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A direct comparison between a MEMS deformable
mirror and a liquid crystal spatial light modulator in
signal-based wavefront sensing
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Aberrations degrade the performance of optical systems in terms of resolution and signal-to-noise ratio. This work explores the feasibility
of a signal-based wavefront sensor, which employs a search algorithm to estimate Zernike coefficients of given aberrations. The search
algorithm was supported by Gaussian interpolation. The performance of two different reflective wavefront correctors, a deformable mirror
and a spatial light modulator in signal-based wavefront sensing, was compared under identical conditions. The aberrations were introduced
by using another identical high resolution reflecting spatial light modulator. The performance was quantified using the Strehl ratio, which
was estimated from simultaneously acquired Hartmann-Shack measurements of Zernike coefficients. We find that the spatial light modulator
can be a good alternative to the deformable mirror in terms of dynamic range and sensitivity, when speed is not a limiting factor. Distinct
advantages of the spatial light modulator are high number of pixels and a larger active area.
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1 INTRODUCTION
Conventional wide-field microscopes and confocal mi-
croscopes can produce images with a resolution down to
sub-micrometer scale. Fluorescence based microscopy meth-
ods provide functional information of cellular processes and
chemical specificity [1, 2]. New methods of nanoscopy that
combine optical and photophysical phenomena can resolve
details of a specimen in tens-of-nanometer scale [3]. However,
the specimen generally has inhomogeneous optical properties
and exhibits a spatially varying refractive index and absorp-
tion that reduce the resolution and imaging efficiency [4, 5].
In scanning fluorescence microscopy, the intensity of the
fluorescent emission decreases due to aberrations of the
excitation light. Using higher intensities to compensate this
effect can cause photo-bleaching and photo-toxicity [6].

Aberrations vary with specimen and cannot be fully corrected
in a static optical design. A dynamic wavefront correction is
required with Adaptive Optics (AO). A typical AO system
contains a Hartmann-Shack (HS) wavefront sensor (WFS) and
a deformable mirror (DM) or a spatial light modulator (SLM)
to sense and correct the wavefront aberrations [7].

The use of a HS WFS in microscopy is complicated by the fact
that a suitable guide star may not be present and instead a
confocal sensing technique has been proposed to limit the ax-
ial depth [8]. Moreover, the ability of the HS WFS in precisely
estimating the wavefront shape depends on the number of de-
tector pixels corresponding to a single sub-aperture, centroid-
ing errors and noise mechanisms [7, 9, 10].

To circumvent this limitation, and as microscopy ultimately

relies on quality parameters of the signal and images, wave-
front sensor-less AO systems based on the maximization of
a detector signal or sequential optimization of the adaptive
correction elements has been introduced [11]. Genetic algo-
rithms were employed to maximize second-harmonic signals
and two-photon fluorescence, laser light coupling into an op-
tical fiber and in reflection microscopy [12]–[16]. Hill climb-
ing algorithm [17], stochastic parallel gradient descent [18]
and modal-based wavefront sensing methods were imple-
mented [11, 19].

In this paper, a wavefront sensor-less approach is described
based on sequential maximization of the detected power, P,
using a photodetector placed behind a pinhole, which acts
like a spatial filter at the focal plane. A DM and an SLM were
successively employed as adaptive elements to correct aber-
rations under identical conditions and their performance was
compared. A commercial HS WFS was used as a standard in
both systems to evaluate the performance of the developed
signal-based AO system.

