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We extend the technique of conditional preparation to a quantum cloning machine, and present a protocol of 1 — 2 conditional cloning of
squeezed state and entanglement states. It is shown that the entanglement degree of the cloned entangled states can be well preserved
even when the fidelity between the input and output states is beyond the limit of 4/9. This scheme is practicable since only the linear
elements of beam splitters, homodyne detections, optical modulations and electrical trigger system, are involved.
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1 INTRODUCTION

Quantum cloning is a fundamental issue in quantum infor-
mation processing and the topic of quantum cloning is con-
cerned with devising a quantum cloning machine to make op-
timal approximate copies [1]-[3]. The quantum cloning ma-
chine was firstly developed for quantum discrete variables
(DV) or qubits [2, 3], and later it was extended to quantum
continuous variables (CV) [4]. The implementations of CV
cloning machines using parametric amplifiers and beam split-
ters were proposed in 2004 [6, 7]. Quantum cloning for CV
has attracted more and more interest [8]-[11], especially the
quantum cloning of CV entangled states. Quantum entangle-
ment [12]-[14] is a central resource in quantum information
processes such as quantum teleportation [15], quantum dense
code [16], and quantum cryptography protocols [17]. ACV en-
tanglement cloning machine can be used in quantum informa-
tion processing, such as error correction in the quantum com-
putation [18] and quantum eavesdropping [19] in quantum
cryptography. The cloning of CV entangled states has been
presented [20], but it is necessary to involve 6 extra squeeze
and unsqueeze gates.

Conditional preparation is an important technique in quan-
tum information experiments. Recent developments in both
theory and experiment demonstrate that a nonclassical quan-
tum state of light can be conditional prepared in the contin-
uous variable regime [21, 22]. With this technique of condi-
tional preparation, the purification of squeezed and entangled
states for CV was experimentally accomplished [23, 24]. Us-
ing a similar technique of conditional post-selection, the en-
tanglement distillation of mesoscopic quantum states was ob-
tained experimentally [25], and the entanglement distillation
of Gaussian input states via conditional subtraction of pho-
tons from input states was also realized [26].
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In this paper, we extend the technique of conditional prepa-
ration to a quantum cloning machine, and present a proto-
col of 1 — 2 conditional cloning of squeezed state and en-
tangled states. The entanglement degree of each of the two
cloned entangled states can be well preserved if suitable cor-
relation thresholds of the corresponding quadrature compo-
nents of the input entangled state are chosen. Meanwhile, the
fidelity between the input and cloned entangled state is also
discussed. It shows that the fidelity can also be optimized
via conditional preparation. The conditional quantum cloning
machine can be applied into quantum information processing.

2 CONDITIONAL CLONING OF
SINGLE-MODE SQUEEZED STATE

Figure 1 shows the scheme for the conditional cloning ma-
chine of an arbitrary Gaussian state. At the input side of the
cloning machine, an unknown quantum state (represented
by the annihilation operator 4;) is divided into two parts
434 = (81 & d2)/+/2 by a 50/50 beam splitter BS1, where 4,
is the vacuum mode in the other input channel of BS1. The
output state a4 is coupled with vacuum states a5 at a 50/50
beam splitter BS2, the amplitude %4 = Re[(4s + 45)/ V2] and
the phase p7 = Im[(ay — a5)/ V2] quadratures of the two out-
put mode (d7) of BS2 are simultaneously measured using
two ideal balanced homodyne detections (BHDs). The mode
of a3 is displaced by the measurement £¢, p7 with gain factor g,
43 — g = A3 + g(% + ip7). In order to get the optimal cloning
states, we must keep the unity cloning gains, in other words,
the expectations of output state must be equal to the expec-
tations of input state ((£i,) = (fcione)s (Pin) = (Peione)) [10],
the gain factor g is thus taken to be 2'/2. Then, the values of
amplitude and phase quadratures (£ = Re(4) and p = Im(4)) of
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FIG. 1 (Color online) Scheme for the conditional cloning machine of an arbitrary Gaus-
sian state. The machine is the symmetric 1—2 linear quantum cloning machine. a,:
the input arbitrary state; acjon; & acon,: clones of the input state; AM: amplitude mod-
ulator; PM: phase modulator; BS1, BS2, BS3(1/1): 50/50 beam splitter; |Axs| < Q: the

condition taken as the trigger; Switch: turn on or turn off.

