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Computation of dioptric and magnification matrices in
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The diopter power and magnification matrices characterize the first-order properties of ophthalmic lenses for different gaze directions.
Therefore an efficient method to compute them is highly valuable in ophthalmic lens design and optical performance simulations. I present
a novel method to numerically compute these matrices in ophthalmic lenses comprising any set of arbitrary surfaces. The method is based
on computing one base ray, along the gaze direction, and two rays close to it. These two rays are obtained varying a small parameter that
indicates their separation from the base ray. The method was validated comparing the results with a single refractive surface where exact

solutions are directly obtained.
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1 INTRODUCTION AND PROBLEM
STATEMENT

First-order optical properties in axial symmetric systems are
well established by paraxial optical theory. Two of these prop-
erties are particularly relevant: the optical power and the mag-
nification, which, in this case, are scalar quantities. However
some types of modern ophthalmic lenses such as progressive
(PALs) [1] or Alvarez-type lenses [2] are non-axially symmet-
ric. As a consequence the power and magnification are de-
scribed not by scalars but by matrices.

This work tackles the problem of computing the so-called
dioptric power and magnification matrices. When looking at
different object points, through eyeglasses, the eye rotates.
Each gaze direction is described by a base ray, which emerges
from the eye rotation center, and reaches an observation point.
Different dioptric and magnification matrices are associated to
the base rays corresponding to each gaze direction.

One way to compute the dioptric matrix is to trace localized
quadratic wavefronts along the base rays through the opti-
cal system (see e.g. [3]). An alternative is to trace special rays
in the vicinity of each base ray. An interesting case appears
when the optical surface has a plane of symmetry and the
base ray is contained in that plane. It follows that the diop-
tric matrix is diagonal, when setting one of the coordinates to
lie in the plane of symmetry (see section 23.8 in [4]). Then, the
first-order properties are separated for each orthogonal coor-
dinate, and consequently they can be computed using parax-
ial ray equations for each coordinate. Only then one can jus-
tify the proposal made by Bourdoncle et al. [5] arguing that
power and astigmatism can be obtained using paraxial rays
contained at the tangential and sagittal planes. An alternative,
based on tracing 8 differential rays, has been used by other au-
thors [6, 7]. For these rays the optical path difference is com-
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puted, from which a second order point eikonal function is
constructed, containing the information of the dioptric matrix.
The disadvantage of such method is that implies tracing too
many rays.

This article proposes a method where the dioptric matrix for
lenses comprising any type of refractive surfaces can be com-
puted, with a high degree of accuracy, tracing only three rays:
the base ray and two near-by ones. The amount of error in the
computations is negligible as will be shown later on. Addi-
tionally, the magnification matrix can be simultaneously com-
puted.

In visual optics, there are different available definitions of
the magnification matrix (see e.g. discussion at [8]). However,
when designing, or analyzing, ophthalmic lenses a relevant
definition is that one giving the change of gaze direction when
looking at an object through eyeglasses with respect to look-
ing at the same object without eyeglasses. Indeed this concept
was used as early as 1611 by Johannes Kepler [9], though only
using scalar quantities. The magnification matrix provides in-
formation of the geometric distortion of the image with re-
spect to the object when looking through different areas of the
eyeglasses. I note that another possible definition of the mag-
nification matrix refers to the ratio between the direction vec-
tor differentials in the neighborhood of the base ray looking
at an object with and without eyeglasses. This would provide
information of the local geometric distortion of the image, so
it can be defined as a local magnification.

Figure 1 supplies a geometrical interpretation on how the
magnification matrix operates. Typically the eye rotations are
measured with respect to the eye rotation center (C). The op-
tical axis of the system formed by the eye rotation center and
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the eyeglasses is represented by the dashed line joining C and
point T. Imagine we are looking, through eyeglasses, at a point
A. Figure 1 shows the object plane containing A and perpen-
dicular to the optical axis. Point T is at the intersection of this
plane with the optical axis. The position vector of A with re-
spect to T is denoted by 7. Vector k denotes the ray vector of
the line joining the eye rotation center (C) with the eyeglasses
(green solid line), which after refraction reaches point A. Later,
we look at the same point but with the naked eyes. Obviously,
the gaze direction changes, defining a line (red dashed) join-
ing C with A, being s the distance between both points. p
denotes the ray vector for the new line of sight without eye-
glasses.

The magnification matrix (N), which elements are
Njj, relates the x-y projection of both vectors through
(kx, ky) = N(px, py)T. Now the vector (py, py) can be com-
puted [10] applying simple trigonometry with (py, py) = g,
being s the distance from C to A. So the previous equation
can be rewritten:
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Each gaze direction defines a base ray that emerges from the
eye rotation center and reaches, after going through the eye-
glasses, the viewing point. The dioptric matrix describes the
first order power properties in the vicinity of each base ray.