2 METHOD

Wavefront aberrations, φ can be represented in terms of
Zernike polynomials as follows:

φ(r, θ) =
i=∞

∑
i=1

aiZi(r, θ) (1)

where ai is the coefficient of Zernike polynomial Zi(r, θ). The
indexing scheme used is explained in Appendix A.
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2.1 Search algorithm

Before starting the correction process, the pinhole was ad-
justed to the location of maximum signal to reduce large mag-
nitude tilt aberration and defocus that could otherwise mask
the aberrations. Subsequently, the algorithm first searches
for a suitable value, aest

4 (an estimate for defocus) by keeping
ai=0, ∀ i 6= 4 until P is maximized. Next, a search for
the value of aest

1 (an estimate for a1) is made such
that by applying the recently estimated wavefront,
φest(r, θ)=aest

4 Z4(r, θ) + aest
1 Z1(r, θ) the detected power is

maximized further. The range and step size over which the
search for aest

i is made is critical. This procedure is contin-
ued up to the fourteenth (i=14) Zernike polynomial in our
case but can be carried on further to achieve a maximum
power, P. However, lower-order aberrations have a dominant
effect on the point-spread function when focusing the light
through a refractive-index mismatch medium in confocal
microscopy [19]. After correction, the estimated wavefront is
given by,

φest(r, θ) =
i=14

∑
i=1

aest
i Zi(r, θ) (2)

The residual wavefront error can be written,
φresidual = φ − φest. It can be corrected further by as-
suming that the new wavefront phase is φ = φresidual and the
entire process can be repeated a number of times. Here, three
loops were chosen providing satisfactory results. The Strehl
ratio is being optimized which is the ultimate goal in most
wavefront correcting systems. On average for both systems,
after the first loop ∼ 70%, after the second loop ∼ 85% and
after the third loop ∼ 87% of the wavefront error is corrected.
In general, the performance of the DM is slightly superior
to that of the SLM. Performing a normal search algorithm
in finer steps would lead to better correction but at the cost
of time. Different algorithms were implemented by others
for correcting unknown aberration and also to minimize the
number of measurements [20, 21]. In this paper, three-point
Gaussian interpolation was applied in order to reduce the
number of steps. Considering that for three different values
of the search parameter, αi = x1, x2, x3; the corresponding
measured power is pi = y1, y2, y3; such that y2 is the maxi-
mum measured power during the search of a single Zernike
coefficient, then the estimated Gaussian interpolated Zernike
coefficient, x0 would be given by,

x0 =
1
2

.
x2

3 − x2
2 + D(x2

1 − x2
2)

x3 − x2 + D(x1 − x2)
, (3)

where

D =
ln(y2)− ln(y3)

ln(y1)− ln(y2)
. (4)

During the correction of each Zernike term, the achieved max-
imum powers by normal search and Gaussian search are com-
pared and the coefficient value corresponding to the higher
power among these two is chosen for correction.

2.2 Simulation of random aberrat ions

The measured Zernike coefficients of the aberrations intro-
duced by a C. elegans sample, extracted from the literature [22],
were used to generate random aberrations of relevance in mi-
croscopy. The mean (M) and standard deviation (S) of the

FIG. 1 Aberration statistics in C. elegans [22].

Zernike coefficients (ai) are shown in Figure 1. Using these
statistics and Eq. (5), random Zernike coefficients were ob-
tained from which random wavefronts were generated. As the
tilt and defocus terms do not distort the shape of the focal
spot, they were excluded in the simulation of random aberra-
tions.

ai = Ri.Si + Mi (5)

where (Ri) is an array of random numbers whose elements are
normally distributed with mean 0 and variance 1.

