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Quantitative characterization of super-resolution
infrared imaging based on time-varying focal plane
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High resolution infrared image has been the goal of an infrared imaging system. In this paper, a super-resolution infrared imaging method
using time-varying coded mask is proposed based on focal plane coding and compressed sensing theory. The basic idea of this method
is to set a coded mask on the focal plane of the optical system, and the same scene could be sampled many times repeatedly by using
time-varying control coding strategy, the super-resolution image is further reconstructed by sparse optimization algorithm. The results
of simulation are quantitatively evaluated by introducing the Peak Signal-to-Noise Ratio (PSNR) and Modulation Transfer Function (MTF),
which illustrate that the effect of compressed measurement coefficient r and coded mask resolution m on the reconstructed image quality.
Research results show that the proposed method will promote infrared imaging quality effectively, which will be helpful for the practical
design of new type of high resolution infrared imaging systems.
[DOI: http://dx.doi.org/10.2971/jeos.2014.14043]

Keywords: Infrared imaging system, compressed sensing, focal plane coding, super-resolution, modulation transfer function

1 INTRODUCTION

For the restriction of infrared sensors processing technology,
compared to visible detector, infrared detector generally have
focal plane array of limited number and larger pixel size,
which cannot satisfy military and civilian imaging require-
ment of high resolution [1, 2]. Therefore, it is necessary to in-
troduce new concept, new theory or new imaging mechanism
to design new type of infrared imaging system.

Compressive sensing (CS) involves exploiting the sparsity
and compressibility of an image in some transform domain
so that one can utilize fewer measurements than the ones re-
quired for conventional imaging, yet the imaging can be re-
constructed with minimal loss information [3, 4]. Focal plane
coding (FPC) is a means for intelligent sensing and mapping
of optical pixel to enable efficient and faithful digital image
reconstruction. Making a combination of CS and FPC in in-
frared camera, we may obtain a high resolution image from a
few measured samples. Many researchers have studied how
to improve optical imaging resolution based on the above two
points. Andrew D. Portnoy et al. [5, 6] use focal plane coding
to produce non-degenerate data between multiple apertures,
and then sub-aperture data is integrated to form a single high
resolution image. A compressive imaging system using multi-
plex and multi-channel measurements with static focal plane
coding is described in Ref. [7] for compressed sensing, which

demonstrates that this system can achieve up to 50% compres-
sion with conventional benchmarking images. The most note-
worthy application of compressed sensing is the single-pixel
camera designed by Baraniuks team in Ref. [8], the single-
pixel camera acquires a recognizable image with a resolution
comparable to N pixels. Inspired by the idea of the single-
pixel camera, CS has been used for passive millimeter-wave
imaging to significantly reduce the imaging time and produce
high-fidelity images in Ref. [9]. Refs. [10, 11] present a novel
approach for improving infrared imaging resolution by the
use of CS. The image sensor measures the compressed sam-
ples of the observed image through a coded aperture mask
placed on the focal plane of the optical system, the same scene
could be sampled repeatedly by using multiplexing technol-
ogy, and then the image reconstruction can be performed from
these samples using an optimal algorithm. Inspired by the
above research results, we propose a super-resolution infrared
imaging method based on time-varying focal plane coding,
and introduce the MTF for quantitative evaluation of image
quality.

This paper is organized as follows. Section 2 describes
the basic theory of CS briefly. In Section 3 we present a
super-resolution infrared imaging method based on time-
varying focal plane coding, mainly including the coding
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sampling strategy and its corresponding reconstruction
method.Experimental results and quantitative evaluation are
given in Section 4. Section 5 concludes this paper.

2 COMPRESSED SENSING

e basic idea of CS theory is that when the image of interest
is sparse or highly compressible in some basis (i.e., most ba-
sis coefficients are small or zero-valued), relatively few well-
chosen observations suffice to reconstruct the most signifi-
cant nonzero components. In particular, judicious selection of
the type of image transformation introduced by measurement
systems may dramatically improve our ability to extract high
quality images from a limited number of measurements. In
this section we review the intuition and theory underlying
these ideas. By designing optical sensors to collect measure-
ments of a scene according to CS theory, we can use computa-
tional methods to infer critical scene structure and content.

