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The point-spread function (PSF) is used in optics for design and assessment of the imaging capabilities of an optical system. It is therefore
of vital importance that this PSF can be calculated fast and accurately. In the past 12 years, the Extended Nijboer-Zernike (ENZ) approach
has been developed for the purpose of semi-analytic evaluation of the PSF, for circularly symmetric optical systems, in the focal region.
In the earliest ENZ-years, the Debye approximation of the diffraction integral, by which the PSF is given, was considered for the very
basic situation of a low-NA optical system and relatively small defocus values, so that a scalar treatment was allowed with a focal factor
comprising a quadratic function in the exponential. At present, the ENZ-method allows calculation of the PSF in low- and high-NA cases,
in scalar form and for vector fields (including polarization), for large wave-front aberrations, including amplitude non-uniformities, using a
quasi-spherical phase focal factor in a virtually unlimited focal range around the focal plane, and no limitations in the off-axis direction.
Additionally, the application range of the method has been broadened and generalized to the calculation of aerial images of extended
objects by including the finite distance of the object to the entrance pupil. Also imaging into a multi-layer is now possible by accounting
for both forward and backward propagation in the layers.
In the advanced ENZ-approach, the generalized, complex-valued pupil function is developed into a series of Zernike circle polynomials,
with exponential azimuthal dependence (having cosine/sine azimuthal dependence as special cases). For each Zernike term, the diffraction
integral reduces after azimuthal integration to an integral that can be expressed as an infinite double series involving spherical Bessel
functions, accounting for the parameters of the optical system and the defocus value, and Jinc functions comprising the radial off-axis
value. The contribution of the present paper is the formulation of truncation rules for these double series expressions, with a general rule
valid for all circle polynomials at the same time, and a dedicated rule that takes into account the degree and the azimuthal order of the
involved circle polynomials to significantly reduce computational cost in specific cases. The truncation rules are based on effective bounds
and asymptotics (of the Debye type) for the mentioned spherical Bessel functions and Jinc functions, and show feasibility of computation
of practically all diffraction integrals that one encounters in the ENZ-practice. Thus it can be said that the advanced ENZ-theory is more or
less completed from the computational point of view by the achievements of the present paper.
[DOI: http://dx.doi.org/10.2971/jeos.2014.14042]
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1 INTRODUCTION AND OVERVIEW

The advanced ENZ-theory of diffraction integrals aims at the
computations of the Debye approximation of the Rayleigh in-
tegral for the optical point-spread function of radially sym-
metric optical systems that range from as basic as having low-
NA and small defocus values to advanced high-NA systems,
with vector fields and polarization, that are meant for imag-
ing of extended objects into a multi-layer structure. Recently,
a review of the advanced ENZ-theory has been given in [1]. In
this review paper [1], the evolution of the form of the diffrac-
tion integral in the process of advancing from basic systems
to highly sophisticated systems has been described. Key ENZ-
papers in this context are [2]–[8], along with the thesis [9] and
the book chapter [10], the latter containing a review of the
ENZ-theory until 2008. In [2], the first semi-analytic result for
the point-spread function in the focal region has been given

for low-NA systems and defocus values that may range to up
to 8 focal depths, and in [3] the potential of this semi-analytic
result for design and assessment of optical systems has been
indicated. The papers [4]–[6] deal with high-NA systems, in-
cluding vector fields and polarization, and develop the high-
NA ENZ-theory both for forward computation [4] and for
aberration and birefringence retrieval [5, 6]. In [7], imaging
of extended objects located at a finite distance from the en-
trance pupil of the optical system is considered, which was
further extended in [8], to also include image formation inside
a multi-layered focal region.

The nature of the semi-analytic result for computing the point-
spread function evolved during the process from an infinite
series containing products of powers f n of the defocus value
f and Jinc functions, comprising the radial distance r in im-
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age space, to an infinite double series containing products of
spherical Bessel functions (and Hankel functions for high-NA
systems) and Jinc functions, see [11]. These latter series have
the advantage that the restriction to small-to-moderately-large
defocus values can be removed, a point that was already
called attention to by Boersma [12] in 1962 for, what we
would call now, low-NA, aberration-free optical systems. This
approach of Bessel-Bessel series representation of the point-
spread function has been worked out in full detail and in all
generality in [1], thereby removing clumsy (linearization) pro-
cedures in [11] and ad hoc measures in [4]–[8] to treat front
factors in the diffraction integrals. The present paper contin-
ues and finishes the investigations in [1], in the sense that we
develop efficient rules for the truncation of the Bessel-Bessel
type series, that allow computation of (almost) all diffraction
integrals arising in the ENZ-context with arbitrary, guaran-
teed accuracy in an acceptable time.

As in classical Nijboer-Zernike theory, the generalized pupil-
function P(ρ, θ) is developed into a series of Zernike terms,

P(ρ, θ) = A(ρ, θ) exp [iΦ(ρ, θ)] = ∑
n,m

βm
n Zm

n (ρ, θ) ,

0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π , (1)

in which

Zm
n (ρ, θ) = R|m|n (ρ) exp [imθ] , 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π , (2)

are the Zernike circle polynomials, with exponential az-
imuthal dependence, where n and m are integer such that
n − |m| is even and non-negative. The contribution to the
Debye diffraction integral for the point-spread functions is
then given per term βm

n Zm
n as

βm
n

1∫
0

2π∫
0

G(ρ; f ) exp [2πiρr cos (θ − φ)]Zm
n (ρ, θ)ρ dρ dθ , (3)

in which (ν, µ) = (ρ cos θ, ρ sin θ) and (x, y) = (r cos φ, r sin φ)

are the Cartesian-polar coordinates in the exit pupil and the
focal planes, respectively, and the front factor G(ρ; f ) is a radi-
ally symmetric function determined by the parameters of the
optical system and the defocus value f . By integration over
the azimuthal variable θ, the expression in Eq. (3) takes the
form

βm
n 2πim

1∫
0

G(ρ; f )Jm(2πρr)R|m|n (ρ)ρ dρ . (4)

The front factor G(ρ; f ) in the remaining integral Im
n in Eq. (4)

is the product of a radially symmetric algebraic factor a(ρ) and
a focal factor f (ρ) (comprising the defocus value f ). This front
factor is developed in [1] in a systematic way as a series in-
volving radially symmetric Zernike terms from the Zernike
expansions of the algebraic factor a(ρ) and the focal factor
f (ρ) using to Clebsch-Gordan coefficients related quantities
to linearize products of Zernike terms. Then the remaining in-
tegral in Eq. (4) can be expressed as a doubly infinite series