2.3 Experimental setup

Two different correcting elements, a DM and an SLM, were
analyzed in this study using a single system as shown in
Figure 2. A spatially-filtered He-Ne laser (λ = 632.8 nm) with
3 mm beam diameter was used as light source. The MEMS
based DM (Boston Micromachines, USA) with 140 actuators
can be controlled by changing the voltage of each actuator
(maximum 210 V). These provide a maximum stroke of 3.5 µm
over a compact area and the clear aperture is 4.4 mm. The ac-
tuator pitch of the DM is 400 µm. The frame rate of the DM is
>2 kHz. A liquid crystal based SLM2 (LCOS-SLM, X10468-02
series from Hamamatsu, Japan) that has a pixel resolution of
800 × 600 and operates at 60 Hz was used as another correc-
tive element. The pixel pitch of the SLM is 20 µm and the fill
factor is 95%. The effective area of the SLM is 16 mm× 12 mm.
This 8-bit SLM can modulate the phase ∼ 3π at the cho-
sen wavelength. A stop was used to select either the DM
or SLM2 as the active corrective element in the system. The
AO system also consists of a real time HS WFS (39 × 31
lenslet array, Thorlabs, USA), that can operate at 15 Hz. The
focal length of the microlenses in the HS is 3.7 mm and the
subaperture pitch is 150 µm. The aperture size of the HS is
5.95 mm × 4.76 mm (maximum) and the sensitivity is λ/15
root-mean-square (RMS) at the chosen wavelength. A reflect-
ing SLM1 (LCOS-SLM, X10468-02 series from Hamamatsu,
Japan) was employed to introduce different low-order aber-
rations and aberrations generated using C. elegans statistics in
the system. In order to create identical conditions and beam
size restriction of the DM, only 150×150 pixels of the SLM
were used. After the lens f1 the beam diameter was 15 mm.
Lenses f2 and f3 were used to resize the beam diameter to
3 mm. Two 4f systems were used to place the SLM2, DM and
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FIG. 3 (a) Experimentally measured power against αj for the DM case. (b) Theoretical power as a function of αj. α represents the magnitude of the aberrations generated by the

DM.

FIG. 2 Experimental setup to compare the performance of a DM and an SLM in signal-

based wavefront sensing. All lenses are AR-coated achromats.

HS WFS in conjugate planes of SLM1. For wavefront sensing,
the light was focused by a lens ( f8 = 60 mm) on to a 25 µm
pinhole (PH) which is 19% smaller than the Airy disc diam-
eter. This choice of the pinhole size allows collecting enough
light and being sensitive to aberrations. A photodetector (PD,
PM 100D, S120C, Thorlabs, USA) placed behind the pinhole
was used to detect the wavefront related signal.

An in-house developed LabVIEW program was run with
three loops for the correction. The results of both correctors
are discussed in Section 3 and Section 4 respectively. The RMS
wavefront error values were calculated after correction by us-

ing, RMS=
√

∑i=14
i=1 a2

i and are shown in the figure captions.
The RMS values reduce ∼ 18%, if tilt coefficients are removed
in the RMS calculation.

3 DM-BASED AO SYSTEM

Modal wavefront correction allows to control all the DM actu-
ators simultaneously and hence is a faster alternative to wave-
front correction than using individual actuators or zonal cor-
rection. During the correction, a maximum admissible voltage
matrix was introduced that provides maximum DM deflec-
tion for a particular Zernike mode. Then the deflection was

reduced in small steps to identify the best configuration that
gives the highest detected power at the photodetector.

For the experimental verification of the capability of the DM
in correcting various modes, the normalized measured pow-
ers as a function of the search parameter, αj for individual
Zernike modes were plotted. A flat wavefront was introduced
by SLM1 after removing its own aberrations and different
Zernike modes were introduced with the DM by controlling
the actuator voltages, written in the form of an array, Vapp and
given the following equation:

Vapp = αj.[Vmax −V0] + V0 (6)

where Vmax is the maximum voltage array applied onto the
actuators for a particular mode, and V0 is a voltage array
corresponding to 50% bias stroke of the DM. The parameter
αj sets the magnitude of the applied aberration. Finally, the
power was measured as a function of αj, ∀ − 1 ≤ αj ≤ 1.
Here, α=1 corresponds to peak-to-valley (P-V) of 3.3 µm.

Figure 3(a) shows plots of experimentally measured powers
for different modes. It can be noted that maximum power is
measured near αj = 0. For comparison, simulations were also
performed to obtain theoretical plots as a function of normal-
ized measured power as shown in Figure 3(b). The limited
degrees of freedom and influence function of the DM, make
it difficult to generate some of the Zernike modes. Therefore,
the curves of measured power as function of αj for astigma-
tism (Z2

2), trefoil (Z−3
3 ) and tetrafoil (Z4

4) are broader in com-
parison with their theoretical counterparts.