The CS sampling model is described as

y = Φ f = ΦΨx = Θx (1)

where f ∈ RN is an unknown signal, which could be sparsely
represented as f = Ψx in an orthonormal basis Ψ. If there are
only K (K � N) non-zero components of x, f is defined as
being K-sparse.Phi denotes a M× N (M � N) matrix called
measurement matrix. Θ = ΦΨ is a sensing matrix and y ∈ RM

is an observation vector. The CS theory indicates that, subject
to a Restricted Isometry Property (RIP) condition [12, 13] on
the observation matrix Theta, high dimensional vectors f can
be recovered from a much smaller dimensional observation y
with the probability close to 1.

The observation matrix Θ should satisfy the RIP of order 3k if,
for T ⊂ {1, 2, . . . , n} and ΘT , a submatrix obtained by retain-
ing the columns of Theta corresponding to the indices in T,
there exists a constant δ3k ∈ (0, 1/3) such that for all z ∈ <|T|,

(1− δ3k)‖z‖2
2 ≤ ‖ΘTz‖ ≤ (1 + δ3k)‖z‖2

2 (2)

holds for all subsets T with |T| ≤ 3k. Intriguingly, many
kinds of random matrices meet RIP with high probability. The
equivalent condition of RIP, referred to as incoherence, re-
quires that the rows {φj} of measurement matrix Φ cannot
sparsely represent the columns {φi} of orthonormal basis Ψ
(and vice versa). Refs. [14]–[17] proved that if Ψ is a Gaussian
random matrix, random binary Bernoulli distribution matrix,
partial Fourier matrix, local Hadamard matrix, Toeplitz ma-
trix and so on, Θ can meet RIP in all probability. Finally, to
solve the l1 optimization problem described in Eq. (3) will get
a high precision estimated value f̂ of an original signal f .

x̂ = argmin‖x‖1 subject to Θx = y

f̂ = Ψx̂
(3)

where x ∈ RN is the sparse form of the original signal f , and
x only has K(K � N) non-zero components. Sensing matrix
Θ denotes an M× N matrix and y ∈ RM is an incomplete ob-
servation vector. The dimension M of y is smaller than the di-
mension N of x ( M � N ). There are many optimal methods
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FIG. 1 Time-varying focal plane coding imaging model.

such as Basis Pursuit (BP), Matching Pursuit (MP), Total Vari-
ation (TV), and Gradient Projection for Sparse Reconstruction
(GPSR) [18] for signal reconstruction.

3 SUPER-RESOLUTION INFRARED
IMAGING MODEL

For typical infrared imaging system, the pixel pitch of in-
frared sensors ranges from 15 m to 40 m [19], which is larger
than that of their visible-light counterparts and cannot satisfy
the resolution requirements of many science experiments. To
improve infrared imaging quality, we design a time-varying
coded mask based on CS and set it in front of the focal plane
of the optical system closely. Finally, a super-resolution image
can be obtained by introducing reconstruction algorithm from
a small amount of samples.

As denoted in Figure 1, time-varying focal plane coding imag-
ing model is given for one moment. Conventional infrared
imaging resolution is determined by the detector pixel size
(d × d) of the focal plane array. Assuming that the angu-
lar resolution is iFov and the scene sampling distance is de-
fined as H. After m× m coded mask sub-array for each pixel
and reconstruction algorithm are adopted, final infrared imag-
ing resolution is dependent on the pixel size of the coded
mask rather than that of the focal plane array. Theoretically,
the angular resolution of the reconstructed image become
α = iFov/m and the scene sampling distance of the recon-
structed image is ∆h = H/m, thus infrared imaging resolu-
tion can be promoted m times.