I = Im
n = ∑

h,t
A0mm

2t,n,h(−1)
h−m

2 ct
Jh+1(2πr)

2πr
. (5)

In Eq. (5), m and n are the azimuthal order and degree of the
involved Zernike term Zm

n , the ct = ct(OS, f ) are the Zernike
coefficients of the radially symmetric front factor composed
of an algebraic factor comprising the parameters of the optical
system and a factor comprising the defocus parameter f , the
Jh+1(2πr)/2πr are Jinc functions whose order h has the same
parity as m with argument 2πr where r is the value of the ra-
dial parameter, and the A are to Clebsch-Gordan coefficients
related numbers. In [1], Eq. (59), there occurs a slightly more
general expression, in which the vectorial nature and polariza-
tion conditions are accounted for, leading to 5 series expres-
sions involving an integer j, |j| = 0, 1, 2 , of which Eq. (5) is
the case j = 0. We shall not consider this generalization, since
for truncation matters all these 5 cases behave the same. Fur-
thermore, in the low-NA, small-defocus case, where a scalar
treatment is allowed, the only required diffraction integral is
the one with j = 0.

The A-coefficients in the double series in Eq. (5) have attrac-
tive properties with respect to their size and the set of h, t
for which they are non-vanishing. The main effort in getting
truncation rules goes therefore into bounding Jinc functions
Jinch and structural quantities ct. The Jinc functions are di-
rectly given in terms of Bessel functions while the structural
quantities involve products of spherical Bessel and Hankel
functions evaluated at f /2 and f /2v0, respectively, where v0,
0 < v0 < 1, is a quantity determined by the optical system.
Now it is a fact that (spherical) Bessel functions, considered as
a function of the order, are of constant magnitude as long as
the order is less than the value of the argument. Beyond this
point a super exponential decay as a function of order takes
place. The situation for the structural quantities is somewhat
complicated by the occurrence of the Hankel functions (caus-
ing decay to slow down to exponential for t beyond | f |/2v0).
These observations are basic to the approach taken in this pa-
per and lead to the general rule-of-thumb that it suffices to
include in Eq. (5) all terms h, t with 0 ≤ h ≤ H, 0 ≤ t ≤ T
in which H is slightly larger than 2πr and T is slightly larger
than | f |/2. It is the aim of this paper to give a more precise
meaning to this rule-of-thumb, in which the required absolute
accuracy is included. Furthermore, by taking advantage of the
(m, n)-dependent support properties of the A-coefficients, it
is possible to formulate a truncation rule per Zernike term
Zm

n that achieves a particular accuracy with substantially less
terms than when the general rule were used.

We shall do this in all detail for the diffraction integral
I = IVM of [1], Sec. 8, which is meant for systems with high
NA, vector fields and finite magnification. Explicitly, I as-
sumes the form

I = IVM = Im
n,VM =

1∫
0

a(ρ) f (ρ) p(ρ) b(ρ) ρ dρ , (6)

where

a(ρ) =
(1− s2

0ρ2)1/2 + (1− s2
0,Mρ2)1/2

(1− s2
0ρ2)1/4 (1− s2

0,Mρ2)3/4
, (7)

f (ρ) = exp
[ i f

u0
(1−

√
1− s2

0ρ2)
]

, (8)
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p(ρ) = R|m|n (ρ) , b(ρ) = Jm(2πrρ) , (9)

are the algebraic, focal, polynomial and Bessel function factor,
respectively. Here, s0 is the NA in image space, s0,M is built
from the refractive indices in image and object space and the
magnification factor in object space according to [1], Eq. (31),

and u0 = 1−
√

1− s2
0.

The IVM-case is with respect to truncation issues quite rep-
resentative for all diffraction integrals considered in [1], ex-
cept for the case of IVMML in [1], Sec. 9, with backward prop-
agating waves in a layer of the multilayer structure in im-
age space. The IVM-case is also general enough to illustrate
the various intricacies that come with the computation of the
Zernike coefficients ct, the structural quantities, of the front
factor a(ρ) f (ρ), see [1], Sec. 4, requiring truncation rules as
well.

In Section 2 we consider rules for the truncation of the double
series in Eq. (5) for the IVM-case for which we use bounds on
the Jinc functions and on the structural quantities that follow
from Debye’s asymptotics for Bessel functions. In Section 3
we consider the truncation issues associated with the compu-
tation of the structural quantities. In Section 4 the whole com-
putation scheme using the general truncation rule is summa-
rized. In Section 5 we illustrate the performance of the trunca-
tion rules by plotting actually achieved accuracy and compu-
tation times against required accuracy. In Section 6 we present
our conclusions.

An extended version of the present paper is available online
in the form of the arXiv publication [13]. It contains a detailed
summary of the computation scheme and both versions of the
truncation rules, see [13], Sec. 4. Next, in [13], Sec. 5, an ex-
tended performance evaluation, comprising 10 pages of plots,
of the truncation rules is given. Furthermore, the Appendices
A-E in [13] contain all the mathematical details, omitted in
the present paper, concerning bounding the Jinc functions and
structural quantities and computation and asymptotic behav-
ior of the latter.

2 TRUNCATION RULES FOR THE DOUBLE
SERIES FOR IVM

2.1 Double series for IVM and truncation
strategy

We have

IVM = ∑
h,t

A0mm
2t,n,h(−1)

h−m
2 ct

Jh+1(2πr)
2πr

(10)

as in Eq. (5), where ct are the Zernike coefficients of the front
factor a(ρ) f (ρ), with a(ρ) and f (ρ) as in Eqs. (7)–(8) so that

(1− s2
0ρ2)1/2 + (1− s2

0,Mρ2)1/2

(1− s2
0ρ2)1/4 (1− s2

0,Mρ2)3/4
exp

[ i f
u0

(1−
√

1− s2
0ρ2)

]

=
∞

∑
t=0

ct R0
2t(ρ) . (11)

Our approach to get truncation rules for the double series
uses the following observations. The coefficients A are all non-
negative and bounded by 1 and satisfy other boundedness
properties such as

∑
h

A0mm
2t,n,h = 1 = ∑

t

2t + 1
h + 1

A0mm
2t,n,h . (12)

In Subsection 2.2 we give bounds on the Jinc functions
Jh+1(2πr)/2πr and the coefficients ct that show rapid decay
after h = 2πr and t = 1

2 | f |, respectively. For values of
absolute accuracy ε that are relevant in the optical practice,
the double series in Eq. (10) is truncated at values h = H
and t = T where both the Jinc functions and the coefficients
have reached their plunge ranges. Accordingly, the absolute
truncation error in approximating IVM in Eq. (10) by

∑
h+1≤H,t≤T

A0mm
2t,n,h(−1)

h−m
2 ct

Jh+1(2πr)
2πr

(13)

is safely bounded by

max
(h,2t)∈Sm

n ; h+1>H or t>T

∣∣∣ct
Jh+1(2πr)

2πr

∣∣∣ , (14)

where Sm
n is the set of all h, 2t such that A0mm

2t,n,h 6= 0.