The correction process was run by adopting a certain order.
Defocus (Z0

2) was removed as a first step followed by tilt
(Z−1

1 and Z1
1), astigmatism (Z−2

2 and Z2
2), coma (Z−1

3 and Z1
3),

trefoil (Z−3
3 and Z3

3), spherical (Z0
4), tetrafoil (Z−4

4 ), secondary
astigmatism (Z−2

4 and Z2
4), and tetrafoil (Z4

4).

3.1 Results

Defocus (Z0
2), astigmatism (Z2

2), trefoil (Z−3
3 ) and randomly-

generated aberrations were tested in the DM-based wave-
front correction system. Three different P-V: 1.00 µm, 1.50 µm
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FIG. 4 HS measured Zernike coefficients for the DM case: (a) SLM1 generated defocus of P-V : 1.00 µm, 1.50 µm and 2.00 µm (b) Defocus including other aberrations have been

removed after correction by the DM. The calculated RMS error equals 0.04 µm after correction for all three cases shown. Error-bars show the standard deviation of a total of

three measurement series.

FIG. 5 HS measured Zernike coefficients for the DM case: (a) SLM1 generated astigmatism (Z2
2 ) of P-V : 1.00 µm, 1.50 µm and 2.00 µm (b) Other aberrations including dominant

astigmatism (Z2
2 ) have been removed after correction by the DM. The calculated RMS errors are 0.03 µm (P-V 1.00 µm), 0.04 µm (P-V 1.50 µm) and 0.05 µm (P-V 2.00 µm)

after correction.

FIG. 6 HS measured Zernike coefficients for the DM case: (a) Trefoil (Z−3
3 ) of P-V : 1.00 µm, 1.50 µm and 2.00 µm were induced by SLM1 (b) Trefoil (Z−3

3 ) including other

aberrations have been removed after correction by the DM. The calculated RMS error equals 0.04 µm after correction for all three cases shown.

and 2.00 µm of each aberration were introduced in the sys-
tem by using SLM1. The wavefront aberrations in terms of
the Zernike coefficients measured by the HS are plotted in
Figure 4 before and after the correction of defocus using three
loops of power optimization.

HS measured Zernike coefficients before correction of astig-
matism (Z2

2), trefoil (Z−3
3 ) and randomly-generated aberra-

tions, introduced by SLM1 are shown in Figure 5(a), 6(a) and
7(a) respectively. Zernike coefficients were again measured af-
ter running three loops of wavefront correction and are shown
in Figure 5(b), 6(b) and 7(b) respectively. The time taken to
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FIG. 7 HS measured Zernike coefficients for the DM case: (a) SLM1 generated random aberrations of P-V : 1.15 µm and 1.17 µm (b) After correction by the DM. The calculated

RMS errors are 0.10 µm (P-V 1.15 µm) and 0.12 µm (P-V 1.17 µm) after correction.

FIG. 8 The graph of measured power against αj. (a) Experimentally measured power against αj for the SLM case. (b) Theoretical power as a function of αj. α represents the

magnitude of the aberrations generated by the SLM2.

complete each wavefront correction is approximately seven
minutes due to the three loops and the large number of αj
steps. All measurements were repeated three times to deter-
mine the mean and standard deviation.

4 SLM-BASED AO SYSTEM

Power measurements similar to those taken with the DM were
performed with the SLM2-based AO system. After introduc-
ing a uniform phase matrix of zero gray values on both SLMs,
small amount of astigmatism and trefoil were measured by
the HS. Therefore, a correction matrix (Zc), calculated from the
signal based WFS with a small step size, was added to SLM2 to
compensate these static aberrations. The power increased by
nearly 50% after the introduction of the correction matrix (Zc)
confirming that the SLM is also a source of aberrations if not
corrected precisely. To obtain the graph of measured power
as a function of αj for the SLM case, a flat wavefront was in-
troduced by SLM1 and individual Zernike modes of different
magnitude were introduced on SLM2. The applied phase ma-
trix for different aberration modes were calculated by using
the following equation:

Zapp = αj.Zmax + Zc (7)

where Zapp is the matrix of applied phase values, Zmax is the
phase matrix with the maximum allowed values for a particu-
lar mode and Zc is the SLM correction matrix. The parameter
αj, ∀ − 1 ≤ αj ≤ 1 is used to alter the magnitude of Zapp.