According to CS theory, the practical design of coded mask
choose Gauss random matrix with normal distribution N(0, 1)
as the measurement matrix. As illustrated in Figure 2(a), a
12× 12 coded mask array corresponds to 3× 3 pixels on the
sensor. Every pixel is masked with the same 4× 4 sub-array
pattern. Ref.[20] proved that multi-value mask is superior to
conventional binary mask in imaging system. Thus, a multi-
value time-varying coded mask is adopted in our infrared
imaging system, in which “0” or “1” elements denote the light
is fully blocked or passed, and the value between 0 and 1 de-
notes the light is partly blocked. The white area enables the
light to pass through the mask while the black area disables it,
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FIG. 2 Schematic of time-varying focal plane coding mask.

the different gray-scale areas represent the light which partly
passed in Figure 2. Each sensor pixel records the light inten-
sity of the incoming light beam encoded by a 4× 4 mask. In
fact, these records are the compressed samples of the observed
object.

A measurement matrix corresponds to a compressed mea-
surement, time varying coding pattern can obtain multiple
compressed measurement of original scene. Figure 2(b) shows
that the variation of single pixels focal plane coding mask
with time t. At the same moment, sub-arrays of every pixels
coded mask are the same Gauss random matrix, while differ-
ent random matrices are used for different moments, which
obey the same Gaussian distribution. Compared to spatially
multiplexing technology used to obtain multiple samples, the
time-varying technique in this paper will reduce the volume
and mass of an infrared imaging system significantly.

Suppose that ∆t is the time step of different moments of coded
mask, M is the measurement times, t is the total detection time
of all compressed measurements. The variable r is defined as
the compressed measurement coefficient which equals to the
ratio of M to coded mask resolution (m × m), r ∈ [0, 1]. For
m and ∆t being fixed, the total detection time t become larger
with an increment of r. Its mathematical form is given as fol-
lows

t = M · ∆t (4)

M = r · (m×m) (5)

From Eq. (4) and Eq. (5), M measurements are obtained after
time t, thus each detector pixel can achieve a compressed mea-
surement vector y which has M elements. This process can be
written as

y = Φ · f (6)

its corresponding matrix form is expressed as
y1
y2
. . .
yM

 =


Φ1
Φ2
. . .
ΦM

 ·


f1
f2

. . .
fm×m

 (7)

where φi(i = 1, 2, . . . , M) denotes the transformed
1 × (m × m) vector resulting from measurement matrix
corresponding to the ith compressed measurement. f is the
column vector of light field intensity in a pixel area. The
same reconstruction processes of all the pixels are performed
independently. For the trade-off between computational

time and the recovery accuracy, the Gradient Projection for
Sparse Reconstruction (GPSR) algorithm is used for image
reconstruction, Eq. (3) can be formulated as an optimization
problem where the objective function is expressed as a
combination l1 and l2 minimization program, as described in
Eq. (8).

x̂ = arg min
1
2
‖y−ΦΨx‖2

2 + τ‖x‖1

f̂ = Ψx̂
(8)

where τ is a nonnegative parameter and τ = 0.02
∥∥ΘTy

∥∥
∞ in

this paper.Formally, by introducing vectors u and v, make the
substitution,

x = u− v, u ≥ 0, v ≥ 0 (9)

These relationships are satisfied by ui = (xi)+ and
vi = (−xi)+(i = 1, 2, . . . , n), where (·)+ denotes the
positive-part operator defined as (x)+ = max{0, x}. So Eq. (8)
can be rewritten as the following standard bound-constrained
quadratic program(BCQP):

min
u,v

cTz +
1
2

zT Bz ≡ F(z)

subject to z ≥ 0
(10)

where z = [u; v], b = ΘTy, c = τl2n +

[
−b
b

]
,

ln = [1, 1, . . . , 1]T ,B =

[
ΘTΘ −ΘTΘ
−ΘTΘ ΘTΘ

]
.

The two-step gradient projection method defines its iteration
zk+1 from the previous iteration zk as,

w(k) = (z(k) − α(k)5 F(z(k)))+

z(k+1) = z(k) + β(k)(w(k) − z(k))
(11)

where w(k) is a temporary variable, α(k) > 0 and β(k) ∈ [0, 1].
Detailed derivation and discussion can see Ref. [18].

