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We present the development of an original simulator to predict interferometric out-of-focus patterns created by irregular rough particles.
Despite important simplifications of the scattering properties, this simulator allows to predict quantitative properties of the speckle-like
patterns: i.e. the dimension of the central peak of the 2D-autocorrelation of the pattern. This parameter can then be linked to the size and
the shape of the particle projected on the CCD sensor, in cases where there is no exact theoretical formulation to calculate the scattered
intensity. An experimental demonstration is performed with irregular NaCl salt crystals.
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1 INTRODUCTION

Interferometric out-of-focus imaging is a robust technique that
has important potentiality for the characterization of droplets
or bubbles [1]–[6]. Based on the scattering properties of par-
ticles [7, 8], it envolves simply a laser sheet and an imag-
ing system (objective and CCD sensor). It can give access si-
multaneously to the position and the size of the objects un-
der study [9], can be coupled to other techniques as PIV for
velocity measurements [10]. The interpretation of the results
is based on simple analytical relations [11]. They can be ex-
tended to more complex imaging systems through a descrip-
tion in terms of optical ABCD transfer matrices [12]. It is pos-
sible to perform optical compressing of the images to enhance
the range of concentrations measurable [13], to develop real-
time image processing algorithms [14], or to design specific
imaging configurations for the analysis of droplets or bubbles
in a 3D volume [15]–[17]. Unfortunately, the potentiality of
this technique to study irregular scattering objects is not es-
tablished and much has to be done in this direction. The main
difficulty is that we need first to be able to describe the scatter-
ing properties of irregular objects. Unfortunately, this problem
has no analytical solution in the framework of the Lorenz-Mie
theory and can not be resolved in most of the cases. In the
present study, we present the development of a simulator to
predict some physical properties of the interferometric out-of-
focus patterns produced by irregular objects. Although we do
not describe the scattering properties of the objects exactly, we
can predict some statistical properties of the out-of-focus im-
ages and deduce some morphological properties of the objects
under study (size, length, width). In a first section we present

the simulator that we have developed, and the assumptions
it is based on. As the rigorous description of the scattering
properties of many complex objects has no exact solution, our
method consists of describing complex irregular objects by a
random location of glare points along the global form of these
objects. Although our description of the scattering properties
is not exact, the images that we predict contain exact infor-
mations about the particle under study. In the following sec-
tion, we show indeed that we can evaluate the dimension of
the irregular particle through the analysis of the second-order
2D-autocorrelation of speckle-like patterns. Analytical expres-
sions are established that link the characteristics of speckle-
like patterns to the dimension of the irregular object. In a last
section, these predictions are compared to experimental out-
of-focus images recorded with irregular NaCl salt crystals. Ex-
periments show the validity of the procedure.

2 ANALYTICAL THEORY OF
INTERFEROMETRIC OUT-OF-FOCUS
IMAGING

2.1 Descript ion of the scattering objects

Figure 1 shows a typical ILIDS experimental set-up (Inter-
ferometric Laser Imaging for Droplet Sizing). A pulsed laser
sheet is sent towards a group of droplets. The forward scat-
tered light is collected by a receiving optics. Different set-up
at different off-axis angles Θ have been already investigated
in the literature: at 45○ in references [4], 73○ in [6] or 90○ in
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FIG. 1 Typical ILIDS configuration

[18]. Actually, ILIDS works in a large domain of forward scat-
tering angles, from 30○ to 90○ [3]. The images are captured by
a CCD camera positioned on a non-focal plane, where inter-
ference fringes appear (out-of-focus imaging). The intensity’s
oscillations (fringes) measured depend on the diameter of the
droplets [11].