2 COMPUTATION SCHEME

In general, in any optical system the dioptric matrix [11] re-
lates the ray position and direction vectors at image space.
For our particular case, it is convenient to introduce a special
coordinate system where the z and z’ axes are defined along
the directions of the base ray at the object and image spaces
respectively. In doing so the object and image planes are or-
thogonal to the base ray in both spaces. As a consequence the
ray coordinates are reduced to two. The coordinates of a point
in the object and image planes are (x, y) and (x’, y’) respec-
tively. Here, the object and image space contains the viewing
point and the eye rotation center respectively. Also 1’ is the re-
fractive index of the image space. Similarly (&,7) and (&', 7")
denote the vector directions at the object and image planes.
Starting from the point eikonal equations (see Sec. 23.1 [4] and
notation from [10]) it is possible to derive the following matrix
equation:
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Due to the fact that the dioptric matrix is symmetric there are
only three elements in it. Therefore Eq. 2 defines a set of linear
equations with three variables: Rq1, Ry and Rpp. The idea is
that using Eq. 2 and tracing two neighbor rays close to the
base ray a new set of linear equations that provide explicit
expressions for Rqq, Rz and Ryo is attainable.

FIG. 1 Magnification matrix scheme.

I proceed as follows:

1. A base ray is traced through the eyeglasses. The intersec-
tion point of this ray with the lens surface closer to the
object space is denoted by (x3,y;) an the ray vector by

(Cor11p)-

2. Two points, lying at this surface, in the vicinity of (x,,y;)
are selected with coordinates (x1,y1) and (xp, y2) respec-
tively. The coordinates of these rays are: x; = 6,y; = 0
and x; = 0,y = J, being 6 and arbitrarily small quantity.

3. Tworays are constructed at (x1, 1) and (xy, y2) both with
ray vector (&, 17 ).

4. After tracing them through the eyeglasses, the corre-
sponding points at the image plane are computed: (x},
y}) and (x5, y5), in addition with the ray vectors at the
image space: (¢}, 171) and (&5, 175).

After computing all these quantities, using Eq. 2 and applying
some algebraic calculations the following explicit equation for
the variables Rq1, R1» and Ry is obtained:
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where v = xjy) — x5y]. There are two equations providing
Riz. Theoretically both equations should give the same result,
but numerical procedures could lead to slightly different re-
sults, so it is convenient to take the average of the two quanti-
ties obtained from both equations.

Now, these two rays can be also used to compute the magni-
fication matrix. To obtain its four elements at least four equa-
tions are needed. The two neighbor rays traced to compute the
dioptric matrix are arbitrarily close to the base ray. Therefore
the magnification matrix associated to these rays is as close as
desired to that of the base ray. Taking this into account, a ma-
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trix equation can be built following the same procedure that 5.7
was used to obtain Eq. 3: 5.65
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where u = ryry; —riry. (ky, k) and (kg kj) are the x-y pro-
jection of the ray vectors in an absolute coordinate system
with center located at point C. In the same coordinate system
(r}c,r;) and (r%,rﬁ) are obtained computing the intersections os
of these rays with the object plane represented at Figure 1 o5
which contains T and A. 51 and s, denote the distances along '
the line of sight without eyeglasses from the object plane to o4
the optical axis. 035
D 0.3
8
I note that although the two rays used to construct Egs. 3 and g 0.25
4 are the same, the coordinates of the rays are referred to two > 02
different coordinate systems: a relative one depending on the 0.15
gaze direction for Eq. 3 and an absolute one for Eq. 4. 01
0.05

To evaluate Egs. 3 and 4 the two neighbor rays must be care-
fully selected. It is highly convenient that the two rays lie in
planes that are orthogonal one with respect to the other. On
one hand the two rays must differ from the base ray only a
small amount, but on the other hand if the difference is too
small, the matrix values of Eqgs. 3 and 4 could lead to numer-
ical singularities that eventually would corrupt the compu-
tations. I used the parameter 0 to characterize the separation
between the neighbor rays with respect to the base ones. J is
a distance magnitude (mm) because it gives the separation at
the lens surface between the three rays. I empirically evalu-
ated the optimum value of 4.

3 SPECIAL CASES

Egs. 3 and 4 areill-posed if v = 0 and u = 0. Fortunately, when
this occurs a geometrical interpretation enable the straightfor-
ward computation of first-order properties. For v = 0 there
are three possible cases.

A)xj =0,y = 0AND x) = 0,y5 = 0. This implies stig-
matic imaging, within a pencil of rays, between the object and
the image point. Therefore paraxial optics provides the scalar
power and magnification.

B) x{ = 0,55 = 00R x}, = 0,5 = 0. This means that the se-
lected image plane is coincident with one of the focal planes.
Therefore, the situation is equivalent to that mentioned at the
beginning of the article: i.e. the first-order properties are sepa-
rated for each orthogonal coordinate, and consequently can be
computed using paraxial ray equations for each coordinate.

