsx) + [I0(x, y)V(x, y) sin(2πνsx) cos(Φ(x, y)

+2πνcx− ϕm)]

=I0(x, y) sin(2πνsx) +
1
2

I0(x, y)V(x, y) [sin(Φ(x, y)

+2π(νs + νc)x− ϕm) + sin(Φ(x, y)

+2π(νs − νc)x− ϕm)] . (3)

Under the assumption that the phase to be measured varies
across the interferogram by about one fringe only and that the
synthetic carrier frequency νs is close to νc then a low pass
filter will let pass the low frequent contributions only which
allow the calculation of the wrapped phase Φ:

S ∝
1
2

I0(x, y)V(x, y) sin(Φ(x, y) + 2π(νs − νc)x− ϕm),

C ∝
1
2

I0(x, y)V(x, y) cos(Φ(x, y) + 2π(νs − νc)x− ϕm).

Φ(x, y) + 2π(νs − νc)x− ϕm = arctan
S
C

. (4)

Since we have assumed that the interferograms of the set are
phase shifted through 2π the set can be split into two subsets
being in phase opposition of the depth 2N − 1.

The phase is extracted from the filtered side-band in the spa-
tial frequency spectrum of the interferogram. The incoher-
ent contribution to the interferogram intensity, or in electron-
ical terminology the “dc-term”, can be easily eliminated if
two phase-shifted interferograms in phase opposition are sub-
tracted from each other. This has two big advantages as will
become clear below. The cancellation of the dc-offset will be
maintained also in case of random phase shifts due to vibra-
tion or in case of drifts in the interferometer.

Now, the phase retrieval process can start with intensity dif-
ference values of the following kind:

∆Ik(x, y) = Ik+2N−1 − Ik

= 2I0(x, y)V(x, y) cos(εk) cos(Φ + 2πνcx), (5)

where εk symbolizes the mismatch of the reference phase dif-
ference from π due to drifts and vibrations for the intensity
difference ∆Ik. As long as εk < π/4 the loss of modulation is
tolerable. This condition should be met in most practical cases
especially if the grabbing time for the whole set of interfer-
ograms is only a few seconds. The integration time of about
1ms for a single interferogram should freeze the mechanical
disturbances sufficiently. Since a discrete representation of the
intensity distribution is processed it is advantageous to use
4 pixels/period or multiples of 4. In this case, a period of
the sine of the local oscillator can be represented by a vector
[0 10 0 -10] for 4 pixels and by [0 7 10 7 0 -7 -10 -7] for 8 pixels
which alleviates the fast evaluation. In case of spatial phase
shifting the corresponding convolution kernels are [0 10 0 -10]
for the odd-kernel and [10 0 -10 0] for the even-kernel. In the
latter approach the resulting phase pattern is periodic with
the carrier frequency and has to be down-converted using the
phase of the assumed ideal carrier. Similar operations can be
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FIG. 2 Spatial frequency data of an interferogram with 60 fringes/diameter. On the left: FFT (Fast Fourier Transform) of the sine product for one of the fringe patterns, please note

the presence of the dc-term multiplied with the sine of the local oscillator! Center: FFT of the sine product with the intensity difference of two interferograms being in phase

opposition. Please note the absence of the dc-term! On the right: FFT of the difference interferograms convolved with a 4-pixel-wide rect-function resulting in the suppression of

all disturbing harmonics.

carried out using the Fourier-method either delivering a high-
frequency result or a low frequency phase distribution after a
frequency shift of one of the side bands to zero.

The advantage of the use of such intensity differences be-
comes obvious in Fourier space. A comparison in the spa-
tial frequency domain of the above intensity difference and
the following synchronous detection steps with the intensity
values having undergone the same retrieval process shows
the improvement in the signal-to-interference ratio concern-
ing all parasitic frequency components. For the difference in-
tensities the carrier term is absent (see Figure 2) which reduces
neighbourhood effects which are a basic feature of phase re-
trieval methods using single interferograms. In the case of
synchronous detection only in the low pass filtering step the
local neighbourhood is involved in the phase extraction pro-
cess since the multiplication with the local oscillator does not
couple the intensities of neighbouring pixels.

Time averages of many phase values require fast algorithms.
Therefore, time-consuming unwrapping [10] algorithms
should be avoided or be applied only after the averaging step.
Unwrapping can be avoided if slope data are averaged. Then
the time consuming integration of the slope data to the phase
to be measured can be done a posteriori. Here we propose
the phase addition in the mod-space by using the sine and
cos-character of the quantities S and C (Eq. (3)). Due to the
synchronous detection procedure for each intensity difference
∆Ik S- and C-values have the same prefactors. If two such
intensity differences have been processed in the mentioned
manner two doublets (S1, C1) and (S2, C2) will result which
can be added as given in Eq. (5):

Φ1 + Φ2 = arctan(
S1C2 + S2C1
C1C2− S1S2

). (6)