Let us now consider other objects than spherical droplets or
bubbles. In our simulator, the irregular scattering objects will
be described by an ensemble of Ngp punctual glare points.
The description of a spherical droplet or a spherical bubble
is particularly convenient with this formalism. In this case,
the number of glare points can be limited to 2, i.e. Ngp = 2
[19, 12]. Their position is given by simple analytical relations,
using a geometrical optics approximation [11], and the experi-
mental results are in very good concordance with simulations
[12]. The description of irregular objects is more complex. The
rigorous description of the scattering properties of irregular
objects using exact Lorenz-Mie theory does not have exact so-
lutions in a wide number of cases. However, we think that,
although we are not able to describe rigorously the scattering
properties, we are able to predict some statistical properties of
the scattered images using a simplified approach. Our method
consists of describing complex irregular objects by a random
location of glare points along the global form of the irregular
objects under consideration. Figure 2 shows some examples of
irregular objects that we describe: a stick (a), an hexagon (b),
an hexagonal plate (c), a cross (d), an ellipsoide (e), a sphere
(f) (the 3D is not clearly visible on these planar figures but it
is taken into account). In all cases, we realize a random posi-
tionning of Ngp glare points along the pre-defined form. We
have thus developed a MATLAB library of predefined objects
(Figure 2 shows some typical examples). For each object, we
can choose in our simulator:
- the form of irregular object and its dimension (see Figure 2),
- the number of glare points to define the particle (Ngp),
- the amplitude of the electric field emitted by each glare point
(αj),
- the phase of each glare point (ϕj),
The 3D position of each glare point (aj,bj,cj) is defined ran-
domly over the pre-defined form. In the simulations that will
be presented in the next sections, the amplitude of all glare
points will be identical. We are interested in the characteriza-
tion of particles in the size domain from a tenth of microm-
eters to hundreds of micrometers. For spherical droplets, the
phase shift introduced between the two glare points (which
represent the reflected beam and the beam refracted by the
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FIG. 2 Possible irregular objects

droplet without any internal reflection) is then much higher
than 2π. In the case of irregular particles, we will assume that
the phase of each glare point is a random variable in the range
[0, 2π]. These two hypothesis could be easily modified. Once
the irregular particle is defined, we can further choose:
- the orientation in space of the global irregular particle (using
rotation matrices defined using MATLAB).
- the transverse and longitudinal (along the imaging z-axis)
position in space of the particle.
These different parameters are then used to calculate the inter-
ferometric out-of-focus images as will be now presented.

2.2 Analyt ical relat ions

In the simplified scalar approach that we develop, the field
emitted by the scattering particle is thus approached by Ngp

punctual light sources randomly located all over the particle
such that the total electric field emitted by the global particle
can be written:

G0 (x, y, z) =
Ngp

∑

j=1
αjδ(x − aj, y − bj, z − cj)eiϕj (1)

where the δ functions are Dirac functions. Ngp is the number
of emitters to be considered. aj, bj and cj give the positons of
the glare points, αj is the amplitude of the electric field emitted
by the glare point j, and ϕj is the phase of the emitting glare
point j. With this primary assumption, we can then calculate
the expression of the electric field in the plane of the CCD sen-
sor. The first step consists of calculating the expression of the
electric field in the plane where the aperture-defining lens is
located. According to the studies of [12], [20]–[22], it is calcu-
lated with the generalized Huygens-Fresnel integral. We ob-
tain :

G1 (ξ, η, `1) =

Ngp

∑

j=1

αje
i 2π

λ (n`1,j
`1,j)

iλ
√

Bx
1,jB

y
1,j

ei(θj+ϕj) (2)
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where we note:

θj =
π

λ
[

1
Bx

1,j
(Ax

1,ja
2
j − 2ajξ +Dx

1,jξ
2
)

+
1

By
1,j

(Ay
1,jb

2
j − 2bjη +Dy

1,jη
2
) ] (3)

The different Ap
1,j, Bp

1,j, Cp
1,j, Dp

1,j (with p = x or p = y) are the co-
efficients of the transfer matrices between the emitter j of the
scattering particle and the plane where the pupil is located. `1,j
is the distance between the droplet and the plane of the pupil.
n`1,j

`1,j is the optical path between the emitter j and the plane
of the aperture. We can define two different transfer matri-
ces for both transverse axes x and y, which allows to describe
cylindrical geometries.

We note T(ξ, η) the transmission coefficient of the pupil.
T(ξ, η) equals 1 within a disk of radius R0 (the radius of the
aperture-defining lens), and equals 0 outside. T (ξ, η) can be
expressed as a superposition of Gaussian functions, as was
proposed by [23], such as:

T (ξ, η) =
N
∑

k=1
Pk exp [−

Qk

R2
0
(ξ2

+ η2
)] . (4)

where the coefficients Pk and Qk are given in references [23],
and parameter N equals 10. The expression of the electric field
in the plane of the aperturing pupil G1 (ξ, η, `1) is given by
Eqs. (2) and (3). This Gaussian decomposition of T(ξ, η) is
very convenient because it allows to establish analytical ex-
pression of the diffracted pattern in the CCD plane. Let us
now consider the propagation after the aperture. This part is
described by complex matrices Mp

