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In the present paper, we propose a 2D-Fourier transform method as a simple and efficient algorithm for stochastical and numerical studies
to investigate the systematic impacts of line edge roughness on light diffraction pattern of periodic line-space structures. The key concept
is the generation of ensembles of rough apertures composed of many slits, to calculate the irradiance of the illuminated rough apertures far
away from the aperture plane, and a comparison of their light intensities to those of the undisturbed, ’non-rough’ aperture. We apply the
Fraunhofer approximation and interpret the rough apertures as binary 2D-gratings to compute their diffraction patterns very efficiently as
the 2D-Fourier transform of the light distribution of the source plane. The rough edges of the aperture slits are generated by means of power
spectrum density (PSD) functions, which are often used in metrology of rough geometries. The mean efficiencies of the rough apertures
reveal a systematic exponential decrease for higher diffraction orders if compared to the diffraction pattern of the unperturbed aperture.
This confirms former results, obtained by rigorous calculations with computational expensive finite element methods (FEM) for a simplified
roughness model. The implicated model extension for scatterometry by an exponential damping factor for the calculated efficiencies allows
to determine the standard deviation σr of line edge roughness along with the critical dimensions (CDs), i.e., line widths, heights and other
profile properties in the sub-micrometer range. First comparisons with the corresponding roughness value determined by 3D atomic force
microscopy (3D AFM) reveal encouraging results.
[DOI: http://dx.doi.org/10.2971/jeos.2014.14003]
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1 INTRODUCTION

Scatterometry is widely used to evaluate precision of diffrac-
tive elements in lithography [1]. Extreme ultraviolet (EUV)
scatterometry using light with wavelengths in a small range
around 13.5 nm is an adequate tool for the characterization of
photo masks and wafers [2]–[4]. The critical dimensions (CDs)
of such elements decrease continuously with the progress in
technology. A detailed description of the complex architecture
of a typical EUV mask can be found in [5]. Many diffraction
orders can be measured by EUV scatterometry, with the wave-
lengths being distinctly shorter than the typical dimensions of
the structures to be investigated. The diffraction orders mea-
sured are typically in the range of ±10 where their efficien-
cies are larger than the disturbing background noise. This pro-
vides information on the higher frequency range correspond-
ing to the spatial frequency resolution of the profile functions
describing the geometry, i.e., informations on the tiny details
of the structure. Obviously, the structure roughness with am-

plitudes in the range of a few nanometers has an impact too,
and can no longer be neglected in the course of the profile re-
construction.

In previous publications a comparison of the reconstructed
profiles using EUV-scatterometry and the results obtained us-
ing atomic force and electron microscopy has revealed that
scatterometry underestimates the side-wall angle by several
degrees. Imperfect modelling is supposed to be one of the
main reasons for this [6]–[8]. In particular, to get reliable sim-
ulations and reconstructions, line edge roughness (LER) has
to be taken into account. Recently, Kato and Scholze [8] have
suggested approximative analytical expressions for the sys-
tematic corrections of the scattered efficiencies stemming from
LER. They have applied Fraunhofer’s diffraction method, i.e.,
the Fourier transform of the reflectivity function of a per-
turbed binary grating. They found damping of the mean ef-
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ficiencies with increasing diffraction orders, which was con-
firmed by rigorous FEM simulations for a real EUV mask
[9]. In these FEM investigations, large computational domains
containing many line-space structures with stochastically cho-
sen widths were used. The roughness model used in [9] is
strictly speaking one-dimensional, which inherently only de-
scribes in-plane scattering between the diffraction orders. The
center positions and the widths of lines within the cross sec-
tion of an EUV grating containing several periods are ran-
domly changed. That means, that the line edges of this rough-
ness model are still straight lines and no autocorrelation func-
tion along the edges is used, i.e., a crude LER model is applied.
The calculations themselves are based on a rigorous solution
of the 2D Helmholtz equation by the finite element method.
If the geometry and material properties are invariant in one
direction, here in the direction perpendicular to the plane of
the cross section, Maxwell equations can be reduced to the 2D
Helmholtz equation.