For a demonstration of the virtue of this averaging procedure
we have used data sets which are produced by our phase
shifting [11] Fizeau interferometer providing 6 intensity val-
ues with reference phase steps of 90◦. For the evaluation,
the software MATLAB has been applied delivering averaged
phase values mod(2π). From the set of the intensity values
(i1, i2,...., i6) four intensity differences i1-i3, i2-i4, i3-i5, i4-i6
can be calculated (see Figure 3). For the calculation of the av-

FIG. 3 Tree-diagram for the combination of 6 measured intensity values representing

π/2-phase shifted intensity values for the calculation of the sum phase mod 2π.

eraged sin/cos-values S16 may serve as an example:

S16 =S14C36 + S36C14

=(S13C34 + S34C13)(C35C46− S35S46)

+ (S35C46 + S46C35)(C13C34− S13S24). (7)

The nominator S16 represents the sin-term showing a 4-fold
phase sensitivity. The wrapped phase calculated in this man-
ner for our demo is given in Figure 4 in comparison with a
single phase result.

Repeatability measurements using two runs with 6 intensity
values each show an improvement of the rms-figures for the
unwrapped phase deviations by a factor of 1.7 which is a little
smaller than the expected factor of 2 for the average of 4 phase
measurements (see Figure 5).

The repeatability for the average has a rms-value of 0.0008
waves which is in the sub-Angstrom region. The wave aber-
ration of the Fizeau combined with the systematic aberrations
caused through the tilt and the achromatic doublet telescope
including a folding mirror beside a pellicle beam splitter is
several orders of magnitude greater.

Nevertheless, the correct tendency is indicated which fosters
the realistic expectation that an increased number of averaged
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FIG. 4 Wrapped phase with 4-fold sensitivity (on the left) against wrapped phase without summation due to Eq. (6).

FIG. 5 Above: averaged phase data according to the diagram of Figure 3. Center: re-

peatability values for a single intensity difference, here, i1-i3. Below: repeatability

values for the averaged data between two independent runs.

phase data will show even smaller rms-figures for the repeata-
bility values. Generalizations of the averaging technique to a
set of 2M interferograms can make advantage of the power
of two hierarchy in the averaging procedure as is indicated in
Figure 6.

FIG. 6 Averaging tree for 16 intensity values, for the levels 1 to 3 only the sinusoidal-

values are depicted for simplicities sake. For 16 interferograms M = 16 and N = 8

which would result in a reduction of random errors by a factor
√

8. Further extensions

in the depth of the data set and the averaging method are straightforward.

3 IMPACT OF DUST DIFFRACTION
PATTERNS ON THE REPEATABILITY

Since between individual interferograms the mean phase will
change, be it through piston movements or through slight tilts
and also intentionally due to phase ramping, we have to look
for the effect of such small variations on the repeatability of
the evaluation process. For the demonstration of these influ-
ences we have used sets of 6 carrier interferograms obtained
with the help of our phase shifting interferometer. Phase re-
peatability values can be obtained from calculating the phase
difference of individual interferograms. There is a significant
difference in the repeatability data for the phase difference of
interferograms with the same mean phase status on the one
hand and on the other with a phase change by fractions of
one period. In Figure 7 such difference data are given for two
interferograms being in phase and also in phase opposition.

It can be shown that within the set of the 6 phase-shifted in-
terferograms the phase difference between interferograms i1
and i5 behaves in a similar manner as the difference of two
phases taken from two consecutive data-sets but with nearly
identical mean phase status (see Figure 8).
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FIG. 7 On the left: phase difference of two interferograms having the same mean phase status. On the right: phase difference of two interferograms being out of phase by 180◦.

FIG. 8 On the left: phase difference of the interferograms i1 and i5 of a single run. On the right: phase difference of the interferograms i1_1 and i1_2 being the first interferograms

each taken of two independent sets having the same mean phase.

FIG. 9 rms- and pv-figures for the phase differences related to the phase of i1. On the

abscissa: the numbers symbolize the differences with increasing mean phase offset,

i.e. 2 corresponds with 90◦, 3 corresponds with 180◦ and so on in steps of 90◦.

The dependence of the repeatability on the mean phase has
been evaluated by subtracting the phase of interferogram i1
from all consecutive interferograms i2, i3, i4, i5 and for the in-
terferogram i1 also beween the values resulting from two con-
secutive runs without changing the adjustment. The resulting
rms- and pv-figures are summarized in Figure 9.

As mentioned before an improvement in the phase accuracy
can be achieved if the incoherent bias or so-called dc-term is
removed before processing the data. For this purpose one se-
lects interference patterns being in phase opposition as e.g. i1
and i3 or i2 and i4 and calculates the intensity difference i1-i3
or i2-i4, respectively.

Furthermore, it is known from phase retrieval using the

Fourier-method after Takeda [2] that the phase in the rim re-
gion of the interferogram is disturbed through the spatial filter
process. At first we want to discuss the impact of using dif-
ference interferograms. Due to the fact that the filtering pro-
cess leads to a convolution of the phase data with a sinc- or
Jinc-type function depending on the type of the filter function
in Fourier-space, edge ringing effects will occur. Especially
the convolution with the filter-function will contribute spuri-
ous phase contributions which will impair the wrapped phase
date. Since we propose the phase retrieval from difference
interferograms the dc-term is eliminated which reduces the
edge ringing very much as can be inferred from Figure 10. In
addition, the difference interferogram has an increased mod-
ulation depth which leads to a much smoother phase in the
measuring field.

