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By analyzing the convergence of the retrieved effective electromagnetic parameters, we presented that one wavelength of the propagating
wave in the nanostructure is the minimum thickness requirement for effectively characterizing a finite thickness nanostructure. This
thickness condition has been separately validated in a photonic crystal with negative refraction and in a typical fishnet metamaterial which
has been investigated theoretically and experimentally before.
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1 INTRODUCTION

Periodic nanostructures, such as photonic crystals (PCs)
and metamaterials, are often characterized by the ef-
fective electromagnetic parameters based on implicit
assumptions inspired by natural material models [1].
In most cases, these effective electromagnetic parame-
ters are obtained by utilizing the field averaging [2]–[6],
extended Maxwell-Garnett [7]–[10] or S-parameter retrieval
method [11]–[20]. However, different from bulk homoge-
neous material, the retrieved parameters of nanostructures,
especially the fishnet metamaterials, are always sensi-
tive to the slab thicknesses [21]–[24]. Therefore, in this
respect, most experimental samples such as the stacking
of three-functional [25], four-functional [26], and ten-
functional [27, 28] layers and even the thickest fabricated
fishnet structures cannot be treated as a homogeneous
metamaterial with effective electromagnetic parameters.

Although we have known that these parameters will be con-
verged and independent of the slab thicknesses when the slab
thickness increases to some extent [21]–[24], it is still unclear
what is the minimum thickness prerequisite for achieving this
convergence and what is the underlying physics. In this pa-
per, we focus on tackling these problems. Unlike the works on
the convergence of retrieved parameters in fishnet metamate-
rials, we take a PC with a negative refractive index as an exam-
ple, and systematically investigate the dependence of the re-

trieved effective electromagnetic parameters on the distances
between the input/output port and the PC slab. Nevertheless,
we will borrow the similar phenomena discussed intensively
in fishnet metamaterials to analyze the physics underlying the
thickness conditions. Particularly, we will establish guidelines
for the thickness conditions under which the periodic nanos-
tructures such as PCs and metamaterials can be characterized
by the effective electromagnetic parameters.

2 MODEL AND METHOD

The two-dimensional (2D) dielectric PC slab with a negative
refractive index we take as an example is shown in Figure 1(a).
This PC structure is made of a square lattice of air holes etched
in a low loss material with dielectric permittivity constant
ε = 10.6 [29]. The lattice constant is a and the diameter of the air
hole is 2r = 0.7a. Throughout this paper we only consider the
transverse-magnetic (TM) modes whose electric field is polar-
ized along the air holes.

Using the plane wave expansion method, the band structure
of this PC is calculated and shown in Figure 1(b), where the
frequency ( fnor) is normalized to a/λ0 (λ0 is the wavelength
in vacuum). As shown in Figure 1(b), a left-handed dispersion
branch can be noted in the second band. The normalized fre-
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FIG. 1 (a) Schematic of the PC and the coordinate system describing simulation pro-

cesses. (b) Band structure of the PC for the TM polarization. The dashed line denotes

the light line in vacuum.

quency fnor = 0.2858, at which the effective index neff = −1, is
denoted by the intersection point between the light line and
the second band along the Γ-X direction. With a = 443 nm, this
normalized frequency corresponds to the telecommunication
wavelength λ = 1550 nm.

Although the PCs are beyond the traditional long wavelength
limit [8], they can be described by the effective parameters un-
der the single-mode approximation [30, 31]. For electromag-
netic waves incident normally to the PC surfaces, the effective
refractive index neff and effective impedance zeff are related
to the reflection coefficient S11 at the front interface and the
transmission coefficient S21 at the back interface by [11]

neff =
1

k0d
arccos

[
1

2S21
(1− S2

11 + S2
21)

]
+

2mπ

k0d
, (1)

zeff = ±

√
(1 + S11)2 − S2

21
(1− S11)2 − S2

21
, (2)

where m is an integer related to the branch index of the real
part of effective refractive index Re(neff), d is the slab thick-
ness, and k0 is the wave number of the incident wave in free
space. Since the PC is a passive medium, the corresponding
real part of effective impedance Re(zeff) and imaginary part
of effective refractive index Im(neff) must be greater than zero
according to the causality. This retrieval procedure is initially
presented by Weir [32], and now has been successfully applied
to periodic nanostructures [11]–[20].