These results were still obtained for a simplified model of
rough line edges, i.e., without means of an autocorrelation
function along the edges, which is often used in metrology
of rough geometries. There are several publications [10]–[12],
where the modelling of line edge roughness as a stochastic
process starts with an exponentially decaying autocorrelation
function for the position p(r) of an edge point at distance r:
p(r) = σ2e−(r/ξ)2α

where σ is the standard deviation, ξ is the
linear correlation length, and α is a roughness exponent (also
referred to as the Hurst exponent). Randomised line edge pro-
files can be generated by calculating or approximating the as-
sociated power spectrum density function PSD(r−1) belong-
ing to the autocorrelation function p(r) and subsequently ap-
plying an inverse Fourier transform with a random phase
uniformly distributed in the range of [0, 2π]. For instance,
Bergner et al. [10] use a similar approach to generate rough
line edge profiles of 2D-binary gratings to calculate its im-
pact on the angular dependence of the specular, 0th order re-
flectance at wavelengths around 633 nm. Torcal-Milla et al.
[13] have investigated gratings with rough edges in the visible
optical range by applying the Rayleigh-Sommerfeld approach
for near field simulations and the Fraunhofer approximation
for the far field pattern. They found an exponential attenua-
tion of the light intensities in terms of σ and the diffraction
order as well. The values for σ they applied were in the range
of several µm and they used a simplified statistical approach
without considering a roughness exponent α. Schuster et al.
[14] have studied the impact of LER for silicon gratings on the
basis of sinusoidal perturbations for the line positions with
amplitudes in the range of 2−8 nm and for wave-lengths of
400 and 250 nm, respectively.

The main issue of the presented investigations is to clarify the
impact of the aperiodic perturbations due to different patterns
of line roughness in line-space structures on scattering effi-
ciencies of higher diffraction orders. The efficiencies are mea-
sured in the far field and in a plane perpendicular to the lines.
Assuming a linear and isotropic dielectric medium where ad-
ditionally the material properties are invariant in one direc-
tion, e.g. along the line-space structures, the electric field E
and the magnetic field H are decoupled and scalar diffraction
equations can be applied. Under these conditions the Fraun-

hofer far-field approximation is applied to a 2D source field
distribution U1(ξ, η) (cf. Figure 3) which is characterized by a
binary field distribution. This can be interpreted as a thin-film
model of the geometry neglecting any layer structures along
the z direction perpendicular to the source plane. In this sense
the proposed model of LER is focused on perturbations of the
periodicity of the line-space structures and their impact on the
efficiencies. It is shown that this impact of line roughness of
2D structures is given by an exponential damping factor ap-
plied to the undisturbed efficiencies of the non-rough struc-
tures. This remains valid for different kinds of roughness pat-
terns. The method can be applied to samples with different
line to space ratios including high aspect ratios. For the sam-
ples presented here, EUV scatterometry with wavelengths λ

in the range of 13.5 nm and structures of about 100 nm crit-
ical dimensions, the existence of many orders of diffraction
is given and the feasibility of the approximation is demon-
strated. Even for smaller critical dimensions, e.g. 30 nm, sev-
eral diffraction orders are available and the bias of the mean
efficiencies can be determined according to proposed method.
But for line-space structures with periods smaller than the
used wavelength no other diffraction orders aside from the ze-
roth order exist and other methods such as the effective layer
model [10] must be used to consider roughness.

To resolve the LER-induced correction for different roughness
patterns a randomization based on PSD functions describing
the roughness pattern is applied. We will restrict our investi-
gations to diffraction orders in the range of ±10 whose effi-
ciencies are significantly greater than the background noise of
the measurement setup, i.e., larger than 0.001 % if the efficien-
cies are given in per cent. The model approximation errors are
significantly smaller than the 0.001%. They are dependent on
the precision of the 2D Fourier transform procedure and the
discretization of the source plane. The line edge roughness
pattern is controlled by an autocorrelation function depend-
ing on a standard deviation σ, a correlation length ξ and a
roughness exponent α. The key concept is to generate ensem-
bles of apertures composed of rough slits, to calculate the irra-
diance of the illuminated rough apertures far away from the
aperture plane, and to compare their light intensities to those
of the unperturbed, ’non-rough’ aperture. In order to avoid
computational expensive FEM calculations, we compute the
diffraction pattern very efficiently as the 2D-Fourier transform
of the light distribution of a binary source plane applying the
Fraunhofer approximation.

The proposed method is very sensitive to the imposed line
edge roughness. We have analyzed ensembles of rough aper-
tures with varying values for the standard deviation, the cor-
relation length and the roughness exponent. The standard de-
viation σ of the imposed LER has an essential effect on the bias
of the mean efficiencies. Relative to their unperturbed values
stemming from ’non-rough’ apertures, the light intensities of
higher diffraction orders nj are damped by exp(− 4π2

d2 n2
j σ2),

where d is the period of the slits in the aperture. Interpreting
the rough apertures as binary 2D-gratings, the reported for-
mer findings [9], obtained by expensive FEM calculations for
a relative crude LER model, are approved. That emphasizes
to include the exponential damping factor in scatterometric
modelling to get more reliable results for the reconstructed
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CDs. Furthermore, the model extension allows to determine
the roughness parameter σ along with the geometrical pro-
file parameters. Note that such a determination of the σ value
for the standard deviation of randomised line edge roughness
is based on an integral measurement principle. We indicate
this reconstructed roughness parameter as σr. For the mea-
surements reported here, the typical beam size at the sample
during an EUV measurement is about 1 mm in both directions
and several thousand lines are interacting with the incidental
light.