2 (p = x or y). In this gener-
alized case, we obtain :

G2 (x′, y′, `) =
Ngp

∑

j=1

N
∑

k=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e
i 2π

λ (n`1,j
`1,j+n`2

`2)e
i π

λ

⎛
⎝

Dx
2 x′2

Bx
2

+ Dy
2 y′2

By
2

⎞
⎠

(iλ)
2
√

Bx
1,jB

y
1,jB

x
2 By

2

×
Pkπ

√

γx,j(k)γy,j(k)
αje

β j(k)eiϕj

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)

where:

β j(k) = i
πAx

1,ja
2
j

λBx
1,j

+ i
πAy

1,jb
2
j

λBy
1,j

−

φ2
x′,j

4γx,j(k)
−

φ2
y′,j

4γy,j(k)
, (6)

γx,j(k) =
Qk

R2
0
− i

π

λ

⎛

⎝

Dx
1,j

Bx
1,j

+

Ax
2

Bx
2

⎞

⎠

, (7)

γy,j(k) =
Qk

R2
0
− i

π

λ

⎛

⎜

⎝

Dy
1,j

By
1,j

+

Ay
2

By
2

⎞

⎟

⎠

, (8)

φx′,j =
2π

λ

⎛

⎝

aj

Bx
1,j
+

x′

Bx
2

⎞

⎠

, (9)

φy′,j =
2π

λ

⎛

⎜

⎝

bj

By
1,j

+

y′

By
2

⎞

⎟

⎠

. (10)

(n`2`2) represents the optical path way between the aperture
and the CCD sensor. The different Ap

2 , Bp
2 , Cp

2 , Dp
2 (with p = x

or p = y) are the coefficients of the transfer matrices between
the plane of the aperture and the plane of the CCD sensor.

3 SIMULATION OF INTERFEROMETRIC
OUT-OF-FOCUS IMAGES

3.1 Speckle- l ike patterns

Using the Eqs. (5)–(10) we are then able to predict the interfer-
ometric out-of-focus image obtained for any pre-defined ob-
ject of our MATLAB library. It is well known that the out-of-
focus image of a droplet is a circular spot filled with parallel
dark and bright fringes. A droplet is indeed described by two
glare points which can be assimilated to 2 coherent Dirac emit-
ters as demonstrated in reference [12]. Note that all simula-
tions that we could do in the past using this formulation with
spherical droplets or bubbles, were prefectly corroborated by
experiments in a wide range of configurations [12, 16, 17]. In
the case of a droplet (or a bubble) represented by two emitting
glare points, the frequency F of the fringes is given versus the
diameter of the droplets, and the characteristics of the imaging
system through relation [12]:

F = ∣
a1 − a2

λBx
tot

∣ (11)

where Bx
tot is the B-coefficient of the total transfer matrix

(along axis x) between the plane of the scattering droplet
(z = 0) and the plane where the CCD sensor is located
(z = z1 + z2). (a1 − a2) is the distance (along the x-axis) between
the two glare points. Using a geometrical optics approxima-
tion, it is given by relation [11]:

a1 − a2 =
d
2
⎛

⎝

cos(Θ/2)+
msin(Θ/2)

√

m2
+ 1− 2mcos(Θ/2)

⎞

⎠

(12)

where d is the diameter of the droplet, m its index, and Θ is
the scattering angle.

Figure 3 shows a second example: we consider an irreg-
ular stick. The stick is assimilated to 15 glare points ran-
domly located in a parallelepipede whose dimensions are
80 µm × 10 µm × 10 µm. Numerically, the imaging set-up be-
tween the scattering element and the CCD sensor is as follows:
free space propagation along distance z1 = 0.13 m, propaga-
tion through a spherical thin lens (focus length f = 0.1 m),
free space propagation along distance z2 = 0.393 m (defo-
cus parameter ∆p = −0.04 m). The aperture-defining element
is the lens, whose radius is R0 = 10 mm. The wavelength
is 532 nm. This system is of revolution around the longitu-
dinal z-axis. The different optical transfer matrices satisfy:
Mx

1,j = My
1,j (from j = 1 to j = Ngp) and Mx

2 = My
2 . Note

that our theoretical simulator could allow to describe cylin-
drical imaging systems. Figure 3(a) shows the disposition of
the randomly located glare points while Figure 3(b) shows the
interferometric out-of-focus image theoretically predicted us-
ing Eqs. (5)–(10). The pattern looks like an asymmetric speckle
pattern. For the analysis of speckle patterns, the second-order
2D-autocorrelation is a very convenient image processing tool
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image (b) and its 2D-autocorrelation (c) (all dimensions in meters).