In the general truncation rule we devise, the dependence on n
and m of the supporting set Sm

n is totally ignored and the func-
tions bounding Jinch+1 and ct are replaced by simple functions
allowing convenient determination of set points H and T for
which

max
h+1>H or t>T

∣∣∣ct
Jh+1(2πr)

2πr

∣∣∣ (15)

is below a specified ε > 0.

In the dedicated rule we devise, we use a more careful approx-
imation of the bounding functions, and we include explicitly
the supporting set Sm

n . It thus appears that an inspection of
the product of the approximated bounding functions along
the boundary ∂ Sm

n of the supporting set in the (h, 2t)-plane
produces numbers H = Hm

n and T = Tm
n such that the quan-

tity in Eq. (14) is below a specified ε > 0.

2.2 Bounding J inc functions and structural
quantit ies

We let for c > 0 and x ≥ 0

ϕ(x ; c) =

{
0 , 0 ≤ x ≤ c ,

x arccosh(x/c)− c
√
(x/c)2 − 1 , x ≥ c ,

(16)
where arccosh(y) = ln(y +

√
y2 − 1). In [13], Appendix B, the

following is shown. Let r > 0, and set

R = max
( 1

2π
, r
)

. (17)

Then∣∣∣ Jh+1(2πr)
2πr

∣∣∣ ≤ 1
2π2 R

√
R

exp(−ϕ(h + 1 ; 2πR)) . (18)

The bound in Eq. (18) is valid for all h ≥ 0, except for a small
range of h’s near 2πr with r → ∞. In fact, Eq. (18) is valid for
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FIG. 1 (a) Plot of log10 |Jh+1(2πr)/ 2πr| as a function of h = 0, 1, · · · , 150 for

the case r = 0.1 (blue), 1 (green), 10 (red). (b) Plot of log10 |Jh+1(2πr)/2πr| as

a function of h = 0, 1, · · · , 150 case r = 10 (red), together with the log10 of the

bound at the right-hand side of Eq. (18) (solid black) and the tangent line (dashed)

corresponding to the right-hand side of Eq. (24).

all r ≥ 0 and h ≤ 2, it is valid within a factor of 2 for all r ≥ 0
and all h ≤ 175, it is valid within a factor of 4 for all r ≥ 0 and
all h ≤ 11194, and so on. Of course, we also have the general
bound |Jh+1(2πr)/2πr| ≤ 1

2 .

In Figure 1(a), we show log10 |Jh+1(2πr)/2πr| as a function of
h, 0 ≤ h ≤ 150, for r = 0.1, 1 and 10, respectively. It can be
seen that there is rapid decay from h + 1 = 2πr = 0.63, 6.28
and 62.83, respectively onwards. For the case that r = R = 10,
we have plotted in Figure 1(b) both log10 |Jh+1(2πr)/2πr|
and the bound log10[ exp {−ϕ(h + 1; 2πR)}/2π2R

√
R ], see

Eq. (18). The (asymptotic) maximum of log10 |Jh+1(2πr)/2πr|
can be found from [13], Appendix B and equals −2.5609, as-
sumed at h = 58.67 when r = 10. At this point h, the upper
bound log10[1/2π2R

√
R] = −2.7953 is slightly lower than the

asymptotic maximum. We have also shown in Figure 1(b) the
linear function

log10[ exp {−(h + 1− 2πR sinh (1))}/(2π2R
√

R) ]

=28.8387− 0.4343h

which is a tangent line of the bounding function, see Subsec-
tion 2.3.

For the structural quantities ct a similar result holds. In [13],
Appendix C the following is shown. let f be a real number,
and set

g = max(1, | f |) . (19)

Then

|ct| ≤ 4w0 a0 exp(−ϕ(t ; g/2) + ϕ(t ; g/2v0)) , (20)

where

a0 = 2
1∫

0

a(ρ)
√

1− s2
0ρ2 ρ dρ (21)

is the R0
0-coefficient of A(ρ) = a(ρ)

√
1− s2

0ρ2, and

w0 =
1

1 +
√

1− s2
0

, v0 =
1−

√
1− s2

0

1 +
√

1− s2
0

. (22)

Here it has been assumed that s0 ≥ s0,M. In the case that
s0,M > s0, we should replace s0 in Eq. (22) by s0,M and change

0 50 100 150
0

1

2

3

4

5

6

7

8

t 

|c
t|

 

 

j = 0

|j| = 1

|j| = 2

0 50 100 150
−25

−20

−15

−10

−5

0

5

t 

1
0
lo

g
 |

c
t|

 

 

j = 0

Bound in Eq.(16)

Tangent of bound in Eq.(16)

a b

FIG. 2 (a) Plot of log10 |ct | as a function of t = 0, 1, · · · , 150, for f = 150, s0 = 0.95,

s0,M = 0.50, where ct are the Zernike coefficients of the front factors that occur in

accordance with [1], Eq. (30) for |j| = 0 (red), 1 (green), 2 (blue) and of which ct in

Eq. (11) gives the case |j| = 0. (b) Plot of log10 |ct | as in (a) for the case |j| = 0

(red), together with the log10 of the bound at the right-hand side of Eq. (20) (solid

black) and the tangent line (dashed) corresponding to the right-hand side of Eq. (25).

the right-hand side of Eq. (20) accordingly. The value of a0 is
in almost all cases well approximated by

A( 1
2

√
2) or 1

6 A(0) + 2
3 A( 1

2

√
2) + 1

6 A(1) (23)

(midpoint rule or Simpson rule for integration over x = ρ2).
The bound in Eq. (20) is shown in [13], Appendix C using a
somewhat heuristic approach so as to arrive at manageable
expressions. As with the bound in Eq. (18) there are small ex-
ceptional ranges of t near 1

2 g and g→ ∞, where Eq. (20) holds
safe for a factor that grows to infinity very slowly as g→ ∞.