4 SIMULATION RESULTS

To verify the feasibility of the proposed super-resolution
imaging method based on time varying focal plane coding,
a tank image of 512× 512 pixels is taken as an original scene.
Discrete Cosine Transform(DCT) is used to form a sparse rep-
resentation, and a 32× 32 detector array is adopted to sample
the original scene, and each detector element cover 16 × 16
pixels of an original scene.

4.1 Reconstruction of tank image

First, the effect of compressed measurement coefficient r on
the quality of the reconstructed image is discussed. It is as-
sumed that a 8 × 8 coded mask sub-array for each detec-
tor pixel is adopted, the reconstructed images for different
r = 0.8, 0.4 and 0.2 are obtained and shown in Figures 3(b), (c)
and (d), respectively. The resolution of the reconstructed im-
age is 256× 256 pixels. The PSNR is selected to evaluate the
variation of image quality with the coefficient r, the relation-
ship of the PSNR with r is illustrated in Figure 4. It can be seen
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(a) Original image               (b) r=0.8 PSNR=29.9491 

     

(c) r=0.4 PSNR=28.0366         (d) r=0.2 PSNR=22.1791 

Fig.3 Reconstructed images for different r
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FIG. 3 Reconstructed images for different r.
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FIG. 4 PSNR value as a function of r for different reconstruction images.

that the reconstructed image quality can be promoted signif-
icantly as r become larger. The largest PSNR can be achieved
at 30db. However, for a fixed coded mask, an increment of
compressive measurement ratio r will lead to longer sampling
time.

It is assumed that the coefficient r = 0.75 remain unchanged,
we set m = 4, m = 8 and m = 16, namely 4× 4, 8× 8 and
16 × 16 coded masks for each pixel are used to sample
the original scene, respectively. Their corresponding re-
constructed images are shown in Figures 5(b), (c) and (d),
respectively. Figure 5(a) is a downsampling image obtained
by using a 32× 32 detector array without coded mask.

It can be observed that the reconstructed image quality has
been improved greatly, and more details of original scene are
recovered with m being larger. To quantitatively assess the
quality of the reconstructed image, the MTF is introduced.

11 

      

(a) Downsampling image                (b) 4×4 coded mask 

(32×32 pixel)                             (128×128 pixel) 

       

(c) 8×8 coded mask                (d) 16×16 coded mask 

(256×256 pixel)                        (512×512 pixel) 

Fig.5 Reconstructed images for different m 
FIG. 5 Reconstructed images for different m.

FIG. 6 Schematic of MTF measurement method based on the slanted-edge.

4.2 Quantitat ive evaluation of image
qual ity based on MTF

MTF is one of the key indicators to characterize the signal
transfer characteristics of an imaging system as a function of
spatial frequency in terms of linear response theory [21]. Var-
ious methods have been proposed to determine the MTF of
an imaging system, the slanted-edge measurement method to
calculate the MTF is used in this paper [22]. The schematic of
MTF by the slanted-edge measurement method is shown in
Figure 6.

MTF gives an idea of a deeper and more objective conception
about resolution and falls from one to zero by increasing spa-
tial frequency. In this paper, we will measure the spatial fre-
quency by cycles per pixel, taking one dark and one light line
as a cycle. In order to connect the MTF with the usual limiting
resolution, the spatial frequency corresponding to minimum
contrast ratio of human eye 0.05 is taken as the limiting reso-
lution.

A slanted-edge image of 1024× 1024 pixel is taken as an orig-
inal scene. Assume that m = 8 remain unchanged, then the
original scene is sampled for r = 0.25, r = 0.50 and r = 0.75,
respectively. Their corresponding reconstructed images are
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(a) Downsampling image           (b) r=0.25                    (c) r=0.50                      (d) r=0.75 

Fig.7 Slanted-edge images with different r 

FIG. 7 Slanted-edge images with different r.
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FIG. 8 MTF curves measured for different r based on slanted-edge images.