[24]. It is defined by:

A[I](δx, δy) = ∫ ∫
+∞

−∞
I(x, y).I∗(x − δx, y − δy)dxdy (13)

In order to characterize this speckle pattern, we plot on Fig-
ure 3(c) the 2D-autocorrelation of the pattern of Figure 3(b).
The central peak of the 2D-autocorrelation function gives an
estimation of the dimension of the speck of light [24]. The
asymmetry of the peak is due to the geometry of the scattering
element: a parallelepipedic stick. To summarize, the longer the
extension of the element (along the x-axis in this case), the
smaller the dimension of the central peak of the autocorrela-
tion trace, and reciprocally (which is the case along the y-axis).
This effect will be quantified in the next sub-section.

In order to understand the influence of the number of glare
points that are considered, we plot on Figure 4(a) and 4(b) the
representation of this stick using 15 glare points or 30 glare
points. The optical system is the same as previously (param-
eters z1 = 0.13 m, f = 0.1 m, z2 = 0.393 m, R0 = 10 mm).
We plot then on Figure 4(c) and 4(d) the 2D-autocorrelations
of the speckle patterns that are calculated in both cases. The
speckle patterns are completely different in both cases and can
not be compared (they are not reported here), but their 2D-
autocorrelations can be compared. In particular the dimen-
sion of the central peak is only slightly modified. This can be
seen more explicitely on Figure 5 where we plot the profile
of the 2D-autocorrelation-peak along the x-axis (Figure 5(a))
and along the y-axis (Figure 5(b)). The curves are calculated
for a parallelepipedic stick whose dimensions are in all cases
: 80 µm × 10 µm × 10 µm, but considering 15 (solid lines),
30 (dashed lines) or 50 (dotted lines) randomly-located glare
points in the stick. Note that they correspond to Figure 4, ex-
cept the case with 50 glare points which had not been added
to Figure 4 for sake of clarity. ε is the length of the stick:
ε = 80 µm. The background of the curves (pedestal) is differ-
ent in all cases, but the differences in the width of the central
peak do not exceed 10% between the 3 values Ngp that are
considered. This is verified both along the horizontal x-axis
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(Figure 5(a)) and along the vertical y-axis (Figure 5(b)). Let us
now quantify these first observations.

3.2 Quantitat ive analysis of the
speckle- l ike patterns

The aim of our study is to give the way to determine the di-
mension of the irregular particle under observation (and even-
tually some information concerning its morphology) from
the observation of the interferometric out-of-focus images. As
could be previously mentioned, a powerful parameter to be
considered is the size of the speck of light in the speckle pat-
terns. As will be shown now, it is possible to quantify the
speck’s size of the speckle pattern versus the dimension of the
irregular particle and the parameters of the out-of-focus imag-
ing set-up, with a relatively good precision. In the case of par-
ticles represented by glare points located randomly (but uni-
formly) along the particle, we note ∆ the distance between the
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two farthest glare points (along axis x). We will generalize re-
lation (11). Neglecting the diffractin rings due to the aperture,
the highest frequency present in the speckle pattern along the
axis x is given by

F = ∣
∆

λBx
tot

∣ (14)

