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Multipole polarizability of a nanodimer in optical waves
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In this work we study the interaction of visible light with plasmonic nanodimers that, under particular illumination conditions, do not
exhibit any electric dipole excitations. It has previously been found out that the dipole suppression phenomenon disappears when the
illumination direction is reversed. As a consequence, a homogeneous nanomaterial consisting of such nanodimers can be expected to
be spatially dispersive, such that the conventional electric polarization vanishes for certain directions of light propagation. In order to
reveal the complete picture of the light-nanodimer interaction, we analyze the multipole excitations in a dimer at various illumination
angles. In particular, we introduce an analytical model for the multipole polarizability tensors of the dimer that, in contrast to conventional
polarizability tensors, depend on the light propagation direction. The model is verified by rigorous numerical calculations. It can be used to
gain insight into the properties of optical nanomaterials, such as metamaterials, in which higher-order multipoles can be efficiently excited.
[DOI: http://dx.doi.org/10.2971/jeos.2013.13009]
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1 INTRODUCTION

The interaction of light with subwavelength-size particles is
usually accurately described in terms of electric dipole excita-
tions. Consequently, the widely used electrodynamics of con-
tinuous media rely upon the dipole approximation of the ma-
terial constituents. As an exception, in custom-designed opti-
cal nanomaterials the unit cell response can be tuned in such
a way that other multipoles are excited as well [1], which
leads to various interesting optical phenomena [2] and ex-
traordinary optical effects [3]. In order for the extraordinary
phenomena to be strong, the light scattering by higher-order
multipoles must be significant [4]. Furthermore, in order to
treat the nanomaterial as a homogeneous one, the dimensions
of the unit cell must be much smaller than the illumination
wavelength [5, 6]. Thus, we seek to design a sub-wavelength
unit cell that will provide a considerable polarizability for the
higher-order multipoles.

For visible light, it has been shown that a pair of silver bars can
exhibit a resonance with pronounced electric quadrupole and
magnetic dipole excitations [7]. More recently, it was shown
that a nanodimer composed of two silver discs can be tuned
to completely suppress the electric dipole excitation by light
at normal incidence [4]. This opens up a possibility to create
a homogeneous nanomaterial in which the light-matter inter-
action is completely governed by the higher-order multipoles
for a given direction of light propagation. The dominance of
the higher-order multipoles can also be used to enhance elec-
tric dipole-forbidden transitions in quantum mechanical sys-
tems [8]. So far, the optical properties of such electric dipole-

free nanodimers, including their response at various incidence
angles, have not been thoroughly investigated.

In this paper, we present a complete description of the inter-
action of optical plane waves with a nanodimer structure that
exhibits electric dipole suppression. The interaction is char-
acterized in terms of optical multipole polarizabilities of the
nanodimer. Analytical expressions for these polarizabilities at
arbitrary incidence angles are derived and verified numeri-
cally. This characterization is especially valuable for obtaining
spatially dispersive optical parameters [9] that describe nano-
materials consisting of such dimers. In Section 2, we demon-
strate the electric dipole suppression in a disc nanodimer and
show the dependence of the multipole excitations on the ori-
entation of the dimer with respect to the incident light. The
dipole suppression is shown to occur for a wide range of inci-
dence angles. In Section 3, we introduce multipole polarizabil-
ity tensors that fully characterize the angle-dependent optical
response of the dimer through a few simple analytical expres-
sions. Finally, in Section 4 we summarize our results.

2 ELECTRIC DIPOLE SUPPRESSION IN
DISC NANODIMERS

We consider a disc nanodimer that consists of two axis-
aligned silver discs arranged as in Figure 1(a). The dimensions
of the nanodimer are chosen to be R1 = 15 nm, R2 = 20 nm
and h1 = h2 = s = 10 nm. The size of the dimer is there-
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FIG. 1 (a) Geometry of the disc nanodimer. (b-d) Spectra of the multipole contributions

to the scattering cross section of the nanodimer. The incident light has (b) θ = 0, (c)

θ = 45◦ and TE polarization, or (d) θ = 45◦ and TM polarization.

fore much smaller than the optical wavelength. The structure
is considered to be illuminated with an optical plane wave
that propagates at an angle θ with respect to the dimer axis.
For each illumination angle θ, the incident light can be decom-
posed into two orthogonal polarization components. We shall
call the component with the electric (magnetic) field perpen-
dicular to the dimer axis as the TE (TM) component.