shown in Figures 7(b), (c) and (d), respectively. Figure 7(a) is
the downsampling image obtained by using a 128× 128 detec-
tor array without coded mask. The MTF curves of the slanted-
edge images with different r values are shown in Figure 8.
In the case of conventional imaging without coded mask, the
sampled image is degraded seriously, and the image contrast
quickly falls off with an increment of the spatial frequency.
For r = 0.25, the recovered image contrast is well reproduced
compared with the downsampling image. Further, the quality
of the reconstructed image can be improved for r = 0.5 and
r = 0.75. When r = 0.25, r = 0.50 and r = 0.75, the limit-
ing resolution are 0.775c/p, 0.797c/p, 0.825c/p, and the MTF
at Nyquist frequency are 0.1121, 0.2008, 0.2175, specifically
listed in Table 1. For a fixed m, the quality of reconstructed
image improves with the increase of r. Both the limiting res-
olution and the MTF at Nyquist frequency improves signif-
icantly compared with conventional imaging mode without
coded mask.

Item limiting resolution MTF at Nyquist
(c/p)

without mask 0.105 0.0047
r = 0.25 0.775 0.1121
r = 0.5 0.797 0.2008
r = 0.75 0.825 0.2175

TABLE 1 Image quality characterization for different r

When r = 0.75 remain unchanged, then the original scene is
sampled for m = 4, m = 8 and m = 16, respectively. Their cor-
responding reconstructed images are shown in Figures 9(b),
(c) and (d), respectively. Figure 9(a) is the downsampling im-
age obtained by using a 64× 64 detector array without coded
mask. MTF curves of slanted-edge images with different m
values are shown in Figure 10. Similarly, in the case of con-
ventional imaging without coded mask, the sampled image
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(a) Downsampling image           (b) m=4                           (c) m=8                      (d) m=16 

Fig.9 Slanted-edge images for different m 

FIG. 9 Slanted-edge images for different m.
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FIG. 10 MTF curves measured for different m based on slanted-edge images.

is degraded seriously, and the image contrast quickly falls off
with an increment of the spatial frequency. For m = 4, the
recovered image contrast is well reproduced compared with
the downsampling image. Further, the quality of the recon-
structed image can be improved for m = 8 and m = 16.
When m = 4, m = 8 and m = 16, the limiting resolution
are 0.245c/p, 0.330c/p, 0.697c/p and the MTF at Nyquist fre-
quency are 0.0089, 0.0163, 0.1220, specifically shown in Table 2.
For a fixed r, the quality of reconstructed image improves with
the increase of m. Both the limiting resolution and the MTF at
Nyquist frequency improves significantly compared with con-
ventional imaging mode without coded mask.

Item limiting resolution MTF at Nyquist
(c/p)

without mask 0.050 0.0062
m = 4 0.245 0.0089
m = 8 0.330 0.0163
m = 16 0.697 0.1220

TABLE 2 Image quality characterization for different m

5 CONCLUSION

We have presented a super-resolution infrared imaging
method based on time-varying focal plane coding for increas-
ing image resolution. This method can obtain high quality
images by using low resolution detector array. Time-varying
focal plane coding scheme makes it possible to sample enough
compressed measurement by one detector and thereby reduce
the volume and mass of an infrared image system. Moreover,
because the coded mask is not fixed and would be usable in
many applications by changing the coding strategy. Both the
PSNR and the MTF have been introduced to quantitatively
evaluate the reconstruction image quality, and simulation
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results indicate that the proposed method can obtain more
information of an original scene and improve image quality
significantly compared with conventional imaging mode
without coded mask. The optical experiments based on the
proposed method will be an important part of our further
research plan. The practical exposure time will be obtained
in next step. Exposure time will be shorter and the Signal to
Noise Ratio (SNR) will be reduced in the case of non-steady
objects.

6 ACKNOWLEDGEMENTS

This research is supported by the National Natural Science
Foundation of China (61007014, 61377007). We express our
sincere appreciation for reviewers valuable comments.

References

[1] F. Jinxiang, and Y. Yanjun, “Development in new concepts and new
schemes for military infrared imaging systems,” Infrared Laser
Eng. 40, 1–6 (2011).

[2] F. Jinxiang, and Y. Yanjun, “Development trends of infrared de-
tecting technology,” Infrared Laser Eng. 41, 3145–3153 (2012).