To avoid an overlap with the unmodulated zeroth diffraction
order, a blazed grating with a small period of 60 µm (equal to
3 pixels) was used and the measurements were performed us-
ing the first diffraction order. The measured first order diffrac-
tion efficiency was 0.26.

Figure 8 shows the change of experimentally measured signal
with different αj where αj=1 corresponds to P-V of 2.27 µm.
The plots are in good agreement with the theoretical predic-
tions and a maximum power was achieved at αj = 0 which
confirms the absence of any aberrations in significant quanti-
ties and accuracy of determining the correction matrix.

4.1 Results

Similar to the DM wavefront correction system, SLM1 was em-
ployed to induce aberrations and SLM2 was used for correc-
tion. The Zernike coefficients before and after wavefront cor-
rection were measured by the HS. Since the response time of
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FIG. 9 HS measured Zernike coefficients for the SLM case: (a) SLM1 generated defocus of P-V : 1.00 µm, 1.50 µm and 2.00 µm (b) Defocus including other aberrations have been

removed by SLM2 after correction. The calculated RMS errors are 0.09 µm (P-V 1.00 µm), 0.08 µm (P-V 1.50 µm) and 0.09 µm (P-V 2.00 µm) after correction.

FIG. 10 HS measured Zernike coefficients for the SLM case: (a) SLM1 generated astigmatism (Z2
2 ) of P-V : 1.00 µm, 1.50 µm and 2.00 µm (b) Other aberrations including dominant

astigmatism (Z2
2 ) have been removed after correction by SLM2. The calculated RMS errors are 0.10 µm (P-V 1.00 µm), 0.10 µm (P-V 1.50 µm) and 0.09 µm (P-V 2.00 µm) after

running the correction.

the SLM is ∼ 60 Hz as compared to the ∼ 2 kHz of the DM,
it requires approximately fifteen minutes to complete the full
correction process for the chosen number of twenty-one steps
and three loops.

Figure 9(a) shows the dominance of defocus before the wave-
front correction when SLM1 induced defocus of P-V 1.00 µm,
1.50 µm and 2.00 µm in the system consecutively. Figure 9(b)
shows the Zernike coefficient values measured after running
the wavefront correction process.

The plot in Figure 10(a) shows the Zernike coefficient values
while astigmatism (Z2

2) was induced in the system for three
different P-V of 1.00 µm, 1.50 µm and 2.00 µm before cor-
rection. Though astigmatism (Z2

2) alone was induced, a small
magnitude of other aberrations i.e. tilt (Z−1

1 ) and (Z1
1) were

noted. After running the wavefront correction, Zernike coeffi-
cient values measured by the HS were plotted in Figure 10(b).
Most of the dominant aberrations were removed after correc-

tion except tilt (Z1
1). This is likely caused by small mechanical

shifts of the HS mounting base during the prolonged measure-
ments.

Figure 11(a) shows the Zernike coefficient values after intro-
ducing trefoil (Z−3

3 ) in the system by SLM1 for three differ-
ent P-V of 1.00 µm, 1.50 µm and 2.00 µm. Figure 11(b) shows
the Zernike coefficient values after correcting dominant trefoil
(Z−3

3 ) including other aberration by SLM2.

We checked the correction process for randomly-generated
aberrations. Figure 12(a) shows two randomly generated aber-
rations by SLM1 of P-V : 1.15 µm and 1.17 µm. Figure 12(b)
shows the Zernike coefficients values after the correction.