This paper is organized as follows: In Section 2 a brief de-
scription of how the ensembles of rough apertures were gener-
ated on the basis of a stochastic process is given. Furthermore
a short derivation of the formula for the light intensities far
away from the aperture applying the Fraunhofer approxima-
tion is discussed. Section 3 contains the results obtained for
different ensembles of rough binary 2D-gratings and rough
apertures, respectively. With apertures typically composed of
four slits, a size of 1 µm in both directions, and a pixel size
of 0.1 nm in x- and y-direction we get a sufficient sensitiv-
ity for the calculated far-field irradiance of the correspond-
ing diffraction orders in the range ±10. It is shown, that the
spatial averaging for each sample of a rough aperture is so
strong, that just a few ten samples, e.g., 30, are sufficient to get
a stable bias for the mean values at the different diffraction
orders. In Section 4 scatterometric reconstructions of the CDs
of an EUV photo mask based on rigorous FEM calculations
and maximum likelihood estimation are reinvented [15, 16]
to demonstrate the improvements and the feasibility to deter-
mine σr simultaneously. First comparisons with the results of
3D atomic force microscopy (3D AFM) measurements on the
same EUV mask endorse the investigations. Section 5 closes
the paper with a discussion of the results and the conclusions.

2 ENSEMBLES OF ROUGH 2D
LINE-SPACE STRUCTURES

2.1 Apertures with rough edges

Representing 2D-binary gratings, we are creating square ar-
rays of strip shaped slits, i.e., square apertures composed of
many slits whose distribution of reflectivity equals 0 or 1, de-
pending on the position in the plane of the aperture. In or-
der to get apertures with rough boundary lines, the variations
along the line edges are derived by an exponentially decay-
ing autocorrelation function. Considering a line along the y-
direction {(x(y), y) : y ∈ R} with random variables x(y),
we assume a constant mean value 〈x(y)〉 = x0 and that the
correlation

x(y1, y2) :=

〈
[x(y1)− x0][x(y2)− x0]

〉
x2

0

depends on the distance r = |y1 − y2| only, i.e.
x(y1, y2) = x(r). Moreover, we presume the following
autocorrelation function

x(r) = σ2e−(r/ξ)2α
, (1)

where σ is the standard deviation of the edge positions, ξ

is the linear correlation length along the line, and α is the
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FIG. 1 Power spectral density (PSD) and generated rough lines a) for σ = 1 nm, corre-

lation length ξ = 50 nm and three different roughness exponents α = 0.3, 0.5, 0.9; (b)

samples of rough lines calculated by the corresponding PSD with α = 0.3 and 0.9.

so-called roughness exponent. Recent publications, e.g. Mack
and Bergner et al. [10]–[12], are starting with such an expo-
nentially decaying function for modelling a stochastic process
which ends up in randomised line edges or surfaces. Our in-
vestigations are addressing the 1D case of randomly rough-
ened lines. Randomised line edge profiles are generated by
calculating or approximating the associated power spectrum
density function PSD(r−1) that belongs to the autocorrelation
function p (r) and subsequently applying an inverse Fourier
transform with a random phase being uniformly distributed
in the range of [0, 2π]. By this means the generated rough line
edges shown in Figure 1 were generated for different rough-
ness exponents (α=0.3 and α=0.9) and for a standard devia-
tion σ = 1 nm and a linear correlation length ξ = 50 nm. It is
revealed that higher values of α lead to reduced higher fre-
quency components in the variances of the edges, i.e., they
become significantly smoother. The edges of the aperture slits
are constituted by repeating the creation process indepen-
dently from each other. Bergner et al. [10] use a similar ap-
proach to generate rough line edge profiles of 2D-binary grat-
ings to calculate its impact on the angular dependence of the
specular, 0th order reflectance at wavelengths around 633 nm.

To get a sufficient resolution, the pixel size is 0.1 nm in both di-
rections of the 2D apertures broadening upon a total range of
1 µm × 1 µm. The investigated rough apertures are typically
composed of four periodically arranged slits, i.e., the corre-
sponding grating period is 250 nm and the mean width of the
rough slits is 125 nm. Figure 2 show two examples illustrat-
ing the impact of higher values of α and ξ, respectively. There
is no restriction to choose other line-to-space ratios (cf. Fig-
ure 4(a)). We choose several slits per apertures to improve the
spatial averaging of the irradiance pattern associated with the
randomised aperture.