mode dg are: xg = x3 + v/2x4 and ps = p3 + ﬁp% At last, the
mode is divided into two cloning states 4., = (dg + d9)/ /2
and 4joup = (g — A9)/+/2 by a beam splitter BS3, where 4y is
the vacuum state induced by the beam splitter. For a squeezed
state input, the key point of our supposed clone machine is
the conditional selection of the measurement value of the vari-
ance of squeezed component. We consider a set of amplitude
quadrature squeezed state inputs with unknown squeezing
and expectation and set a certain trigger threshold Q for Axg,
which is the permitted maximum fluctuation of the squeezed
quadrature component, where the cloning states are only pre-
pared when |Axg| < Q.

For a Gaussian input state, the Wigner function is:

CE ST T

W) 2V, 2V,

exp

1
I INIAZ

where # = x 4 iy. X and p are the expectations of the ampli-
tude and phase quadratures and Vy and V), are the variances
of the amplitude and phase quadratures, respectively; when
Vy =V, = 1/4, the state is the coherent state; when V or
V, <1 /4, the state is the amplitude or phase squeezed state.

The overall Wigner distribution of output modes (after beam
splitter 2) can be transformed from the initial Wigner distribu-
tion W(aq) - W(az) - W(as) - W(ag) into:

W (@cton1, Xclon2s X6, 7)
. 1
(271’)4 \/Vxl Vpl Viz VpZ Vs VpS Vxg Vp9

cexp |- (Xclon1 + Xclon2 — X6 + X7 — f)2:|
L 8V
-exp |— (pclonl + Pclon2 — P7 + P6 — ﬁ)z
8Vp1
cexp |- (Xclom1 + Xclon2 — 3%6 — X7)2
L SVXZ
- exp -_ (pclonl + Pelon2 — 3P7 + pé)z
L 8Vp2
Cexp | (x6 —x7)*  (p6 — p7)*
L 4Vy5 4Vys
-exp _7 (Xclon14;/xclon2)2 - (palonlzl;/ pclon2)2:| 2)
x9 9

The two cloned output states (a.jo,1,ac0n2) have the same
properties, and we can only consider the cloning state
acon1 in the cloning process. The joint distribution for mix-
ture states xg with x.,,; can be calculated by integrating
W (@101, Xelon2, X6, &7 ) over other modes.

Wout (xclonlf xé)

= / / / / / / declonde7dpclon1dpclonZdpédp7

4V,
- exp [_ 3+ 4V (xclonl - JE)2:|
7T 2(1 +4Vx1) 1 +4VX1

4 <x6 - ;)2 +4(xcion1 — X) (x6 - ;)}

3+4V,
ha 2l (xclonl - X)Z}

4
exp | —
7y/2(1+4Vyq) P [ 1+4Vy

- exp {—4Axé +4(xgon1 — J?)AX6:| 3)

For the clone machine discussed here, the conditional
selection of x4 is done to improve the fidelity of the
cloning state. If the fluctuation of measured amplitude
quadrature falls below a certain trigger threshold Q
(|x6 — 6| = |x6 — £| = |Ax6| < Q), we switch on the process
to reconstruct the output state, otherwise, the reconstruction
is discarded. In the experiment, we can get Axs by using a
signal processing system [21, 23], where Axq corresponds to
the AC part of the measured data. The probability distribution
of the amplitude quadrature of output cloning state is given

by:

Q
Wouf(xclonl) = %/WDut(x(clonl,xs)dAxé' (4)
Q
Here the normalization factor P denotes the probability of
positive trigger events from BHD, called probability of suc-
cess of cloning.

Q o
P = / /W(x(clonl,xé)dAxﬁdxclonl 6)
7Q700

It can be easily seen that the expectation value of the clone is

[ee]
Xclon1 = / Wout<xclon1)xclon1dxclonl =X (6)

—00

Regardless of the trigger threshold Q, the expectations of the
output states always are equal to the expectations of the in-
put states. Therefore, we can neglect the expectation values of
the cloning states, and only consider the fluctuations of the
cloning states.