5 DISCUSSION AND CONCLUSION

The measured Zernike coefficients before and after correction
were employed to calculate the on-axis Strehl ratio. The same
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FIG. 11 HS measured Zernike coefficients for the SLM case: (a) Trefoil (Z−3
3 ) of P-V : 1.00 µm, 1.50 µm and 2.00 µm were induced by SLM1 (b) Trefoil (Z−3

3 ) including other

aberrations have been removed by SLM2 based on the detected power. The calculated RMS errors are 0.06 µm (P-V 1.00 µm), 0.08 µm (P-V 1.50 µm) and 0.1 µm (P-V 2.00 µm)

after correction.

FIG. 12 HS measured Zernike coefficients for the SLM case: (a) SLM1 generated random aberrations of P-V : 1.15 µm and 1.17 µm (b) After correction by SLM2 based on the

detected power. The calculated RMS errors after correcting the aberrations are 0.10 µm (P-V 1.15 µm) and 0.12 µm (P-V 1.17 µm).

magnitude of aberrations were induced in both systems to
compare the performance of the DM and the SLM. Both de-
vices show a good improvement in Strehl ratios after the cor-
rection of the induced aberrations (Figures 13-16). The tilt co-
efficients were not included in calculating the Strehl ratios as
tilt terms do not effect the point spread function.

Although the SLM was operated in phase-only mode, there
could be minor amplitude modulation errors. A blazed grat-
ing was used to avoid unmodulated zeroth diffraction order
and a correction matrix was used to remove its own pattern of
aberrations.

Implementation of a Gaussian interpolation in combination
with normal search has enhanced the correction ability and
speed. It was observed that the DM has used more Gaussian
interpolated results compared to the SLM. Quadratic interpo-
lation was also implemented and the results were similar to
that obtained with Gaussian interpolation.

The improvement in Strehl ratio for the case of defocus is
shown in Figure 13. With the DM, calculated Strehl ratios were
3.02× 10−2, 1.60× 10−3 and 1.36× 10−2 before the correction
and 0.87, 0.84, 0.88 after the correction of dominant defocus of

P-V : 1.00 µm, 1.50 µm and 2.00 µm respectively. The Strehl
ratios in case of the SLM for similar P-V as in the DM case
were 0.03, 7.70× 10−3 and 1.90× 10−3 before correction and
0.66, 0.63, 0.69 after correction respectively. The improvement
in Strehl ratio for astigmatism (Z2

2) is shown in Figure 14. In
the DM case, the Strehl ratios for the P-V of 1.00 µm, 1.50 µm
and 2.00 µm were 0.16, 7.50× 10−3 and 1.21× 10−2 before cor-
rection and 0.92, 0.88 and 0.91 after correction respectively. For
the SLM, the Strehl ratios were 0.06, 4.60× 10−3 and 0.02 be-
fore correction and 0.72, 0.79 and 0.72 after correction respec-
tively. As it is difficult to introduce a pure Zernike mode at
a time as sensed by the HS WFS, other minor Zernike coeffi-
cients will tend to be present. Therefore, the calculated Strehl
ratios before correction for P-V: 2.0 µm were higher than for
P-V: 1.5 µm as seen in Figure 13(a) and Figure 14.

The improvement in Strehl ratio for trefoil is shown in
Figure 15. The Strehl ratio for P-V of 1.00 µm, 1.50 µm and
2.00 µm for trefoil (Z−3

3 ) were 0.20, 0.09, 0.07 before correction
and 0.91, 0.92, 0.90 after correction respectively for the DM
case. For similar amount of trefoil (Z−3

3 ) in case of the SLM,
the Strehl ratios were 0.19, 0.07, 0.07 before correction and
0.74, 0.66, 0.63 after correction.
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FIG. 13 Improvement of Strehl ratio before and after correction of defocus (Z0
2 ) is shown for (a) the DM and (b) the SLM system. In both plots, two colors Green and Red are

indicating the Strehl ratios before and after the correction respectively.

FIG. 14 Improvement of Strehl ratio before and after correction of astigmatism (Z2
2 ) is shown for (a) the DM and (b) the SLM system. Green and Red are indicating the Strehl

ratios before and after the correction respectively.