2.2 Fraunhofer approximation

Fourier optics is well known for being a cornerstone for the
analysis of imaging, diffraction, coherence and propagation
through random media [17, 18]. The mathematical descrip-
tion of the propagation of an optical field from one location,
for example an diffractive aperture, to another is one of its
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FIG. 2 Two examples of a rough apertures; size 1 µm in both directions with a resolu-

tion of 0.1 nm (⇐⇒ 10000 x 10000 points); four slits per aperture, i.e., 125 nm width

of the slits and a period of 250 nm; (a) used PSD with σ=3 nm, α=0.5, and ξ=10 nm

and (b) with σ=3 nm, α=1.0, and ξ=100 nm.

most essential tasks. In general the propagation behavior of
electro- magnetic waves in matter is based on Maxwell’s equa-
tions, where the electric field E and the magnetic field H are
coupled. However, assuming a linear and isotropic dielectric
medium where additionally the material properties are in-
variant in one direction, both fields are decoupled and scalar
diffraction equations can be applied.

Under these ideal conditions a monochromatic plane wave
with wavenumber k and orthogonal incidence on a diffractive
aperture is considered. Its propagating radiation in an parallel
observation plane far away from the aperture can be elegantly
expressed as the Fourier transform of the field distribution in
the source plane applying the Fraunhofer approximation. Ac-
cording to Huygens’ principle each point of the wave front
in the source plane can be considered as the source of super-
imposing spherical waves generating secondary wave fronts.
That is, the field distribution U2(x, y) in an observation plane
parallel to the source plane (cf. Figure 3) can be calculated by
means of the field distribution U1(ξ, η) of the source plane:

U2(x, y) =
z
jλ

∫∫
Ω

U1(ξ, η)
ejkr

r2 dξdη, (2)

here given in Rayleigh-Sommerfeld’s diffraction notation with

r =
√

z2 + (x− ξ)2 + (y− η)2 (3)

FIG. 3 Scheme of the coordinate system used in the calculations.

and Ω as the domain of the source plane. It can be shown very
easily (cf. [19, 20]) that for propagation distances that are very
long compared to the size of the aperture, i.e., for distances z
with

z� max
(ξ,η)∈Ω

k(ξ2 + η2)

2
, (4)

U2(x, y) from Eq. (2) can be written as

U2(x, y) =
ejkz

jλz
e

jk(x2+y2)
2z

∫∫
Ω

U1(ξ, η)e
−j2π

λz (xξ+yη)dξdη. (5)

Eq. (5) represents the Fraunhofer diffraction expression. It
consists of a complex exponential function times the Fourier
transform of the source field U1 with the following frequency
variable substitutions

fξ →
x

λz
, fη →

y
λz

. (6)

Note that the multiplicative complex exponentials in front of
the double integral disappear, provided only the irradiance is
of interest. This is usually the case when calculating the Fraun-
hofer pattern of an aperture.

We apply this Fraunhofer expression to the calculation of the
irradiance pattern of the rough apertures and the correspond-
ing unperturbed non-rough aperture for a wavelength of λ

= 13.5 nm and a distance z = 1 m of the observation plane.
Figure 4 shows an example for an aperture composed of four
periodically arranged slits with a width of 200nm and a pe-
riod of 250 nm, i.e., the line-to-space ratio is 1:4. The irradi-
ance pattern along the x-direction at the central position y = 0
is shown for the unperturbed aperture. The shape of the inten-
sity distribution along the diffraction orders is typical for the
chosen line-to-space ratio and an incident angle of 0◦ (cf. [6]).
Note that depending on the bridge-slit ratio equivalent to the
line-space ratio of 2D binary grating, the irradiance becomes
zero for special diffraction orders. These diffraction orders are
rejected for the evaluations and only those with values signif-
icantly greater than zero are selected. In the example of Fig-
ure 4 this is the case for the orders nj = ±5.

3 IMPACT OF DIFFERENT PATTERNS OF
LINE EDGE ROUGHNESS

3.1 Irradiance pattern relat ive to those of
’non-rough’ structures

The key for analysing the impact of roughness is to compare
the mean light intensities calculated for ensembles of rough
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FIG. 4 (a) Rough aperture (σ=1 nm; α=1; ξ=2 nm) with a slit width of 200 nm at a period of 250 nm and (b) reference irradiance pattern of the corresponding unperturbed

aperture (with straight edges).

apertures to that of the unperturbed non-rough aperture,
i.e., the corresponding aperture whose slits are composed of
straight lines. Any systematic impact on the mean efficien-
cies should then be identified obviously. In previous investi-
gations that made use of computational expensive FEM simu-
lations for a 2D computational domain [9], this strategy has al-
ready been applied successfully. Note that the applied rough-
ness model of these studies was very simple, i.e., only the cen-
ter locations and widths of neighboring lines were stochasti-
cally chosen and unfortunately no perturbations along the line
direction could be treated in the former, cross section oriented
FEM approach.