[3] D. L. Donoho, “Compressed sensing,” IEEE T. Inform. Theory 52,
1289–1306 (2006).

[4] Y. Tsaig, and D. L. Donoho, “Extensions of compressed sensing,”
Signal Process 86, 549–571 (2006).

[5] A. D. Portnoy, N. P. Pitsianis, D. J. Brady, J. Guo, M. A. Fiddy,
M. R. Feldman, and R. D. Te Kolste, “Thin digital imaging systems
using focal plane coding,” Proc. SPIE 6065, 60650F (2006).

[6] A. D. Portnoy, N. P. Pitsianis, X. Sun, and D. J. Brady, “Multichannel
sampling schemes for optical imaging systems,” Appl. Optics 47,
B76–B85 (2008).

[7] N. Pitsianis, D. Brady, A. Portnoy, X. Sun, T. Suleski, M. Fiddy,
M. Feldman, and R. TeKolste, “Compressive imaging sensors,”
Proc. SPIE 6232, 62320A (2006).

[8] R. G. Baraniuk, “Single-pixel imaging via compressive sampling,”
IEEE Signal Proc. Mag. 25, 83–91 (2008).

[9] N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. C. Rap-
tis, L. Spinoulas, and A. K. Katsaggelos, “Passive millimeter-wave
imaging with compressive sensing,” Opt. Eng. 51, 091614–1 (2012).

[10] L. Xiao, K. Liu, D. Han, and J. Liu, “Focal plane coding method
for high resolution infrared imaging,” Infrared Laser Eng. 40,
2065–2070 (2011).

[11] L.-L. Xiao, K. Liu, D.-P. Han, and J.-Y. Liu, “A compressed sensing
approach for enhancing infrared imaging resolution,” Opt. Laser
Technol. 44, 2354–2360 (2012).

[12] E. J. Candes, “The restricted isometry property and its implications
for compressed sensing,” C. R. Math. 346, 589–592 (2008).

[13] J. Haupt, and R. Nowak, “Signal reconstruction from noisy random
projections,” IEEE T. Inform. Theory 52, 4036–4048 (2006).

[14] E. J. Candes, and T. Tao, “Decoding by linear programming,” IEEE
T. Inform. Theory 51, 4203–4215 (2005).

[15] E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery
from incomplete and inaccurate measurements,” Commun Pur.
Appl. Math. 59, 1207–1223 (2006).

[16] G.-M. Shi, D.-H. Liu, D. Gao, Z. Liu, J. Lin, and L.-J. Wang, “Advances
in theory and application of compressed sensing,” Acta Electron.
37, 1070–1081 (2009).

[17] W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak,
“Toeplitz-structured compressed sensing matrices,” in Proceed-
ings of Statistical Signal Processing, 2007. SSP’07. IEEE/SP 14th
Workshop on, 294–298 (IEEE, Madison, 2007).

[18] M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projec-
tion for sparse reconstruction: Application to compressed sensing
and other inverse problems,” IEEE J. Sel. Top. Signa. 1, 586–597
(2007).

[19] C. Bo-liang, “Development state of IRFPA imaging device [J],” In-
frared Laser Eng. 1, 000 (2005).

[20] X.-P. Shao, C. Zhong, J. Du, and C.-C. Rao, “Super-resolution imag-
ing method using multi-value compressed coded aperture,” J. Op-
toelectronics Laser 6, 032 (2012).

[21] Y. Li, and B. He, “Quantitative evaluation of image quality of CCD
subpixel imaging using MTF,” Infrared Laser Eng. 42, (2013).

[22] F. B. Xu Baoshu, and S. Zelin, “Modulation Transfer Function Mea-
surement Method of Electro-optical Imaging System,” Acta Optica
Sin. 31, 1111004 (2011).

14043- 6


	INTRODUCTION
	COMPRESSED SENSING
	SUPER-RESOLUTION INFRARED IMAGING MODEL
	SIMULATION RESULTS
	Reconstruction of tank image
	Quantitative evaluation of image quality based on MTF

	CONCLUSION
	ACKNOWLEDGEMENTS