FIG. 15 Improvement of Strehl ratio before and after correction of trefoil (Z−3
3 ) is shown for (a) the DM and (b) the SLM system. Green and Red are indicating the Strehl ratios

before and after the correction respectively.

13073- 8



J. Europ. Opt. Soc. Rap. Public. 8, 13073 (2013) A. R. Jewel, et al.

FIG. 16 Improvement of Strehl ratio before and after correction of randomly generated aberration is shown for (a) the DM and (b) the SLM system. Green and Red are indicating

the Strehl ratios before and after the correction respectively.

The improvement in Strehl ratio for randomly generated aber-
rations is shown in Figure 16. The Strehl ratio for randomly
generated aberrations of P-V : 1.15 µm and 1.17 µm were
1.40× 10−2 and 1.33× 10−2 before correction for the DM case
whereas 1.76× 10−2 and 1.71× 10−2 for the SLM case respec-
tively. After correction the Strehl ratios were 0.56, 0.50 for the
DM case and 0.50 and 0.48 for the SLM case respectively. The
accuracy of wavefront correction can be improved further by
increasing the number of loops and reducing the step size but
at the cost of time.

In conclusion, the performance of two reflective wavefront
correctors, a DM and an SLM have been compared for signal-
based AO. It has been found that an SLM can be a promis-
ing alternative to the DM as the pixel resolution in SLM is
higher than that of the DM. The DM used here can modu-
late the phase to a maximum of 22π (3.5 µm stroke) whereas
the SLM can modulate the phase beyond 22π, which can be
achieved by phase wrapping. However, phase modulation
and wrapping by the SLM can generate losses through diffrac-
tion. At the chosen wavelength, the maximum phase ampli-
tude of the SLM is ∼ 3π when the phase is not wrapped.
150 × 150 pixels were used on the SLM to employ similar
conditions as for the DM. With more pixels, the errors due to
phase wrapping could be reduced while correcting higher or-
der and large magnitude aberrations [23]. Zernike coefficients
have also been measured after correction of astigmatism (Z2

2)
by binning the SLM pixels such that 150× 150 pixels acts as
12 × 12 pixels similar to the DM actuators. The Strehl ratio
with binning was one order lower than without binning.

It was found that the DM can perform better than the SLM for
the chosen number of pixels. The correction speed can poten-
tially be accelerated using more advanced search algorithms
for confocal and multiphoton microscopy where the use of HS
WFS is problematic [24].
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A APPENDIX

The Zernike polynomials (Zm
n ) used in this paper are

listed in Table 1. The mode indexing schemes, using the
single index i or the dual indices (n,m), are explained by
J. Schwiegerling [25, 26]. r is the radial coordinate ranging
from 0 to 1 and θ is the azimuthal component ranging from 0
to 2π.

Index Zernike mode
i n m Z(r, θ) Aberration
1 1 -1 2rsin(θ) Tilt
2 1 1 2rcos(θ) Tilt
3 2 -2 2

√
3 r2 sin(2θ) Astigmatism

4 2 0
√

3(2r2-1) Defocus
5 2 2 2

√
3 r2cos(2θ) Astigmatism

6 3 -3 2
√

2 r3sin(3θ) Trefoil
7 3 -1 2

√
2(3r3-2r)sin(θ) Coma

8 3 1 2
√

2(3r3-2r) cos(θ) Coma
9 3 3 2

√
2 r3cos(3θ) Trefoil

10 4 -4
√

10 r4sin(4θ) Tetrafoil
11 4 -2

√
10 (4r4sin(2θ)-

3r2sin(2θ))
Secondary
astigmatism

12 4 0
√

5 (6r4-6r2+1) Spherical
13 4 2

√
10 (4r4cos(2θ)-

3r2cos(2θ))
Secondary
astigmatism

14 4 4
√

10 r4cos(4θ) Tetrafoil

TABLE 1 Zernike polynomials.
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