The transmission and reflection coefficients, used in the re-
trieval procedure, are obtained by using the finite-difference
time-domain (FDTD) method [33] in this paper. Periodic
boundary conditions are employed to simulate an infinite
lattice perpendicular to the direction of propagation, and per-

FIG. 2 Retrieved effective refractive index neff with ds = 0 nm for different number of

unit cells.

fectly matched layers are used for the remaining boundaries.
Along the propagation direction, two recorders are located
at at ds away from the PC interfaces to record S′11 and S′21,
respectively. Then, the S parameters at the slab interfaces,
which are used in the retrieval procedure, can be obtained
by S11 = S′11exp(−ik02ds) and S21 = S′21exp(−ik02ds). With
this kind of configuration, the finite-thickness nanostructures
cannot be treated as a homogeneous material if the retrieved
parameters are dependent on either ds or the thicknesses.

3 RESULTS AND DISCUSSION

To check these dependence of our photonic crystal samples,
we first calculated the effective refractive index neff as a func-
tion of wavelength λ for one unit cell, two, three and six unit
cells of PC with ds = 0 nm. For comparison, the neff of the
infinite PC has also been figured out by solving the master
equation using the plane wave expansion (PWE) method. As
shown in Figure 2, all curves of the neff almost overlapped
each other and the neff increases monotonously with λ from
about −1.25 to −0.65. These results indicated that for all re-
trieved models with ds = 0 nm, irrespective of the numbers of
unit cells, mimic very closely the infinite periodic nanostruc-
ture. Just for this reason, this configuration with ds = 0 nm has
been widely used for electromagnetic characterizing the infi-
nite nanostructures. However, most of the fabricated samples
at optical wavelengths were only a few layers. Are the effec-
tive parameters of the infinite nanostructures still suitable for
such thin samples?

In fact, there are complicated surface waves generated at the
interfaces between the periodic nanostructure and the free
space. For a very thin nanostructure, the surface waves at the
front interface always extend to the back one. As a result, the
retrieved effective electromagnetic parameters will vary with
ds till the effects of the surface waves can be ignored.

To avoid the effects of the surface waves, we adopted config-
urations with ds 6= 0 nm (this kind of configuration is widely
used to avoid the numerical errors for calculating S parame-
ters at the inhomogeneous interfaces). As we known the sur-
face waves fade out exponentially in the free space, so we use
a ds around λ0 to diminish the effects of surface waves (λ0 is
the wavelength in free space).
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In this paper, ds = 1550 nm has been taken as an example,
and the retrieved parameters have been recalculated and plot-
ted in Figure 3. Compared with the results of ds = 0 nm, it is
obvious that different parameters have been obtained for one
unit cell and two unit cells. But when the number of unit cells
is larger than three, the retrieved neff nearly all overlapped
those of the infinite periodic nanostructures again. Addition-
ally, similar phenomena have also been found in Figure 3(b)
for the other retrieved electromagnetic parameter, i.e., the ef-
fective impedance zeff. Because of the same retrieved results,
the retrieved results of 4 and 5 unit cells have been omitted
from Figure 3 for the sake of clarity. From the above results,
we can conclude that for this PC near fnor = 0.2858 three-unit-
cells thick is the minimum thickness requirement for achiev-
ing converged retrieved parameters.

Definitely, the convergency of the retrieved parameters are
determined by the resonant interactions between the elec-
tromagnetic waves and the periodic structures, which is the

FIG. 3 (a) Retrieved effective refractive index neff and (b) impedance zeff with

ds = 1550 nm for different number of unit cells. The neff obtained by utilizing the

PWE method and the zeff with ds = 0 nm for one unit cell are added to (a) and (b),

respectively.