The relative deviations of light intensities in dependence of
the diffraction orders for several ensembles of rough apertures
are depicted in Figure 5. The three examples differ from each
other by an increasing standard deviation σ of the autocorre-
lation function (cf. Eq. (1)) from 2 nm to 5 nm used to generate
the rough edges of the apertures. The roughness exponent α

was fixed to 1.0 and the linear correlation length ξ was set to
10 nm. Each ensemble has elven samples of rough apertures
whose relative deviations are depicted as circle symbols. Their
mean values are marked by diamond symbols. The bridge to
slit ratio was 1:1, i.e., both parameters have a nominal value
of 125 nm. Again only the orders with intensities greater than
zero are considered.

A systematic nonlinear decrease of the mean efficiencies for
higher diffraction orders along with slightly increasing vari-
ances is observed. This is established for different degrees of
roughness expressed by the different σ values for three ensem-
bles. Only a few ten samples for each ensemble are necessary
to reveal a stable bias of the mean efficiencies.

Quite similar outcomes are obtained for the three ensembles
generated with different correlation lengths ξ = {10, 60, 120}
nm as shown in Figure 6. Here α was changed to 0.5 and σ was
fixed to 3 nm. Obviously, the correlation length ξ has only an
effect on the variances around the mean values of the light in-
tensities. They rise slightly in particular for higher diffraction

orders. Nevertheless, the essential impact on the biased mean
values is stemming from the imposed σ values and appears to
follow an exponential function depending on the diffraction
order and σ, just like the above-mentioned findings of the 2D
FEM simulations.

Consequently, we conclude that the revealed attenuation of
the mean light intensities with higher diffraction orders can
be modelled by

fnj ,ref − fnj ,pert

fnj ,ref
≈ 1− e−(

2πnj
d )2σ2

r

⇐⇒ fnj ,pert ≈ e−(
2πnj

d )2σ2
r fnj ,ref. (7)

Here fnj ,ref denotes the light intensities of the unperturbed

aperture at diffraction order nj and fnj ,pert the correspond-
ing mean values of the generated ensemble of rough aper-
tures, d is the period of the bridge-slit structure and σr de-
picts that value for the standard deviation which represents
the best-fit results for the mean normalized deviations apply-
ing Eq. (7). In fact, the solid lines in Figures 5 and 6 are de-
picting these best-fit results for σr obtained by minimizing the

norm
∥∥∥∥ fnj ,pert − e−(

2πnj
d )2σ2

r fnj ,ref

∥∥∥∥. Note that this means that

the evaluated σr values are good estimations of the imposed
standard deviations used for the generation of the ensembles
of rough apertures.

Figure 7 summarizes these findings for many different sam-
ples of rough apertures representing 2D-binary gratings. For
three different values of σ =[1 , 2, 3] nm and nine values of the
correlation length along the edges ξ =[5, 10, 20, 40, 60, 80, 100,
120, 150] nm, the bias of the mean efficiencies expressed by
σr according to Eq. (7) has been evaluated. The roughness ex-
ponent α was set to 1.0 and 0.5. Only a slight increase within
a range of maximal 5% is found for the determined σr com-
pared to the imposed standard deviation σ of the associated
rough ensemble. Hence, the influence of different correlation
lengths ξ and roughness exponents α on our hypothesis (7) is
fairly weak.

14003- 5



J. Europ. Opt. Soc. Rap. Public. 9, 14003 (2014) H. Gross, et al.

−10 −5 0 5 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

diffraction order

(b) σ: 3 nm

σ
r
: 2.99 nm

−10 −5 0 5 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

diffraction order

(c) σ: 5 nm

σ
r
: 4.97 nm

−10 −5 0 5 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

diffraction order

re
la

tiv
e 

re
du

ct
io

n

(a) σ: 2 nm

σ
r
: 2.03 nm

FIG. 5 Normalized deviations from the efficiencies of the unperturbed aperture, depicted as circles; diamond symbols represent the mean deviations of all samples and solid line

the exponential approximation according Eq. (7); (a)-(c) for three different standard deviations σ and α=1, ξ=10 nm.
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FIG. 6 Normalized deviations from the efficiencies of the unperturbed aperture, depicted as circles; diamond symbols represent the mean deviations of all samples and solid line

the exponential approximation according Eq. (7); (a)-(c) for three different linear correlation lengths ξ and σ=3 nm, α=0.5.