For the imaging system that we have already considered (i.e.
with Bx

tot = 0.0121), Figure 6 shows 1/F versus ∆ in black solid
line. 1/F has the dimension of meters and will now be shown
to be related to the speck’s size. Let us consider the charac-
teristics of speckle-like out-of-focus images calculated using
relations (5)–(10). The central peak of the 2D-autocorrelation
of speckle patterns gives a statistical estimation of the size of
the speck of light. Using relations (5)–(10), we have calculated
approximately 70 speckle-like out-of-focus patterns for 70 dif-
ferent stick-like particles. Each pattern is associated to a parti-
cle represented by 15 glare points randomly located in a par-
allepipedic stick of dimensions Length µm × 10 µm × 10 µm
(Length along the x-axis, 10 µm along the y and z axes). We
change parameter Length in the range 15 µm - 200 µm. From
these 70 out-of-focus patterns, we have calculated their 70 2D-
autocorrelation images, and measured the width of the central
peak of the 70 2D-autocorrelations along the x-axis (the width
is evaluated between the two points at 70% of the peak’s max-
imum in order to be sure that we do not evaluate the width
of a pedestal). For each of these patterns, we have reported
on Figure 6 (crosses) the width of the 2D-autocorrelation peak
along the x-axis versus the farthest distance along x, noted ∆,
between two glare points. We can see on Figure 6 that the pa-
rameter 1/F obtained from relation (14) (solid black line) is
correlated to the estimation of the speck’s size made using
the 2D-autocorrelation operation, despite some deviation for
smaller particles. It is well known that there is a correction fac-
tor between the width of a mathematical signal and the width
of its autocorrelation, which is classicaly done in ultra-short
pulse measurement for example. This factor depends on the
mathematical signal under consideration and can not be de-
termined ”a priori” in the case of our speckle-like pattern. We
determine it ”a posteriori”. We have plotted on Figure 6 the
parameter α/F versus ∆ in dotted line with a correction factor
α = 0.9. Assuming thus a correction factor of 0.9, we can re-
duce the deviation for smaller particles, and we can see that it
is possible to estimate the length of the stick versus the speck’s
size of the interferometric out-of-focus image. Let us now dis-
cuss the principal source of noise which brings uncertainty in
the determination of the particle’s size.

The main source of noise is the possibility to ob-
tain 14 glare points located in a stick of dimension
Length1 µm × 10 µm × 10 µm, while the 15th glare
point is isolated, leading to a global stick of dimension
Length2 µm × 10 µm × 10 µm with Length2 significantly
higher than Length1. In this case, the intensity due to the 15th

isolated glare point is not sufficient to influence significantly
the width of the 2D-autocorrelation peak. The estimation of
this width will then lead to an erroneous dimension of the
stick: length Length1 and not Length2. Note that such cases are
regularly present on Figure 6. This effect is reduced when the
number of glare points is increased, because the possibility
to observe an isolated glare point is then reduced. However,
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obtained from relation (14) (solid black line); (b) Parameter α/F versus ∆ (dotted line)

with a correction factor α = 0.9; (c) Width of the central peak of the 2D-autocorrelation

of the corresponding speckle pattern (crosses).

it does not modify the general law given by relation (14).
Although our description of the scattering objects is based
on important assumptions, we can see that the evaluation of
parameters as the speck size of the speckle-like patterns gives
the possibility of evaluating quantitatively the dimension
of scattering irregular rough particles. As our simulator is
based on optical ABCD transfer matrices, we can describe
a wide range of imaging systems (with different kinds
of objectives, cylindrical lenses, for in situ measurements
through transparent pipes...). Let us now discuss the domain
of investigation.

3.3 Domain of investigation

As with classical ILIDS for droplets, a given set-up has a lim-
ited domain of particle size determination. When the defocus
parameter is sufficiently high, the higher-size limit is due to
the pixel size on the CCD sensor and to Nyquist sampling
theorem. We must indeed satisfy F < 1/(2∗ δCCD) where δCCD
is the CCD pixel size, and F is given by relation (14), with ∆
the largest dimension of the particle (i.e. the distance between
the two farthest glare points). When the defocus parameter is
too small, the higher-size limit is not limited by sampling the-
orem, but by the aperture of the system. The same problem
occurs in classical ILIDS with droplets when the defocus is
such that the out-of-focus images of the 2 glare points do not
overlap anymore. Typically, for the configuration under study
(parameters z1 = 0.13 m, f = 0.1 m, z2 = 0.393 m, R0 = 10 mm),
Nyquist theorem limits the higher particle size to 320 µm for
a CCD pixel size of 10 µm. In this case, the out-of-focus im-
ages of all glare points of the irregular particle overlap and
the previous analysis is correct.