We start by numerically calculating the electromagnetic field
scattered by the nanodimer using the computer software
COMSOL Multiphysics. The relative electric permittivity of
silver is obtained from [10]. For illumination at normal inci-
dence from the side of the smaller disc (θ = 0), the electric
currents in the two discs can oscillate out of phase with re-
spect to each other, such that the net electric dipole moment
p is canceled. For our nanodimer, this dipole suppression oc-
curs at a vacuum wavelength of λ0 = 592 nm when the sur-
rounding medium is a dielectric of refractive index 1.5 (see
Figure 1(b)). At this wavelength, the multipole decomposition
[11] of the scattered field reveals that the nanodimer is equiv-
alent to a polarizable point current quadrupole. This cur-
rent quadrupole, being characterized by two opposite time-
harmonic currents, is a superposition of the classical magnetic
dipole and electric quadrupole. The wavelength at which p
disappears can be tuned, e.g., by changing the disc separation
s [4].

Next, we consider the case of oblique incidence that has not
been considered previously. The multipole scattering cross
sections for TE and TM polarized illuminations at θ = 45◦

are depicted in Figures 1(c) and 1(d), respectively. For the TE
polarized illumination, the electric dipole moment is still well
suppressed at θ = 45◦. The situation is different for the TM
polarized light, since the polarization component parallel to
the dimer axis provides an additional contribution to the elec-
tric dipole scattering. Thus, at θ = 45◦ the scattering contri-
butions of the electric dipole and the current quadrupole are
comparable at λ0 = 592 nm. For both polarizations, the spec-
tral location of the minimum of the electric dipole moment is
seen to be independent of θ.

FIG. 2 Comparison of the multipole contributions to the nanodimer scattering cross

section as a function of the angle of incidence for (a) TE and (b) TM polarized light.

Since the wavelength at which the electric dipole gets sup-
pressed is independent of the angle of incidence, it is mean-
ingful to analyze the scattering cross sections at this particular
suppression wavelength. In Figure 2 the scattering cross sec-
tions are depicted versus the angle of incidence for the two or-
thogonal polarizations. The current quadrupole is found to be
the dominating multipole up to the incidence angle of θ = 60◦

for the TE polarization and θ = 45◦ for the TM polarization.
Therefore, in a nanomaterial composed of such nanodimers,
the electric dipole suppression can be expected to take place
for a wide range of light propagation directions. Furthermore,
on the basis of the Fourier plane wave decomposition, it is ev-
ident that the dipole suppression can also be achieved when
using tightly focused optical beams or beams with large wave-
front curvatures.

From Figure 2 we notice that the excited dipole moment
increases rapidly as θ is increased above 90◦. For the TE
polarization, the strength of the excited current quadrupole
changes only weakly with θ. For the TM polarization, on the
other hand, the current quadrupole is suppressed at θ = 90◦.
This can be explained by the fact that the z-component of the
electric field is unable to efficiently excite higher-order multi-
poles. In the next section we present a simple analytic model
that successfully explains the features in Figure 2.

3 MULTIPOLE POLARIZABILITY MODEL
FOR NANODIMERS

In order to gain physical insight into the dependence of the
nanodimer multipole excitations on the incidence angle, we
develop a simple analytical model for the multipole polar-
izability. In this model, we assume for simplicity that the
dipole polarizability components of the individual nanodiscs
of the dimer are independent of the illumination direction. Let
us consider the example of a time-harmonic TE polarized il-
lumination with the complex amplitude of the electric field
given as E(r) = x̂E0 exp[ik(z cos θ + y sin θ)], where k is the
wavenumber in the surrounding medium. In this case, the ef-
fective dipole moment of the disc pair, when considered as a
point particle in the center of the dimer, can be written in the
form

p(θ) =
[
α1 exp

(
− i

kd
2

cos θ
)
+ α2 exp

(
i
kd
2

cos θ
)]