3.2 Comparison to previous 2D FEM
approach

Finally, we do compare the results directly with the normal-
ized deviations provided by the above-mentioned rigorous
2D-FEM simulations over randomly perturbed cross sections
of an EUV photo mask composed of different layers [9]. The
chosen example has been calculated with 24 lines per compu-
tational domain overspreading the profile cross section with
a randomised distribution of line and space widths of the
neighbouring lines (cf. Fig. 3 a in [9]). The results shown in
Figure 8 have been obtained by adapting the line and space
widths in the 2D Fourier transform method to the correspond-
ing values, i.e., to 93.33 nm for the lines and 186.67 nm for
the space and choosing α=0.5 and ξ=10 nm. The imposed σ

value for the edge roughness was 5.6 nm for both cases. The
mean normalized deviations and the evaluated σr values of
5.49 nm and 5.59 nm for the exponentially damped efficien-
cies show a good agreement. Note that for the rigorous FEM

approach 1000 samples per ensemble were applied, whereas
for the Fourier approach only 32 samples were calculated to
get the depicted stable bias with relatively small variances.
Different values of α and ξ have no significant impact on the
comparison, i.e., good agreements are revealed as well. On a
Linux workstation with 12 Intel Xeon processors (X5460@3.16
GHz) the computation for one FEM simulation of a cross sec-
tion containing 24 lines with randomly changed center posi-
tions and widths takes about 15 min. Hence, on a high per-
formance cluster the computation of 1000 diffraction patterns
representing the roughness example of Figure 8(a) needs typ-
ically 1-2 days depending on the available cluster resources.
The corresponding 2D-Fourier calculations of an ensemble of
rough apertures, such as that in Figure 8(b), need only a quar-
ter of an hour on the linux workstation.

Probably the application of Fourier modal method or finite-
difference time-domain (FDTD) analysis would required less
computation time compared to the finite element method ap-
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plied in [9], but the comparison is not part of the present paper
and could be addressed in further investigations. In principle
a three-dimensional simulation of line edge roughness based
on an autocorrelation function and realized for example by
FEM is possible, but requires a tremendous amount of mem-
ory considering the required volume discretization (at least
≤ λ/4 for each direction), the necessary size of the volume
(for example 0.23 µm3) and the size of roughness amplitudes
in the one nanometer range.

FIG. 7 Reconstructed values for σr for ensembles of rough apertures (2D-binary grat-

ings) generated with standard deviations σ, linear correlation lengths ξ and roughness

exponents α; Eq. (7) was applied to fit the mean biased efficiencies.

4 ROUGHNESS AMPLITUDES
DETERMINED BY SCATTEROMETRY
AND AFM

4.1 Scatterometric model supplemented
with l ine roughness

The determination of the CDs from measured light diffraction
pattern for a real photo mask is a challenging task requiring
a rigorous calculation of the diffracting light efficiencies, e.g.
by the finite element method. Solving the inverse problem
amounts to determining the geometry of an optical grating
whose light diffraction pattern fits a given set of measurement
data best. Like many inverse problems, the inverse problem of
scatterometry is ill-posed [21] and its treatment requires a pri-
ori information. A common approach for its regularization is
to set up an equivalent low dimensional optimisation problem
with a weighted objective function that is minimized using it-
erative algorithms [6, 22]. The a priori information in this case
not only includes information about the geometrical profile of
the investigated element, but also knowledge of the variances
of the measured data in order to describe the weighting fac-
tors. In [15] a maximum likelihood estimation (MLE) method
has been proposed to solve the inverse problem of scatterom-
etry. We have applied this method including the roughness
parameter σr by an order dependent damping factor accord-
ing to Eq. (7), i.e., the model function ˜fnj (p) is represented as

˜fnj (p) = e−σ2
r (

2πnj
d )2 · fnj (p) in order to get more reliable esti-

mations of the profile parameters and their uncertainties.

Under real experimental conditions efficiencies yj exhibit de-
viations from the model function ˜fnj (p) and are given by
yj = ˜fnj + εj. Here, p depicts the grating profile parame-
ters like line widths, layer heights and side-wall angles and
εj ∼ N (0, σj) describes a Gaussian noise with zero mean. The
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(a) σ = 5.6 nm; 1000 samples
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(b) σ = 5.6 nm; α = 0.5; ξ = 10 nm; 32 samples
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FIG. 8 Normalized deviations from the efficiencies of the unperturbed reference line structure, depicted as circles; diamond symbols represent the mean deviations of all samples;

dashed lines indicate the mean efficiency ± standard deviation; solid lines depict the exponential approximation and indicate symmetrical behaviour for both cases (a) and (b);

(a) for FEM simulations and (b) for 2D-Fourier simulations of a 2D-binary grating.
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FIG. 9 Measurement of line edge roughness by the 3D AFM using a CDR70 AFM tip, shown as (a) LER profiles measured at different heights of the 1D grating pattern of the die

D8; (b) LER profiles measured at three different heights of an 1D grating pattern at the die F5; (c) calculated power spectrum density curve of the LER profile shown in (b).

variance σ2
j is chosen according to σ2

j = (a · ˜fnj (p))
2 + b2, in

which b is related to background noise and a models power
fluctuations of the incidental beam during the measurement
process. Note that the model function fnj (p) of a real photo
mask, whose absorber lines are composed of several trape-
zoidal layers of different materials, has to be calculated rig-
orously, e.g. by FEM.