In Figure 2(a), we show |ct| as a function of t, 0 ≤ t ≤ 150,
for f = 150, s0 = 0.95 and s0,M = 0.50, with j = 0, 1, 2
determining the precise form of the algebraic function in
the vectorial setting according to [1], Eq. (30). It can be
seen that the graphs for these three cases are qualitatively
the same, except for an overall amplitude factor that is

related to the R0
0-coefficient a0 of a(ρ)

√
1− s2

0ρ2. There

is rapid decay from t = 1
2 f = 75 onwards. For the case

j = 0, we have plotted in Figure 2(b) both log10 |ct| and
the bound log10[4w0a0 exp (−ϕ(t; g/2) + ϕ(t; g/2v0))],
see Eq. (20). The (asymptotic) maximum of log10 |ct| oc-
curs somewhat before t = 75 and exceeds the value
log10[4w0a0] obtained from the bounding function some-
what. We also show in Figure 2(b) the linear function
log10[4w0a0 exp ( 1

2 g sinh(γ0)− γ0t)] = 23.1718 − 0.2806t,
where γ0 = ln (1/v0) = 0.6461, which is a tangent line of the
bounding function, see Subsection 2.4.

In Figure 3, we show the graph of v0, as given in Eq. (22),
against s0, 0 ≤ s0 ≤ 1. The asymptotic decay of ct is Cvt

0,
and so there is rapid decay of ct for all s0 until s0 = 0.95 (with
v0 = 0.5241), and even cases like s0 = 0.99 are still practicable.

2.3 General truncation rule

In [13], Appendix A the functions ϕ(h + 1 ; 2πR) and
ϕ(t ; g/2) − ϕ(t ; g/2v0) are bounded from below by piece-
wise linear functions according to

ϕ(h + 1 ; 2πR) ≥ max(0, h + 1− 2πR sinh(1)) , (24)
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0) as a function of s0, 0 ≤ s0 ≤ 1.

and

ϕ(t ; g/2)− ϕ(t ; g/2v0) ≥ max(0, γt− 1
2 g sinh(γ)) , (25)

where
γ = min(1, ln(1/v0)) , (26)

respectively. This leads to the following general truncation
rule: Let 0 < ε < 1, and let

B = max
(

0, ln
( 2w0a0

π2 ε R
√

R

))
. (27)

Then the quantity in Eq. (15) is less than ε when

T = Tgen =
1
γ

B + 1
2 g

sinh(γ)
γ

,

H = Hgen = B + 2πR sinh(1) . (28)

See [13], Appendix D for a proof.

By observing that we can write T and H in Eq. (28) as

T = 1
2 g +

1
γ

B + 1
2 g

sinh(γ)− γ

γ
,

H = 2πR + B + 2πR(sinh(1)− 1) , (29)

where for 0 < γ ≤ 1

0 <
sinh(γ)− γ

γ
≤ sinh(1)− 1 = 0.1752 , (30)

we have given precision to the rule-of-thumb that the trunca-
tion points should be chosen somewhat larger than 1

2 | f | and
2πr, respectively.

2.4 Dedicated truncation rule

We now present a truncation rule that takes into account
the (n, m)-dependence of the supporting set Sm

n of the A’s in
Eq. (10). We also use better approximations for the functions
ϕ(h + 1 ; 2πR) and ϕ(t ; g/2)− ϕ(t ; g/2v0) than those on the
left-hand sides of Eqs. (24–25). Thus we consider

F(h, t) = ϕ(h + 1 ; 2πR) + ϕ(t ; g/2, g/2v0) , (31)

|m| n h

2t

o
o

h = -n+2t

h = n+2t

h = n-2t

A
0 m m

2t,n,h
≡ 0

A
0 m m

2t,n,h
≠ 0

FIG. 4 For given integers n and m with n− |m| even and non-negative, the unshaded

set h ≥ |m|, |h − n| ≤ 2t ≤ h + n contains all points (h, 2t) with non-negative

integer h and t such that A0mm
2t,n,h 6= 0.

where

ϕ(t ; g/2, g/2v0)

=

 ϕ(t ; g/2) , 0 ≤ t ≤ 1
2 g cosh(γ0) ,

γ0t− 1
2 g sinh(γ0) , t ≥ 1

2 g cosh(γ0) ,
(32)

with γ0 = ln(1/v0). The function ϕ(t ; g/2, g/2v0) is the
largest convex function bounding ϕ(t ; g/2) − ϕ(t ; g/2v0),
which itself is convex in t ≤ g/2 but concave in t ≥ g/2v0,
from below. The function ϕ(h + 1 ; 2πR) is convex in h ≥ 0.
See [13], Appendix A.

In Figure 4 we depict, for given n and m such that n − |m|
is even an non-negative, the set Sm

n in the (h, 2t)-plane that
contains all non-zero coefficients A0mm

2t,n,h (Sm
n is the convex hull

of those points (h, 2t)). The boundary ∂ Sm
n of Sm

n consists of 4
line segments I, II, III, IV in accordance with the conditions,
see [1], Sec. 5,

h ≥ |m| , |h− n| ≤ 2t ≤ h + n . (33)

We consider the function F(h, t) of Eq. (31) along ∂ Sm
n with

continuous t ≥ 0, h ≥ 0. We have that F(h, t) is non-negative
and increasing and convex in both h and t, and∣∣∣ct

Jh+1(2πr)
2πr

∣∣∣ ≤ 2w0a0

π2 R
√

R
exp(−F(h, t)) . (34)

We let B as in Subsection 2.3, and we let

M = min {F(h, t) | (h, 2t) ∈ ∂ Sm
n ,

h + 1 ≤ Hgen, t ≤ Tgen} (35)

with Hgen and Tgen from Subsec 2.3. From the monotonic-
ity and convexity properties of F, we then get, see [13], Ap-
pendix D,

– when M > B, we have that

max
(h,2t)∈Sm

n

∣∣∣ct
Jh+1(2πr)

2πr

∣∣∣ < ε , (36)
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– when M ≤ B, there are two points (h1, 2t1) and
(h2, 2t2) ∈ ∂ Sm

n such that for any (h, 2t) ∈ Sm
n

h ≥ max(h1, h2) or t ≥ max(t1, t2)⇒ F(h, t) ≥ B . (37)

The dedicated truncation rule becomes then as follows. De-
termine M in Eq. (35). When M > B, we set H = Hm

n = 1,
T = Tm

n = 0. When M ≤ B, we search the boundary ∂ Sm
n , as

long as contained in the box h + 1 ≤ Hgen & t ≤ Tgen, for the
two points (h1, 2t1) and (h2, 2t2) satisfying Eq. (37), and we set
H = Hm

n = max(h1, h2) − 1, T = Tm
n = max(t1, t2). With H

and T defined this way, we have that the quantity in Eq. (14)
is less than ε.