C) y1/'x] = y4/x}. This means that the three points configur-
ing the infinitesimal pencil of rays (base ray and two neigh-
bor rays) are imaged onto a line forming 90° with respect to

X rotation (°)

FIG. 2 Nominal (a) mean power (D) and (b) astigmatism (D) as a function of eye

rotations.

the base ray at the image space. This case is certainly singu-
lar but not impossible. Indeed, even a single spherical mirror
can create an image line forming 90° with respect to the base
ray, by selecting an off-axis location of the object point [12].
However, for that case the astigmatism can be obtained from
the distance between point (x{,y}) and (x}, y5) and the power
between the average coordinate of both points and that of the
base ray.

4 SIMULATIONS

To evaluate the accuracy of the two rays method in comput-
ing the dioptric power and magnification matrices I used a
canonical test. The test is a single spherical refracting surface.
Therefore the dioptric matrix for different gaze directions is
diagonal; being the diagonal entries the tangential and sagit-
tal powers, which can be exactly computed using Coddington
equations. Figure 2 shows the mean power and astigmatism
for different gaze directions as computed with them.

The refractive index of the medium located between the re-
fracting surface and the eye rotation center was 1.5, and that of
the object space was 1. The distance between the eye rotation
center and the refracting surface was 27 mm (typical value in
ophthalmic lens design). The object and image planes were
located at 40 mm and 50 mm from the refracting sphere. The
radius of curvature of the refracting sphere was 80 mm.
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FIG. 3 (a) Mean power (red solid line) and astigmatism (blue dashed line) errors (D)

and (b) root-mean-square deviation in the ray vectors as function of 6 (mm).

The accuracy on the computation of the magnification matrix
was evaluated indirectly. Once the magnification matrix was
computed, the ray vector (for different gaze directions) with
eyeglasses was estimated from the ray vector in the absence of
eyeglasses using Eq. 1 and consequently compared to the ray
vectors as obtained by exact ray tracing through the spherical
refractive surface.

I also explored the optimum separation of the neighbor rays
from the base rays with the 6 parameter. The errors were eval-
uated using the mean absolute error (for different gaze di-
rections) in the mean power (the average of the two princi-
pal powers) and in the astigmatism (difference between two
principal powers) for different eye rotations. The root-mean-
square deviation in the ray vectors was used as an indirect
measure of the accuracy in the estimation of the magnifica-
tion matrix. The fact that the error increases as § tends to zero
is explained because the problem becomes ill-conditioned as
the two neighbor rays provide the same information to that of
the base ray.

Figure 3 shows the mean absolute power and astigmatism er-
ror (a) and the root-mean-square deviation of the ray vectors
(b) as a function of 4. A log-log scale was used.

The graph shows that there exists an optimum value for ¢ that
is located around 7x10~® mm for the power and astigmatism
errors, while for the ray vectors the minimum error is around
0.3x107° mm.

Figure 4 shows the error distribution for the mean power and
astigmatism for the optimum ¢=7x10~% mm. The error is com-
pletely insignificant for the purpose of ophthalmic lens design
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FIG. 4 Computation errors (D) in the mean power (a) and astigmatism (b).

considering that the smallest perceptible image blurring by
the human eye is around 0.15 D [13].

Finally Figure 5 shows the x-y ray vector components with
and without the refractive surface. The direction cosines ex-
actly computed are compared to the values obtained with the
two rays method. Direction vector without eyeglasses are de-
picted with stars. Exact and estimated direction vector with
eyeglasses are depicted with circles and crosses, respectively.
The root-mean-square deviation is so small (3.1x10~8) that in
practice can be ignored.

5 CONCLUSIONS

I have presented a novel method to compute simultaneously
the dioptric power and magnification matrices in ophthalmic
lenses. The method is based on tracing two neighbor rays
along with the base rays associated to each gaze direction. The
computation error associated to this method is completely in-
significant for the purposes of ophthalmic lens design when
the two neighbor rays are carefully selected.

14023- 4



J. Europ. Opt. Soc. Rap. Public. 9, 14023 (2014)

S. Barbero

¥ ¥ % *F ¥ ¥ ¥ ¥ x ¥ 3]
e © © © ® & @& o o ¢ @
L% * * * * * * * * * *.
0.3 e ©®© &6 © © & & @ o e g
P L T T S T,
*s e e ® ® & © o o o e
.g 0.2 (4]
2 *o*g *a Yo B & & & o* o* g ¥
O 0.1} 1
c * o *o %o Y B & & o % o* g ¥ (5]
g >
‘g Okoxe 6 o » & & o ox o%x &«
&) « %0 X0 ® P @ & G Ox Ox O
g Y ! 6]
o e x® 4P @ P 0§ § G By Oy O
> —0.2} ]
2l & o ® ®
0 x® ® P-4 $ % A O T T x ]
® & © © © © © © © © © 7
“03f* % % k. ox ox x x * ¥
® & o 2 o © © © © © 9
* Ok kL ok ek w, kXK
-0.3-02-01 0 01 02 03 (8]

X Ray Direction Cosine

FIG. 5 Ray vectors: (a) without eyeglasses (black stars), (b) exact and estimated with
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eyeglasses: red circles and blue crosses respectively.
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