The model function together with the error model determine
the following likelihood function

L(a, b, p, σr) =
m

∏
j=1

1√
2πσj

exp

[
−
( ˜fnj (p)− yj)

2

2σ2
j

]
, (8)

and its maximization yields the estimates of the desired pa-
rameters θ̂ = (â, b̂, p̂, σ̂r) [15, 16], i.e.

θ̂ = arg max L(a, b, p, σr). (9)

Uncertainties related to the estimates are given by the inverse
of the Fisher-information matrix

Iij =

(
−∂2 logL

∂θi∂θj

)∣∣∣∣∣
θ=θ̂

, (10)

via Σij = I−1
ij , that determines the variance var(θ̂i) = Σii of

parameter θ̂i.

The reconstructed line widths and the evaluated side-wall
angles of experimental data, applying this MLE method (cf.
also [23]), are in good agreement with measurements from 3D
AFM of the same photo mask. The structural details of the
measured EUV test photo mask are given in [5]. The applied

3D-AFM method and the CD comparison with scatterometry
are presented in [24].

These results strongly supports the inclusion of line roughness
by the parameter σr in form of the proposed damping factor
(cf. Eq. (7)) and the simultaneous determination of σr along
with the profile parameters p. In Table 1 the reconstructed val-
ues for σr of the six different fields of the above-mentioned
photo mask are given. Note that the investigated fields have
different line-to-space ratios in the range of 0.5 to 3.0.

4.2 Measurements of LER using AFM

AFM technique has been widely applied in nanometrology. It
allows direct and nearly non-destructive measurements of the
3D shape of nanostructures with both, a high lateral and verti-
cal resolution. Compared to the scatterometry, it is less model
and material dependent due to its relatively straight forward
measurement principle. Therefore, we use EUV scatterome-
try as a potential high-throughput measurement method and
AFM as a reference metrology tool.

A 3D AFM has been built up at PTB recently [25]. It is able
to probe surfaces in arbitrary planes, e.g. xz, yz, and xy. This
feature allows very convenient and direct measurements of
sidewalls along the feature line. Some measurements of the
1D grating patterns of an EUV photo mask are demonstrated
in Figure 9. All measurements were performed using a flared
AFM tip CDR 70 (Team Nanotec GmbH) having a tip radius
of approximately 35 nm. The first test measurement has been
performed on the die D8, where forty LER profiles of a line
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field D4 D8 F6 H8 F5 G5
L:S /nm 540:180 540:180 540:180 540:180 180:360 160:320

σr /nm 3.3 3.2 2.7 2.9 4.1 4.3
std /nm ±0.5 ±0.4 ±1.6 ±1.2 ±0.7 ±0.9

σRMS /nm 2.8 2.8
std /nm ±0.3 ±0.3

TABLE 1 Values of reconstructed σr for six different mask fields; for die F5 and G5 the

σ values determined by 3D AFM are given additionally.

feature have been measured at different heights with a pro-
file length of 1 µm and a sampling distance of 10 nm/pixel, as
shown in Figure 9(a). It can be seen that the profiles are simi-
lar, indicating that the sidewall topography has through varia-
tions from the top plane to the bottom plane. As the measured
profile with a length of 1 µm is too short to represent more
lower spatial frequency components of LER, measurements
with a profile length of 10 µm and a sampling distance to
5 nm/pixel have been carried out on the die F5 and G5. A typ-
ical measurement result of the die F5 is shown in Figure 9(b),
where three LER profiles measured at different heights are de-
picted. Again, these profiles look similar. Figure 9(c) depicts
the power spectrum density curve calculated from the profiles
shown in Figure 9(b).

However, it should be stressed that the performed AFM mea-
surements are still quite preliminary yet. For instance, only the
LER of two die structures have been investigated and the mea-
surements are performed with only one AFM tip. The number
of measurement repeats is very limited. Therefore, more in-
vestigations are to be carried out in the near future.