The squeezing of the clone (here, amplitude quadrature
squeezing) is most conveniently characterized by the vari-
ance of its quadrature x,jy,1

(o)
Vout(xclom) = / Wout(xclonl)(xclonl - f)zdxclonl (7)

—00

There is no limit to the phase quadrature py, so the distribu-
tion of the phase quadrature of output cloning state is directly

14057- 2



J. Europ. Opt. Soc. Rap. Public. 9, 14057 (2014) K. Liu, et al.
given by:
Wout (Pclont) (@)
=S LTI
“dPcion2dpedp7dxcion1 A con2dXedx7 L - P el
= 2 N 3 _ - r 4
_ 1 ex |: 2(Pclun1 P) (8) 0.20 - - .- -
Z(1+4V,) 144V “Cho--
The final Wigner function of cloning state can be expressed as: 0.1
0.0 0.5 1.0 1.5 2.0
Weion (“clanl) = Wout(xclonl) : Wout(Pclunl) ) Q
Fidelity is represented by the overlap between the Wigner 1.0
functions of the original and the output states [27], so the fi- ' e = oV 0025
delity of the cloning squeezed state is (b) M
- - V) =0.075
F= 7t [ W)W (@) (10) 0.8% P onrs
The results of numerical calculations are shown in Figure 2. = R .
The dependence of variance of the output squeezed state V¢, 0.6 e L
the fidelity F and the successful cloning probability P on
the selection threshold are described in Figure 2(a), 2(b) and Feeea -
2(c) respectively, and three squeezing degrees (2.2 dB, 5.2 dB, 04} R T P
10 dB) of the input squeezed states are considered in the fig-
ures. Due to the fragile nature of squeezing with loss, we can ' ' :
. & e eers ) . 0.0 0.5 1.0 1.5 2.0
find that the lower squeezing degree of the input state is, the
higher fidelity of the cloning is [28], that is, the higher squeez- Q
ing is more fragile and decays more easily. By the conditional
selection to the states, some extra noise, which is derived from 1.0 o e e e e
the cloning process, can be eliminated. As a result, for the (c) L -
fixed input squeezed state, the better the fidelity is, the lower 0.8 » 4
the threshold is, but it is inevitable to sacrifice the probability S
of success. When the Q is above 2, which is eight times nor- 0.6 /"
malized to the shot noise limit, the conditional cloning ma- A ,'
chine tends towards the general cloning machine [9]. By the 04 [/ e e 0028
conditional cloning machine, the squeezed state can be dupli- ” .
cated with high fidelity and with low threshold, but it cannot 0.2}y P ooV mooms
be duplicated perfectly, because the vacuum noise a9, which / V"o
is coupled into the final cloning states by BS3, cannot be elim- 0.0¢ . . ] -
0.0 0.5 1.0 1.5 2.0

inated by our scheme.

Furthermore, if the input of the cloning machine is a phase
squeezed state, the select operation should be taken on the
phase quadrature (|Apy| < Q), and we also can get good qual-
ity clones with high fidelity and squeezing.

3 CONDITIONAL CLONING OF
ENTANGLED STATES

Now, let us consider entangled states conditional cloning, for
which the proposed setup is depicted in Figure 3. We consider
a set of entangled states with unknown entanglement and ex-
pectation. The input entangled states are expressed as [29]:

Wepr(“lr“ll)
(Axy + Ax11)* + (Apr — Apn)?
REPN TS E VRN
Ax1 4 Axq1)? + (Apy + Ap1r)?
exp {_( 1 11) le( p1+Api) } (1)

Q

FIG. 2 Results of amplitude squeezed states conditional cloning with different threshold
value. (a) The amplitude variance of clone Vo, depending on threshold value Q.
(b) The fidelity of clone F depending on threshold value Q. (c) The probability of
success of clone P depending on threshold value Q. We consider three input states
with different degree of amplitude squeezing: VQ’ = 0.15, corresponding to 2.2 dB
squeezing (green dash dot line), VL” = 0.075, corresponding to 5.2 dB squeezing (red
dot line), and VI = 0.025, corresponding to 10 dB squeezing (black dash line). The

shot noise limitation (SNL) is V = 0.25 (blue solid line).

where Ax; = x; — %; and Ap; = p; — p; (i = 1,11), and r repre-
sents the parameter of squeezing.