By the monotonicity and convexity properties of F, the mini-
mum M of F along ∂ Sm

n is assumed on the edge h = n − 2t.
Hence, it is sufficient to inspect F along this edge to find M.

The actual variables h, t are non-negative integer, and this
should be accounted for. We intersect ∂ Sm

n with the box (h, 2t),
h ≤ Ĥ− 1 or t ≤ T̂, where Ĥ− 1 is the smallest integer of same
parity as n with Ĥ ≥ Hgen and T̂ is the smallest integer with
T̂ ≥ Tgen. In case that we find 0 or 1 point (h, 2t) in the inter-
section, the inspection is a trivial matter. In the case that we
find two intersection points, we let the inspection start at the
point with largest value of h and lowest values of 2t, and we
end the inspection at or before the point with lowest value of
h and largest value of 2t, following the boundary curve coun-
terclockwise with points (h, 2t), integer h and t and h same
parity as n.

3 COMPUTATION OF STRUCTURAL
QUANTITIES AND TRUNCATION ISSUES

3.1 Series expressions for structural
quantit ies

We consider in this section computation of the Zernike coeffi-
cients of the front factor a(ρ) f (ρ), with a(ρ) and f (ρ) given in
Eqs. (7–8). We make a slight variation of the approach in [1],
Sec. 4 and 8, in that we write

a(ρ)
√

1− s2
0ρ2 =

∞

∑
l=0

al R0
2l(ρ) , (38)

f (ρ)/
√

1− s2
0ρ2 =

∞

∑
k=0

bk R0
2k(ρ) , (39)

and we use linearization coefficients A to write

a(ρ) f (ρ) =
∞

∑
t=0

ct R0
2t(ρ) , (40)

where

ct =
∞

∑
l,k=0

A000
2l,2k,2t al bk . (41)

The reason for moving a factor
√

1− s2
0ρ2 from the focal factor

f (ρ) to the algebraic factor a(ρ) is the fact that this yields the

most convenient expression for the expansion coefficients bk,
viz.

bk =
1

iu0
exp [i f /u0] (2k + 1) jk( f /2) h(2)k ( f /2v0) . (42)

Here jk and h(2)k are the spherical Bessel and Hankel functions
of order k, given as

jk(z) =

√
π

2z
Jk+1/2(z) , (43)

hk(z) = jk(z)− i yk(z)

=

√
π

2z
(Jk+1/2(z)− i Yk+1/2(z))

=

√
π

2z
H(2)

k+1/2(z) , (44)

with Jν, Yν and H(2)
ν the Bessel function of first, second and

third kind (Hankel function) and of order ν, see [14], Ch. 10.
The quantities bk can be computed, via Eqs. (43–44) using Mat-
Lab routines, efficiently at any desired accuracy.

As to the coefficients al , we first write, see Eq. (7),

a(ρ)
√

1− s2
0ρ2 = (1− s2

0ρ2)3/4 (1− s2
0,Mρ2)−3/4

+ (1− s2
0ρ2)1/4 (1− s2

0,Mρ2)−1/4 . (45)

Next, either term on the right-hand side of Eq. (45) is devel-
oped into a power series

aαβ(ρ) = (1− s2
αρ2)α (1− s2

βρ2)β =
∞

∑
N=0

rNρ2N , (46)

where the coefficients rN are computed recursively according
to [1], Eqs. (37–39) and [1], Eq. (106). Finally, the Zernike coef-
ficients al,αβ are computed from rN according to

al,αβ =
∞

∑
N=l

bN(l) rN , l = 0, 1, ... , (47)

with bN(l) given explicitly and computed recursively in [1],
Eqs. (41–44).

3.2 Truncation and accuracy issues

The accuracy by which the ct must be computed is dictated
by the absolute accuracy ε in the truncation analysis of Sec-
tion 2 that involves the products of ct’s and Jinc functions
Jh+1(2πr)/2πr as in Eqs. (14)–(15). Now |Jh+1(z)/z| ≤ 1/2
for z ≥ 0. Hence, when ct is computed with absolute accuracy
ε, and the truncation rules of Subsections 2.3–2.4 are used with
ε/2 instead of ε, a final absolute accuracy better than ε results.

Next, given integers L, K > 0, the absolute error due to ap-
proximating ct of Eq. (41) by

ct,LK =
L

∑
l=0

K

∑
k=0

A000
2l,2k,2t al bk (48)

is, as in Eqs. (13–14), safely bounded by

max
l>L or k>K

|albk| . (49)
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Now there are the bounds

|al | ≤ 16
3 , |bk| ≤ 4 , l, k = 0, 1, ... . (50)

The second bound in Eq. (50) follows from [13], Appendix C,
Eq. (C18), while the first bound is obtained by considering in
[13], Appendix E, Eq. (E1) the worst case l = 0 with s0 = 0
and s0,M close to 1. Hence, when ε ∈ (0, 1), we have that the
quantity in Eq. (49) is less than ε when L and K are such that

l > L⇒ |al | < 1
4 ε & k > K ⇒ |bk| < 3

16 ε . (51)

As to the second condition in Eq. 51, we have according to
[13], Appendix C

|bk| ≤ 4 exp(−ϕ(k ; g/2) + ϕ(k ; g/2v0)) , (52)

and this is less than 3
16 ε when

k >
1
γ

max
(

0, ln
(64

3ε

))
+ 1

2 g
sinh(γ)

γ
, (53)

with γ as in Eq. (26). The quantities bk are computed using
Eq. (42), involving the spherical Bessel and Hankel functions
jk and h(2)k that can be computed using Matlab routines. From
[13], Appendix C we have that

|jk( f /2)| ≤ 2
g ,

|hk( f /2v0)| ≤
27/4v0

g
exp(ϕ(k; g/2v0)) , (54)

where the first inequality holds for all f and the second
inequality only holds when | f /v0| ≥ 1. In the case that
| f /v0| < 1, the bk of Eq. (42) is best evaluated using the
power series representations of jk and h(2)k that follow from
[14], 10.53. Thus it follows that bk is computed with abso-
lute accuracy 3ε/16 for k = 0, 1, · · · , K when jk( f /2) and
h(2)k ( f /2v0) are computed with absolute accuracy

3ε

32
· u0 exp(−ϕ(K; g/2v0))

27/4(2K + 1)v0
and

3ε

32
· u0

2(2K + 1)
, (55)

respectively.