FIG. 4 Retrieved effective refractive index neff as the function of the PC thickness with

ds = 1550 nm.

physical origin of the abnormal dispersion of PCs, To estab-
lish these interactions basically, the periodic nanostructures
should be thick enough to hold nearly one whole oscilla-
tion. In other words, the nanostructures’ thicknesses at least
are close to the wavelengthes of the propagating waves in
the nanostructure. This suggests a thickness condition under
which the retrieved effective electromagnetic parameters can
be used to characterize the finite periodic nanostructures.

To verify the above deduction, we analyzed the dependence
of the retrieved effective refractive index neff on the layer
thickness with ds = 1550 nm for another two normalized
frequencies, i.e., f a

nor = 0.32 and f b
nor = 0.263. As shown

in Figure 4, for f a
nor = 0.32 the retrieved refractive index

converges to na
eff = −0.6 when the slab is thicker than 5a.

Moreover, the wavelength in PC slab at this frequency is
λa = a/ f a

nor
∣∣na

eff

∣∣ = 5.21a. For f b
nor = 0.263, the minimum thick-

ness for achieving the convergence of nb
eff changes to 3a and

the wavelength in PC slab is λb = a/ f b
nor
∣∣nb

eff

∣∣ = 2.53a. It is ob-
vious that the retrieved parameters converge when the slab
thickness is close to the wavelength of the propagating wave
in the PCs.

In addition, similar calculations were performed to check our
assumptions in the fishnet metamaterials. We took the same
model discussed in the Refs. [22] and [28]. Due to its inhomo-
geneous interfaces, these two recorders were placed far away
from the interfaces of the fishnet metamaterial. The retrieved
effective refractive index neff as a function of the layer num-
bers were plotted in Figure 5. For the wavelength in vacuum
λc = 1811 nm, the retrieved nc

eff waves with the layer num-
bers at first and converges to −2.0 at last when the thickness
of the fishnet MMs exceeds 11az, where az = 2t + s (t and s
correspond to the thickness of metallic cladding (Ag) and di-
electric spacer (MgF2)) is the unit thickness. For this model,
az = 80 nm and 11az = 880 nm ≈ λc/

∣∣nc
eff

∣∣. The same thing
takes place for the wavelength in vacuum λd = 1763 nm whose
retrieved nd

eff are converged to −1.55 until the layer numbers

FIG. 5 Retrieved effective refractive index neff as the function of the fishnet meta-

materials (MMs) thickness with ds = 1811 nm for nc
eff = −2.0 and ds = 1763 nm for

nd
eff = −1.55. Inset shows the MMs design and polarization configuration. The geo-

metric parameters are ax = ay = 860 nm, wx = 565 nm, wy = 265 nm. t = 15 nm and

s = 50 nm are corresponding to the thickness of metallic cladding (Ag) and dielectric

spacer (MgF2). A Drude model is used for the dielectric parameters of silver, with

plasma frequency ωp = 9.0 eV and scatting frequency γ = 0.054 eV. The dielectric

constant of the MgF2 is εr = 1.9.
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are larger than λd/
∣∣nd

eff

∣∣ /az ≈ 14. We should mention here
that, although the lattice constant of the fishnet metamaterial
along the light propagation direction is far less than the wave-
length, the others are of the same order of magnitude to the
wavelength [34]–[36].

4 CONCLUSION

In summary, we have presented a thickness condition under
which the periodic nanostructures, such as PCs and meta-
materials, can be characterized by the effective electromag-
netic parameters within the single-Bloch-mode approxima-
tion. This thickness condition, which has been demonstrated
in a photonic crystal and in a typical fishnet metamaterial re-
spectively, will be helpful for the design of ultrathin periodic
nanostructure-based optical devices.

Although we have only discussed a specific square lattice PC
and fishnet metamaterial, this conclusion can be extended to
other nanostructures with abnormal dispersion. However, we
should point out that the thickness condition is unsuitable
for the nanostructures in the traditional long-wavelength limit
due to different physical origins.
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