Now, we want to discuss the smoothing effect due to averag-
ing of wrapped phase data retrieved from phase-ramped in-
terferograms. The filtering process in case of the Fourier-phase
retrieval is done by multiplying a rect-type filter function, here
a circ-function. Therefore, in (x, y)-space a convolution with
a Jinc-function is carried out. The convolution kernels have
negative wings which produce together with the periodic in-
terferogram function periodic disturbances in the rim region.
However, the actual phase of the disturbances will be shifted
together with the fringe pattern of the ramped interferograms.
An averaged phase result will show a well defined phase rim
comparable with temporal phase shifting results. In Figure 11,
a single interferogram is contrasted to the wrapped data for an
average of 4 interferograms.

4 IMPACT OF THE IMAGING OPTICS ON
THE MEASURED PHASE

So far we have only dealt with the phase retrieval process
which will not guarantee freedom from systematic aberrations
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FIG. 10 Wrapped phase images resulting from a Fourier transform evaluation of interferograms with approx. 8 pixels/period using a circular frequency window with r = 55. On

the left: evaluation of a single intensity here i3. On the right: evaluation of a difference intensity i3-i5, please note the elimination of edge ringing and an improvement of the

smoothness of the phase distribution.

FIG. 11 Demonstration of the edge ringing reduction due to averaging. On the left: wrapped phase for single interferogram evaluation showing strong edge ringing. On the right:

wrapped phase of the average of the phases of 4 interefrograms being ramped with 90◦-phase steps.

caused by the optics of the interferometer. Such aberrations
are the result of unequal light paths of the interfering waves
through the imaging optics. Imaging systems based on achro-
matic doublets are a common solution compared with espe-
cially designed imaging systems. In any case, telescopic imag-
ing systems are necessary to avoid hyperbolic fringes.

Ray-trace simulations [12] show that systematic wave aberra-
tions of the order λ/20 rms might occur. The strongest contri-
butions result from defocus, primary astigmatism and coma.
Therefore, two restrictions have to be obeyed: (1) calibration of
the setup is mandatory and (2) in all following measurements
the number of fringes should be kept within a corridor of 1
fringe/diameter in order to get reproducible results. How-
ever, in our experimental Fizeau setup the rotational sym-

metry of the telescopic imaging system is broken since one
plane folding mirror having deviations in the order of λ/10
is used for practical reasons. Therefore, the symmetry of the
aberrations for opposite wedge edge positions does not pre-
vail which would be expected due to ray-trace [12] simula-
tions.

Since the reference phase is ramped due to our proposal for
phase retrieval it is self-evident to adjust fluffed out fringes
in an additional run in order to determine the intrinsic wave
aberrations for a chosen fringe frequency which can be used
for correcting systematic errors (see Figure 12). If a calibrated
reference surface is available the calibration of the interfero-
metric setup is straightforward. The calibrated reference sur-
face can of course be obtained if absolute measurements
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FIG. 12 Calibration function determined through calculating the difference between the deviations for 8 pixels/period and fluffed out fringes (left). On the right: deviations of the

Fizeau resonator for fluffed out fringe field for a comparison.

would be made using the standard adjustment parameters for
optimum repeatability.

5 CONCLUSIONS

We have investigated phase retrieval from single carrier fre-
quency interferograms showing small space-variant defects
due to imperfections of the optics or dust respective other lo-
cal obstacles. These defects impair the retrieved local phase
since all phase retrieval algorithms for single carrier frequency
interferograms rely on next neighbour operations due to con-
volution with suitable even/odd kernels or low pass filtering.
The accuracy of the retrieval process can be enhanced if a set of
interferograms with ramped reference phases are combined.
Since the phase modulates the coherent term of the intensity
expression it is advantageous to subtract the intensities of two
interferograms being in phase opposition. In this way one gets
rid of the incoherent dc-term and obtains twice the modula-
tion depth for the interference term. We have shown that fol-
lowing this concept the resulting phase distribution from any
retrieval algorithms is considerably smoother even to the rim
of the measuring aperture. Stochastic phase errors caused by
electronic noise and other non-systematic errors are greatly re-
duced through averaging of many phase results. Averaging of
phases resulting from phase-ramped interferograms improve
also the definition of the phase distribution straight to the rim
of the measured sample due to averaging phase-sensitive dis-
turbances as edge ringing. Also, the systematic aberrations
caused by the propagation of tilted waves through the imag-
ing optics have been simulated for achromatic telescope op-
tics. Since these aberrations are of the order of 1/20 of a wave-
pv one has to calibrate the interferometer. After calibration
the experimenter has to guarantee that the tilt is reproduced
within one fringe per diameter for a tilt of 4 pixels/period.
Therefore, adjustment helps are necessary to fulfill this condi-
tion for all following-on measurements.
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