As to the first condition in Eq. (51), we consider the decom-

position of a(ρ)
√

1− s2
0ρ2 in terms aαβ(ρ) as in Eq. (46) with

α + β = 0 and Zernike coefficients al,αβ as in Eq. (47). In [13],
Appendix E the following is shown. Let δ = |α| = |β|, and
let S = max(sα, sβ). Denoting “the R0

2l-coefficient of A(ρ)” by
Z Cl [A(ρ)], we have

|al,αβ| ≤ Z Cl [(1− S2ρ2)−δ] ∼ E V l

(l + 1)−δ+1/2 , (56)

where

E =
2
√

π

Γ(δ)
(1− S2)−

1
2 δ+ 1

4

1 +
√

1− S2
, V =

1−
√

1− S2

1 +
√

1− S2
. (57)

Furthermore, the right-hand side of Eq. (56) is less than
η := ε/8 when

l ≥ ln(Eη−1)− (−δ + 1/2) ln(1 + ln(Eη−1)/ln(1/V))

ln(1/V)
. (58)

0 5 10 15
−15

−10

−5

0

log
10

(η−1)

lo
g 10

 (
| a

0,
αβ

 −
 Σ

N
L(η

)
N

=
0

 b
N

(0
) 

r N
 |)

a
0,αβ accuracy

 

 

N
L
(η) = 1*L(η)

N
L
(η) = 2*L(η)

N
L
(η) = 3*L(η)

N
L
(η) = 4*L(η)

N
L
(η) = 5*L(η)

FIG. 5 Plot of log10 |a0,αβ − ∑
NL(η)
N=0 bN(0)rN | as a function of log10 η−1 ∈ [0,15],

for the case that a0,αβ is the R0
0-coefficient of aαβ(ρ) = (1− s2

0ρ2)α(1− s2
0,Mρ2)β

with α = −β = 3/4 and s0 = 0.50, s0,M = 0.90. The colored solid lines represent

different summation limits NL(η) = L(η), 2L(η), 4L(η), 5L(η), respectively, with

L(η) given by the right-hand side of Eq. (58). The black (dotted) curve indicates those

positions at which accuracy is equal to η.

Therefore, the first condition in Eq. (51) is satisfied when L is
the maximum of the two numbers that occur at the right-hand
side of Eq. (58) for the choices δ = 3/4, 1/4 (where evidently
δ = 3/4 yields the largest value of the two).

We finally address the issue of truncating the series in Eq. (47).
It is shown in [13], Appendix E that for a given ε > 0 and an
integer L > 0 such that the right-hand side of Eq. (56) < 1

8 ε

when l > L, we have that all numbers al,αβ, l = 0, 1, ..., L ,
are computed with absolute accuracy ε/16 when the infinite
series in Eq. (47) is truncated at NL = 2L/

√
1− S2.

In Figure 5, we show log10 |a0,αβ −∑
NL(η)
N=0 bN(0)rN | as a func-

tion of η with log10 η−1 ∈ [0, 15], for the case that a0,αβ is
the R0

0-coefficient of aαβ(ρ) = (1 − s2
0ρ2)α(1 − s2

0,Mρ2)β with
α = −β = 3/4 and s0 = 0.50, s0,M = 0.90 and upper summa-
tion limit NL(η) = L(η), 2L(η), 4L(η), 5L(η), respectively,
with L(η) the right-hand side of Eq. (58).

To summarize, for ε ∈ (0, 1) we replace ct by ct,LK given in
Eq. (48) in which

- L and K are given by the right-hand sides of Eq. (58) and
Eq. (51), respectively,

- bk is as in Eq. (42) for which jk( f /2) and h(2)k ( f /2v0) are
computed with absolute accuracy as specified in Eq. (55),

- al = a3/4,−3/4,l + a1/4,−1/4,l and the two aα,β,l are
computed by summing the series in Eq. (47) until
N = 2L/

√
1− S2 with S = max (s0, s0,M).

This results into an absolute error in ct bounded by
ε + 1

2 ε + 1
4 ε = 7

4 ε, due to respectively, truncating the double

series over l and k, approximating bk by computing jk and h(2)k
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using the Matlab-code, and approximating al by truncating
the series for the two aα,β,l .

4 SUMMARY OF THE TRUNCATION
RULES FOR THE GENERAL CASE

We want to compute

I =
1∫

0

a(ρ) f (ρ)R|m|n (ρ)Jm(2πrρ)ρ dρ , (59)

where

a(ρ) =
(1− s2

0ρ2)1/2 + (1− s2
0,Mρ2)1/2

(1− s2
0ρ2)1/4 (1− s2

0,Mρ2)3/4
, (60)

f (ρ) = exp
[ i f

u0
(1−

√
1− s2

0ρ2)
]

, (61)

with integer n and m such that n − |m| is even and non-
negative, and for a given real value of f and a positive number

r, while 0 < s0, s0,M < 1 are given and u0 = 1−
√

1− s2
0. We

have the double series representation

I = ∑
h,t

A0mm
2t,n,h(−1)

h−m
2 ct

Jh+1(2πr)
2πr

(62)

with summation over h, t = 0, 1, ... where h has same parity
as n and m, and the A-coefficients are as in [1], Sec. 5 and Ap-
pendix C. Furthermore, the ct are the Zernike coefficients of
a(ρ) f (ρ) and are given in the form

ct =
∞

∑
l,k=0

A000
2l,2k,2t al bk , (63)

where the al and bk are the Zernike coefficients of

a(ρ)
√

1− s2
0ρ2 and f (ρ)/

√
1− s2

0ρ2, respectively, and
the A-coefficients are again as in [1], Sec. 5 and Appendix C.

Let

R = max (r, 1
2π ) , g = max (1, | f |) , (64)

and

S = max (s0, s0,M) , V =
1−
√

1− S2

1 +
√

1− S2
,

W =
1

1 +
√

1− S2
, (65)

and let ε > 0.