4.3 Comparison of LER obtained by
scatterometry and AFM

Comparison of the measurement results between the PTB
EUV scatterometer and 3D AFM are summarized in the Ta-
ble 1. Structures of six dies with different line space ratios have
been measured by the EUV scatterometer, while only two of
them are measured by the 3D-AFM. In the table, the row of
the data σr is obtained by reconstructing the measured scat-
terometric intensities using the extended model, as detailed
in the Section 4.1. The row of the data σRMS is the RMS rough-
ness value evaluated from the LER profiles as shown in Fig-
ure 9(b). No filtering has been applied in the data evaluation.
The mean value and the standard deviation of results of 7 re-
peat measurements are given in the table.

As can be seen, the σRMS obtained by the 3D-AFM is smaller
than the σr obtained from the scatterometry. Relative to the
scatterometric values the reduction is 32 % for die F5 and 35 %
for die G5. Such deviation can be well explained by the prin-
cipal difference of the two applied methods. From the view-
point of signal processing, each measurement instrument can
be regarded as a transfer function acting on the signal to be
measured. The bandwidth with respect to spatial frequencies
of the measurement function of the AFM instrument is lim-
ited in the used modes of measurement in this study. These
constraints are determined by the applied measurement range

along the sidewall edges and the ball shaped geometry of
the used measurement tip. They provoke, that the roughness
components with spatial frequencies lower than 0.2 µm−1 and
higher than 50 µm−1, respectively, couldn’t be measured by
the applied AFM (cf. Figure 9(c)). While the scatterometer
performs measurements over an area with a size of approx-
imately 0.7 mm x 0.7 mm with a radiation wavelength of 13.5
nm, the spectrum of its measurement function was signifi-
cantly wider than that of the applied AFM method, conse-
quently leads to higher roughness results.

5 DISCUSSION AND CONCLUSION

We have proposed a 2D-Fourier transform method as a sim-
ple and efficient algorithm to complement previous investi-
gations on the systematic impact of line edge roughness on
light diffraction pattern of periodic line-space structures. This
has particular been done in the EUV regime, where the light
diffraction pattern is characterized by many significant wave
modes with higher diffraction orders. The irradiance of illumi-
nated rough apertures far away from the source plane is nu-
merically calculated very efficiently as the 2D-Fourier trans-
form of the light distribution in the aperture plane and then
compared to those of the unperturbed, ’non-rough’ aperture.
Rough random boundaries are generated for the slits of the
aperture by PSD functions ensuring realistic line edge pro-
files comparable to those of 3D AFM measurements along the
sidewalls of the absorber lines. It has been shown, that for
apertures of a typical size of 1 µm in both directions and a
pixel size of 0.1 nm the spatial averaging for each sample of a
rough aperture is strong that just a few samples (e.g. ten) are
sufficient to reveal a stable bias of the mean values at differ-
ent diffraction orders. Compared to the diffraction pattern of
the unperturbed aperture, the mean efficiencies of the rough
apertures are revealing a systematic exponential decrease for
higher diffraction orders. The standard deviation of the edge
fluctuations σr and the diffraction order nj govern the revealed
exponential damping factor. Ensembles of rough apertures
with different values for the imposed standard deviation σ,
the linear correlation length ξ, and the roughness exponent α

have been investigated. Only a slight increase within a range
of 5% has been found for the determined σr compared to the
imposed σ of the associated rough ensemble. Former results,
obtained by rigorous computational expensive FEM computa-
tions have been confirmed on the base of a much more realistic
model of line edge roughness.

The implicated model extension for scatterometry by a damp-
ing factor for the calculated efficiencies allows to determine
the standard deviation σr of line edge roughness along with
the critical dimensions of the periodic surface structure. The
uncertainties of the determined values of σr are given as their
standard deviations. They were estimated by the Fisher infor-
mation matrix during the MLE approach to solve the inverse
problem of scatterometry (cf. Eq. (10)). For six different dies
of an EUV photo mask the σr values have been scatteromet-
rically determined and lie in a range from 2.7 ± 1.6 nm to
4.3 ± 0.9 nm. Note, that the measured EUV mask was fab-
ricated in 2005 and that the quality of the production process
for such photo masks has been improved by now.
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For two of the investigated dies of the photo mask, 3D AFM
measurements have been performed too and yield to a σRMS
value of 2.8 ± 0.3 nm for both dies, where the given uncer-
tainty is the standard deviation of repeated measurements.
Due to the significantly smaller expansion of the AFM mea-
surement region, roughness contributions from spatial fre-
quencies below 0.2 µm−1 could not be detected by AFM and
the AFM results are smaller than those of the scatterometry.
The comparisons presented are still preliminary results and
further studies including more measured dies and further im-
proved AFM measurement procedures need to be performed
to further rate the quality of the agreement.
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