The entangled states exhibit the two commuting quadra-
tures x; = (x; +x11)/V2 and p- = (p1 — p11)/V?2 of
two squeezed states, and can be quantified by the Einstein-
Podolsky-Rosen (EPR) uncertainty Appr = V(xy) + V(p-).
The states will be entangled if Appr < 1/2[30].
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FIG. 3 (Color online) Scheme for conditional cloning machine of entangled states. The
machine is the symmetric 1—2 linear quantum cloning machine. a; & a;;: the input
entangled states; acjon; & acon,: clones of entangled states and the dashed black lines
indicate which modes are entangled; AM: amplitude modulator; PM: phase modulator;
1/1: 50/50 beam splitter; |Axs + Axss| < Q & |Ap, — Ap,,| < 0: the conditions taken

as the triggers of switch. Switch: turn on/turn off.

The implementation of entangled states conditional cloning
is similar to the local cloning of entangled states [20].
The selected threshold is added for a pair of correlated
quadratures fluctuation here, this is corresponding to the
entanglement of the input state. Only if both conditions
[Axg| = [Axe + Axes| < Q and |Apg| = [Ap7 — Apr7| < Q
are satisfied, can the clones of the entangled states be
prepared.

The input entangled states can be rewritten as two single-
mode squeezed states @ and a_ for simplification,

Werp (a1, 011) = Wy (ay) - W_(a—)
2 _
Wi (ay) = —exp[~2 200} —2¢7 ¥ ph ]
1 [ A2 AR
2 Vi Vs D |2V T 2V |
2
W_(a_) = - exp[—2e ¥ x% — 2¢¥ p? ]
1 [ Ax3 ApE ]
= exp |-t - P 12
v, P T, v, | 1P
Here oy = (v + a11)/V2, Axx = (Axy + Axy1)/V?2,
Ap+ = (Ap1 £ Ap11)/ V2, Vir = Vp— =1/4-exp(—2r), and

Vo = Vpp =1/4-exp(2r).

In fact the entangled states can be transformed into two single-
mode squeezed states as Eq. (12), which represent entangled
compound states and where r represents parameter of squeez-
ing; therefore we can treat the entangled states conditional
cloning, shown in Figure 3, as the conditional cloning of two
independent single-mode squeezed states, and it is analogous
to the method in ref. [26, 31]. According to the discussion in
part 2, we can easily get the expression of the Wigner function
Wi (@4 cion), W= (@ _cjon) of cloning state of 4 and d_, respec-
tively.

Wy (“Jrclon) = Wi (x+clon) : W+(p+clon)
W_(a_cion) = W=(x_cion) - W- (pfclon) (13)

Q
1 7 4
W= [ A
+( +clon) P+7. T 2(1+4Vx+)
_3+4Vx+
144V, +clon
- exp [—4Ax(23 +4Ax+donAxQ} dAxg (14a)
Q o
e | | s
* Iy, T2V
344V,
'exp{ 1+4Vx Ax +clonj|

-exp[—4AxQ—%4Ax+fmnAxQ]dAxdedmﬂ (14b)

1 2Ap2
Wi (pram) = ————exp [~y | (140
JE1+4V,)
2Ax?
W (xaton) = ————exp | - (152)
VEA+4V,) T 4&Ver
Q
1 7 4
W (pfclon) :Pi 7_[(1 T4V,
“Q
344V, )
- exp [—HLWPAPCIM 4Ap5
-exp [+4Ap_aonBpg] dApg (15b)

e —
S0 7T 2(144V,)
3+4V,_
- eXp [_MW;Apzclan]
- exp [—4AP33 +4Ap—clonApQ} dAdepclonl (15¢)

The squeezing of cloning states can be calculated from Eq. (7).