4.1 Truncation double series for I

Let

B = max
(

0, ln
2πWa0

π2εR
√

R

)
, (66)

where a0 = 2
1∫

0
a(ρ)

√
1− s2

0ρ2ρ dρ is the R0
0-coefficient of

a(ρ)
√

1− s2
0ρ2. The truncation error when replacing the dou-

ble series for I in Eq. (62) by

∑
h+1≤H, t≤T

A0mm
2t,n,h(−1)

h−m
2 ct

Jh+1(2πr)
2πr

, (67)

is less than ε, simultaneously for all n and m, when

H = B + 2π R sinh(1) , T =
1
γ

B + 1
2 g

sinh(γ)
γ

, (68)

where γ = min(1, ln(1/V)).

4.2 Truncation double series for ct

Let

E =
2
√

π

Γ(3/4)
(1− S2)−1/8

1 +
√

1− S2
, (69)

and let

L =
ln(8E/ε) + 1

4 ln(1 + ln(8E/ε)/ln(1/V))

ln(1/V)
, (70)

K =
1
γ

max
(

0, ln
64
3ε

)
+ 1

2 g
sinh(γ)

γ
, (71)

with V and γ as above. The truncation error when replacing
the double series for ct in Eq. (63) by

L

∑
l=0

K

∑
k=0

A000
2l,2k,2t al bk (72)

is less than ε, simultaneously for all t ≤ T.

4.3 Truncation issue in computing al

The al are computed as follows. Write

a(ρ)(1− s2
0ρ2)1/2 =(1− s2

0ρ2)3/4 (1− s2
0,Mρ2)−3/4

+ (1− s2
0ρ2)1/4 (1− s2

0,Mρ2)−1/4 . (73)

The two terms aαβ(ρ) = (1− s2
αρ2)α(1− s2

βρ2)β at the right-
hand side of Eq. (73) have Zernike coefficients

al,αβ =
∞

∑
N=l

bN(l) rN,αβ , (74)

with bN(l) = 2l+1
l+1 (N

l )/(
N+l+1

N ) and where the rN,αβ are com-
puted recursively according to

r−1 =0 , r0 = 1 ;

rN+1 =
1

N + 1
[((N − α) s2

α + (N − β) s2
β) rN

− (N − 1− α− β) s2
α s2

β rN−1] (75)
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for N = 0, 1, · · · . Let

NL =
2L√

1− S2
, (76)

with L given by Eq. (70) and S given by Eq. (65). The trun-
cation error when replacing the series for al,αβ in Eq. (74) by

NL

∑
N=l

bN(l) rN,αβ (77)

is less than ε/16 for all l = 0, 1, · · · , L.

4.4 Computation of bk

The bk are given in terms of spherical Bessel functions jk and
Hankel functions h(2)k as

bk =
1

iu0
exp [i f /u0] (2k + 1) f jk( f /2) h(2)k ( f /2v0) , (78)

with
u0 = 1 −

√
1− s2

0 and v0 = (1 −
√

1− s2
0)/(1 +

√
1− s2

0),
and can be computed using Matlab codes to double precision
accuracy.

4.5 Computation of J inc-functions

The Jinc-functions are given in terms of Bessel-functions of
the first kind as Jh+1(2πr)/(2πr), and can be computed us-
ing Matlab codes to double precision accuracy.

4.6 Overal l accuracy after assembling

When the al , l = 0, 1, · · · , L, are computed as in Subsec-
tion 4.3 and the bk, k = 0, 1, · · · , K, are computed with abso-
lute accuracy 3ε/16, the ct, t = 0, 1, · · · , T, computed as in
Subsection 4.2, have absolute accuracy 7ε/4. Next, when the
Jinc-functions Jh+1(2πr)/(2πr) are computed with absolute
accuracy ε/(4Wa0) and the truncation rule of Subsection 4.1
is used, the quantity I in Eq. (59) is computed with accuracy
23ε/8 for all n and m. This overall accuracy number 23ε/8
emerges from a worst-case scenario in which all intermediate
errors are assumed to contribute maximally to the total error,
but actual accuracy will almost always be far better.

5 ILLUSTRATION OF THE TRUNCATION
RULES

In this section, we show the absolute truncation error and the
computation time, using the general truncation rule of Sub-
section 2.3 and the dedicated truncation rule of Subsection 2.4
for approximation of the diffraction integral I in Eqs. (5)–(6)
as a function of ε ∈ (0, 1) for a variety of radial values r, de-
focus values f , numerical aperture values s0 and s0,M, and
Zernike circle polynomial degrees and orders n and m. The
truncation rules are used with ε/2 instead of ε. The structural
quantities ct and Jinc functions Jh+1(2πr)/2πr are computed
with absolute accuracies ε/2 and ε/16Wa0, respectively, so
that the absolute error due to using these computed quanti-
ties is bounded by ε/2 for all n and m simultaneously. The

total absolute error using the truncated series with the com-
puted quantities is then expected to be less than 1

2 ε + 1
2 ε = ε.

In Figures 6–8, we show achieved accuracy (a) and com-
putation time (b) against requested accuracy ε in the range
10−15 − 100, using the general truncation rule (dashed lines)
and the dedicated truncation rule (solid lines), for a variety of
different parameter combinations. In each figure, going from
top to bottom, one or two parameters are varied, while the
other parameters are kept constant, in order to illustrate the
impact on the accuracy and computation time. In Figure 6, this
is done for the magnitudes of the focal and radial parameters
f and r, in Figure 7, for the numerical aperture value s0, and,
finally, in Figure 8, for the degree n and azimuthal order m of
the radial part of the Zernike polynomial.

In general, it can be said that the requested accuracy is
achieved amply: the graphs in (a) stay well below and par-
allel to the graph (ε, ε) (dotted lines). The performance of the
dedicated rule in terms of accuracy is most of the time slightly
worse but comparable to that of the general rule, while the
performance in terms of computation time can be significantly
better. The latter situation occurs especially when the degree
and order of the radial polynomial are large compared to f /2
and 2πr. Also see [13], Sec. 5 for an extended set of illustra-
tions along these lines of the performance of the truncation
rules.