The lower-size limit is due to the aperture of the out-of-
focus image of the particle. It is well known that it is not
possible to measure the diameter of a droplet with ILIDS
when there is only one fringe within the out-of-focus im-
age. The same limit occurs here. It is not possible to mea-
sure the dimension of small particles whose out-of-focus
images only exhibit one brilliant or dark fringe. To illus-
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FIG. 7 x-cut (a) and y-cut (b) of the central peak of the 2D-autocorrelation images

considering 15 emitters along a stick whose width is 20 µm (solid lines), 10 µm

(dashed lines) or 2 µm (dotted lines).

trate this, Figure 7 shows the x-cut and y-cut of the 2D-
autocorrelation peak obtained from 3 different interferomet-
ric out-of-focus images of sticks. These three sticks are rep-
resented by 15 glare points randomly located in a paral-
lelepipede of dimensions (80 µm × 20 µm × 20 µm) for
the stick 1, (80 µm × 10 µm × 10 µm) for the stick 2, and
(80 µm × 2 µm × 2 µm) for the stick 3. The results are re-
ported in solid lines for the stick 1, in dashed lines for the
stick 2, in dotted lines for the stick 3. For the three sticks, there
is no difference on the x-cut of the central 2D-autocorrelation
peak. This is not surprising as the stick exhibits in all cases a x-
dimension equal to approximately 80 µm. The y-axis cuts are
completely different. According to relation (14), the lower the
y-dimension of the stick, the higher the width of the y-cut au-
tocorrelation central peak. We can however note that the y-cut
for the stick 3 whose y-dimension is only 2 µm (dotted line) is
like a triangular function, which corresponds to the autocorre-
lation of a squared-signal. In this case, there is only a brillant
fringe along the y-axis of the whole out-of-focus image, and
the y-cut of the 2D-autocorrelation peak does just show the y-
axis autocorrelation of the envelope of the out-of-focus image.
For this configuration, the lower-size limit is a particle size of
8 µm. For particles smaller than 8 µm, we observe only one
brillant or dark fringe, and the y-cut of the 2D-autocorrelaton
is a triangular function which represents the autocorrelation
of a squared-signal (i.e. the out-of-focus image of the aper-
ture). An example is observed in dotted line on Figure 7(b).

4 EXPERIMENT

In order to confirm these predictions, we have realized inter-
ferometric out-of-focus experiments. The set-up we realized
is described in Figure 8. Particles are illuminated by a colli-
mated laser beam. The laser is a frequency-doubled Nd:YAG
laser emitting 10 mJ, 4 ns pulses at 532 nm. The CCD sensor
is a Marlin camera (pixel size 3.45 µm). Out-of-focus imaging
of particles is realized with a spherical lens. The total transfer

laser
SL

CCD

Θparticle

D

z1 z2 z3

FIG. 8 Experimental interferometric out-of-focus imaging configuration.

matrix of the imaging system is given by

Mp
tot = Mz3 × MSL × Mz1+z2 (15)

Matrix Mz1+z2 (resp. Mz3 ) corresponds to propagation in air
through distance z1 + z2 (resp. z3). z1 is the distance between
the scattering objects and the plane of the aperture. z2 is the
distance fom the aperture to the spherical lens (SL). z3 is the
distance between the spherical lens and the CCD sensor. Ma-
trix MSL is the transfer matrix of the spherical lens. The dif-
ferent parameters of this system are: z1 = 85 mm, z2 = 63 mm,
z3 = 195 mm, fSL = 100 mm. The diameter of the spherical lens
is 9.6 mm. The particles that we consider are NaCl salt crystals.
The image of a salt crystal is presented on Figure 9. Each grad-
uation represents 100 µm. The image has been captured with
a Nikon numerical camera. For this picture, the crystal is illu-
minated in reflection by an annular incoherent white lamp, lo-
cated around the objective of the camera. The particle appears
as an irregular ovoid particle. Figure 10(a) shows an experi-
mental out-of-focus pattern that we obtain. It is a speckle-like
pattern. We realize a second-order 2D-autocorrelation of this
pattern. It is presented in Figure 11(a) (Figure 11(b) is a zoom
of the central peak). The central peak is not circular but ellip-
soidal indicating an asymetry of the salt crystal (in the (x,y)
plane, at the time when the image has been captured). The
symmetry axes of the central peak are the x- and y-axes of the
CCD sensor (uncertainty of ±2○). Figure 12 shows the x-cut
(Figure 12(a)) and y-cut (Figure 12(b)) of the central peak of
this 2D-autocorrelation (in dotted lines). Based on these traces
and on the parameters of the experimental set-up (which give
Bx,y