(o)

Vout(x+clon): / W(x+clon)Axiclondx+clon

—o0

o0

Vout(p—clon): /W(P—clon)Apz—clondp—cl(m (16)

The entanglement of the cloning state is [30]

Appr = Vout(erclgn) + Vout(P—clon) (17)

The Wigner function of cloning state can be read as

Weprclon (0‘1/“11) =Wy (“Jrclon) -W- (‘Xfclon) (18)

The fidelity of the cloning state [27] is

F=mn // Wepr(“lrall)weprclon(“lz“11)d2“1d2“11 (19)
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The overall the probability of success of the cloning of EPR
state is the minimum between P, and P_

P = min{P;,P_} (20)

The results of numerical calculations are illustrated in Fig-
ure 4. Figure 4(a), 4(b) and 4(c) show the dependence of entan-
glement of the output entangled states A%, the fidelity F and
the successful cloning probability P on the selection threshold
respectively. The three entanglement degrees (2.2 dB, 5.2 dB,
10 dB) of the input entangled states are shown in the figures.
The entanglement of the cloned states increases with increas-
ing of entanglement of input states; and the smaller the Q is,
the better the entanglement of cloned state is. Especially, with
a coherent states input (A?PR = 0.5), the output cloned states
can only be coherent states without any entanglement (see or-
ange dash dot dot line in Figure 4(a)). In other words, we can
not produce entangled states with a coherent states input by
the process. Because the entanglement is fragile and higher
entanglement decays more easily, we can see in Figure 4(b)
that the fidelity of cloned states increases with the decreas-
ing of entanglement of the input states. For the 10 dB entan-
gled states, the entanglement is almost lost and overwhelmed
by vacuum noises, so it is difficult to purify the entanglement
by the conditional selection. As a result, the fidelity value has
a flat response with respect to Q and remains below the 4/9
limit for all Q.

For an input entanglement, it holds that the lower the thresh-
old is, the better the fidelity is, however it is inevitable to
sacrifice the probability of success P (see in Figure 4(c)). The
cloning efficiencies (fidelity and entanglement) are different
for input states with different entanglement degrees, but they
are all better than general cloning, so in a sense, it is effective
for all entangled states.

The conditional selection process can also be understood in
the way of harmonic mean state distillation [32], which means
that one only keeps the outcome which is close to the input
state, and the other outcomes are discarded, that is, the cloned
states are kept from extra noise disturbing the cloning process.
The cloning states are able to keep entanglement with fidelity
even beyond the 4/9 limit, when Q is suitably selected, since
in Figures 4(a) and 4(b) values for Q can be found for which
Appr > 0.5and F > 4/9. From the figures, we also can find
that when the Q is above 2, which is 8 times normalized to
the shot noise limit, the conditional cloning machine tends to-
wards the general cloning machine [20].

4 CONCLUSIONS

In this article, a CV conditional cloning machine is pro-
posed for the squeezed state and continuous-variable entan-
gled states. The conditional cloning machine is a hybrid pro-
posal which combines the continuous-variable and the con-
ditional technique. Compared to the general CV cloning ma-
chine, some extra noise is suppressed and the clones with
higher fidelity and entanglement are able to be obtained by
comparing measured quadrature fluctuations with a thresh-
old and taking effective feedback, but it is inevitable to sacri-
fice the probability of success. The lower the threshold is, the

™ = = coherent states
1.0 ,(ﬁ)--—--—
1 A=0.5 V-
A" =015 4
[0 EPR P
0.8+
o v
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.
04+ - = .
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FIG. 4 (Color online) Results of conditional cloning depending on threshold value Q. (a)
The entanglement variance of cloned entangled state Agpg; (b) the fidelity between
the input and output states; (c) the probability of success. We consider three input
states with different degree of entanglement. Coherent states (brown dash dot dot
line ), AQZ,R = 0.15, corresponding to 2.2 dB entanglement (green dash dot line),
Ain. = 0.075, corresponding to 5.2 dB entanglement (red dot line), A%, = 0.025,
corresponding to 10 dB entanglement (black dash line), shot noise limitation A = 0.5
(blue solid line in (a)). Optimal fidelity of entangled states cloning 4/9 (blue solid line

in (b)).

higher the fidelity and entanglement is. On the other hand, be-
cause the entanglement is fragile and a higher entanglement
decays more easily, the effect of conditional selection becomes
less obvious with increase of entanglement of input state and
the result of fidelity has a flat response with respect to the
threshold Q. In a sense, this cloning machine is controllable
and practicable under the present experimental conditions,
and has applications in quantum computation and quantum
eavesdropping. Moreover, it can also be used as a probabilis-
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tically clone [33] with approximate perfect fidelity, and will be
important for quantum identification and quantum deleting.
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