6 CONCLUSION

We have formulated and verified truncation rules for the dou-
ble series expressions that emerge from the advanced ENZ-
theory for the computation of the optical diffraction integrals
pertaining to optical systems with high NA, vector fields, po-
larization, and meant for imaging of extended objects. These
rules have been devised for the central case j = 0 in the vec-
torial framework, which can be considered to be representa-
tive for all occurring diffraction integrals. Two versions of the
truncation rule have been developed. The general rule gives
precision to the rule-of-thumb that the required summation
range is of the order 2πr times 1

2 | f | with r and f the values
of the (normalized) radial and the focal parameters in image
space, irrespective of the degree and order of the radial poly-
nomial involved in the diffraction integral. In the dedicated
rule, we have also accounted for the specific way the radial
polynomial influences the actual summation range, leading to
performances comparable in terms of accuracy and better in
terms of computation time than what is offered by the gen-
eral truncation rule. A salient feature of the double series that
manifest itself through the truncation rules is that the compu-
tation times stay well within what can be considered practica-
ble, more or less independently of the values of the aperture
parameters and the magnitudes of the focal and radial vari-
able. In the case that circle polynomials of very high degree
and/or order are involved in the diffraction integrals, the gen-
eral truncation rule becomes impracticable, and one has to re-
sort to using the dedicated rule. With this full understanding
of the double series with regard to truncation matters, it can be
said that the advanced ENZ-theory is more or less completed
from the computational point of view.
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FIG. 6 Absolute accuracy (a) and computation time (b) as a function of requested absolute accuracy ε using the general truncation rule (dashed lines) and the dedicated

truncation rule (solid lines) when varying the focal and radial variables f and r from top to bottom according to ( f , r) = (1,0.1), (1000,0.1), (1,100), (1000,100). Setting of

aperture variables: s0 = 0.2, s0,M = 0 (blue) and s0 = 0.95, s0,M = 0 (green), setting of the degree and azimuthal order of the radial polynomial: (n, m) = (0,0).
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FIG. 7 Absolute accuracy (a) and computation time (b) as a function of requested absolute accuracy ε using the general truncation rule (dashed lines) and the dedicated

truncation rule (solid lines) when varying the aperture variable s0 from top to bottom according to s0 = 0.01, 0.1, 0.5, 0.95. Setting of degree and azimuthal order of the radial

polynomial: (n, m) = (12,2), setting of aperture variable in object space: s0,M = 0.1 (blue) and 0.9 (green), setting of focal and radial variable: f = 10, r = 0.5.
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FIG. 8 Absolute accuracy (a) and computation time (b) as a function of requested absolute accuracy ε using the general truncation rule (dashed lines) and the dedicated truncation

rule (solid lines) when varying the degree n and azimuthal order m of the radial polynomial from top to bottom according to (n, m) = (4,2), (16,8), (50,12), (125,55). Setting

of aperture variables: s0 = 0.95, s0,M = 0, setting of focal and radial variable: f = 10, r = 1 (blue) and f = 100, r = 10 (green).

14042- 12



J. Europ. Opt. Soc. Rap. Public. 9, 14042 (2014) S. van Haver, et al.

References

[1] S. van Haver, and A. J. E. M. Janssen, “Advanced analytic treat-
ment and efficient computation of the diffraction integrals in the
Extended Nijboer-Zernike theory,” J. Europ. Opt. Soc. Rap. Pub-
lic. 8, 13044 (2013).

[2] A. J. E. M. Janssen, “Extended Nijboer-Zernike approach for
the computation of optical point-spread functions,” J. Opt. Soc.
Am. A19, 849–857 (2002).

[3] J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an
extended Nijboer-Zernike approach for the computation of optical
point-spread functions,” J. Opt. Soc. Am. A19, 858–870 (2002).

[4] J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, and A. S. van de Nes,
“Extended Nijboer-Zernike representation of the vector field in the
focal region of an aberrated high-aperture optical system,” J. Opt.
Soc. Am. A20, 2281–2292 (2003).

[5] J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, S. van Haver, and
A. S. van de Nes, “Extended Nijboer-Zernike approach to aberration
and birefringence retrieval in a high-numerical-aperture optical
system,” J. Opt. Soc. Am. A22, 2635–2650 (2005).

[6] S. van Haver, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen,
“High-NA aberration retrieval with the Extended Nijboer-Zernike
vector diffraction theory,” J. Europ. Opt. Soc. Rap. Public. 1, 06004
(2006).

[7] S. van Haver, J. J. M. Braat, A. J. E. M. Janssen, O. T. A. Janssen,
and S. F. Pereira, “Vectorial aerial-image computations of three-
dimensional objects based on the extended Nijboer-Zernike the-
ory,” J. Opt. Soc. Am. A26, 1221–1234 (2009).

[8] J. J. M. Braat, S. van Haver, A. J. E. M. Janssen, and S. F. Pereira,
“Image formation in a multilayer using the extended Nijboer-
Zernike theory,” J. Europ. Opt. Soc. Rap. Public. 4, 09048 (2009).

[9] S. van Haver, The Extended Nijboer-Zernike Diffraction Theory
and its Applications (Ph.D. thesis, Delft University of Technology,
2010).

[10] J. J. M. Braat, S. van Haver, A. J. E. M. Janssen, and P. Dirksen, “As-
sessment of optical systems by means of point-spread functions,”
Prog. Optics 51, 349–468 (2008).

[11] A. J. E. M. Janssen, J. J. M. Braat, and P. Dirksen, “On the com-
putation of the Nijboer-Zernike aberration integrals at arbitrary
defocus,” J. Mod. Opt. 51, 687–703 (2004).

[12] J. Boersma, “On the computation of Lommel’s functions of two
variables,” Math. Comput. 16, 232–238 (1962).

[13] S. van Haver, and A. J. E. M. Janssen, “Truncation strategy for
the series expressions in the advanced ENZ-theory of diffraction
integrals,” arXiv: 1407.6589v1, (2014).

[14] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST
Handbook of Mathematical Functions (Cambridge University Press,
Cambridge, 2010).

14042- 13


	INTRODUCTION AND OVERVIEW
	TRUNCATION RULES FOR THE DOUBLE SERIES FOR IVM
	Double series for IVM and truncation strategy
	Bounding Jinc functions and structural quantities
	General truncation rule
	Dedicated truncation rule

	COMPUTATION OF STRUCTURAL QUANTITIES AND TRUNCATION ISSUES
	Series expressions for structural quantities
	Truncation and accuracy issues

	SUMMARY OF THE TRUNCATION RULES FOR THE GENERAL CASE
	Truncation double series for I
	Truncation double series for ct
	Truncation issue in computing al
	Computation of bk
	Computation of Jinc-functions
	Overall accuracy after assembling

	ILLUSTRATION OF THE TRUNCATION RULES
	CONCLUSION