tot ), we can estimate the salt crystal dimensions along both x-
and y-axes using relation (14). We obtain 600 µm along x, and
400 µm along y. We have then simulated the interferometric
out-of-focus image that we should obtain considering an ellip-
soidal particle: it is represented by the random location of 80
glare points on an ellipsoid of dimensions 600 µm along x and
400 µm along y and z. Note that the dimension along z has no
significant influence as the image captured by the CCD sensor
is parallel to the (x,y) plane. We could verify that we would
obtain the same results if this z-dimension had another value
in the range [0 µm, 600 µm]. We present on Figure 10(b) the
pattern predicted using relations (5)–(10). In order to simulate
experimental conditions, we have added a continuous back-
ground signal equivalent to 10 percent of the maximal inten-
sity of the pattern. We have then calculated the second-order
2D-autocorrelation of the pattern. We present on Figure 12
the x-cut (Figure 12(a)) and y-cut (Figure 12(b)) of the cen-
tral peak of the 2D-autocorrelation (in solid lines). They can
be compared with the experimental curves already reported
in dotted lines. Although the speckle patterns are not identi-
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FIG. 9 Image of a typical NaCl salt crystal.

FIG. 10 Experimental interferometric out-of-focus pattern recorded with a NaCl salt

crystal (a), and simulated out-of-focus pattern (b). (dimensions in meters).

cal, the characteristics of the central peak of the second-order
2D-autocorrelation are in good agreement (x- and y-sizes of
the speck). In conclusion, it is possible to interpret speckle-
like out-of-focus patterns and to give some characteristics of
the particle under study, although we are not able to describe
exactly the scattering properties of the particle.

5 CONCLUSION

We have thus developed a simulator of interferometric out-of-
focus images for the analysis of irregular rough particles. The
rigorous description of the scattering properties of irregular
objects using exact Lorenz-Mie theory does not have exact so-
lutions in a wide number of cases. We think that, although we
are not able to describe rigorously the scattering properties,
we are able to predict some statistical properties of the scat-
tered images using a simplified approach: i.e. the dimension
of the central peak of the 2D-autocorrelation of the speckle-
like patterns. Our method consists of describing complex ir-
regular objects by a random location of glare points along the
global form of the irregular objects. We have shown that it is
possible to predict some simple morphological properties of
the particle (morphology of the repartition of glare points for
more precision). Simulations have been confirmed by experi-
mental images recorded with NaCl salt crystals. Although our
description of the scattering properties is not exact, the images
that we predict contain exact informations about the particle
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FIG. 11 2D-autocorrelation of the experimental out-of-focus pattern of Figure 10(a), and

zoom of the central peak of this autocorrelation (b). (dimensions in meters).
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FIG. 12 x-cut (a) and y-cut (b) of the central peak of the 2D-autocorrelation calculated

from the experimental out-of-focus pattern (dotted lines) and the simulated out-of-

focus pattern (solid lines).

under study (through the analysis of the 2D-autocorrelation
of the speckle-like patterns).

In our simulator, the imaging system is described by optical
transfer matrices. We can thus describe any system (systems
involving cylindrical lenses, in situ measurements in pipes,
presence of windows to protect the CCD sensor...). We can
clearly differentiate the influence of the imaging system and of
the particle under study. We obtain analytical relations which
link the dimension of the particle to the size of the light speck
(through a coefficient of the global transfer matrix, and thus
for a wide range of imaging systems).

Despite the very important simplification that we make to de-
scribe the scattering processes, we think that our simulator is
a very convenient tool for the analysis of irregular particles
in interferometric out-of-focus imaging experiments. It allows
to give some quantitative informations (size, global shape) in
domains where there are no theoretical models to describe the
scattering properties of such irregular particles. It should al-
low to develop and calibrate real-time algorithms to detect
the dimension of irregular particles, and to give some simple
morphological informations about the particle. Using double-
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acquisition schemes, it should allow to measure and interpret
the size and velocity of particles, combined to the analysis of
their rotation in a flow. At this stage, in order to prove the con-
cept, we have limited our analysis to simple morphological
aspects of the particles (width and height). But we think that
this simulator should allow to obtain more details concerning
the form of the particle in the future (as the existence of spe-
cific symmetries of the object for example). Another important
perspective is the extension to multifrequency interferometric
particle imaging to enhance the accuracy of the characteriza-
tion of the particles [25].
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