E0, (1)

where αj is the effective polarizability of disc j as a part
of the nanodimer, d is the center-to-center separation be-
tween the discs and E0 = x̂E0. Defining the quantities
α̃1 = α1 exp(−ikd/2) and α̃2 = α2 exp(ikd/2), we rewrite
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Eq. (1) as

p(θ) =
{

α̃1 exp
[
− i

kd
2
(cos θ − 1)

]
+ α̃2 exp

[
i
kd
2
(cos θ − 1)

]}
E0. (2)

For a subwavelength-size nanodimer the phase delay between
the discs is small, i.e., kd << π. Writing the exponential func-
tions in Eq. (2) as their Taylor series and neglecting all terms
of higher order than (kd)1, we obtain

p(θ) ≈ p(0) + ikd
1− cos θ

2
(α̃1 − α̃2)E0. (3)

In order for a nanodimer to exhibit electric dipole suppres-
sion at normal incidence, the dipole moments in the individ-
ual discs must be of equal amplitudes and oscillate out of
phase such that α̃2 = −α̃1, yielding p(0) = 0. Eq. (3) then
suggests that if the illumination direction is reversed, an elec-
tric dipole moment of p = 2ikdα̃1E0 is excited. If the inci-
dent light is TM polarized, in which case E(r) = (ŷ cos θ −
ẑ sin θ)E0 exp[ik(z cos θ + y sin θ)], the disc symmetry allows
us to use the same α̃1 and α̃2 to evaluate the y-component
of p. However, the response to the z-component of the inci-
dent electric field is described by different polarizabilities of
the discs. These polarizabilities are found to be non-resonant
and have nearly equal arguments. Thus, the second term in
Eq. (3) can be neglected for pz, and the corresponding polariz-
ability of the dimer becomes independent of θ.

The dipolar response of the nanodimer to arbitrary plane-
wave illumination can be characterized by introducing a po-
larizability dyadic

↔
α that depends on θ. The excited electric

dipole moment is then expressed as

p(θ) =
↔
α (θ) · E0. (4)

Since the nanodimer possesses axial symmetry, we propose a
diagonal dipole polarizability dyadic with the elements

αxx = αyy = a1 +
1− cos θ

2
ã1, (5)

αzz = a2, (6)

where the coefficients a1, ã1 and a2 are independent of θ. The
form of Eq. (5) is chosen in accordance with Eq. (3) such that
a1 = 0 when the nanodimer is tuned to have electric dipole
suppression for θ = 0, and the polarizability for the opposite
illumination direction is ã1. The element αzz is assumed to be
constant as explained above. According to Eqs. (5) and (6), cal-
culating or measuring the dipole response at θ = 0, θ = π/2
and θ = π is enough to determine the dipole response at any
incidence angle.

The excitation of the current quadrupoles is described by the

current quadrupole polarizability triadic
↔
β as

↔
Q (θ) =

↔
β (θ) · E0. (7)

Under the dipole suppression conditions, the main excitations
in the nanodimer are the current quadrupoles Qxz and Qyz
(see [4]). However, also minor contributions from the cur-
rent quadrupoles Qzx and Qzy are present. All other current

FIG. 3 Components of the current multipole moments excited in the silver disc nan-

odimer by a plane wave with amplitude 1 V/m and vacuum wavelength λ0 = 592 nm.

The moments px , Qxz and Qzx are excited by a TE polarized wave, while the moments

py, pz, Qyz and Qzy are excited by a TM wave. The real parts (solid lines) and imag-

inary parts (dashed lines) of the numerically computed moments are shown along

with the real parts (circles) and imaginary parts (stars) of the moments described by

the analytical Eqs. (4)–(9).

quadrupoles are found to be negligible. Analogously to the
dipoles, we propose a quadrupole polarizability triadic with
the following non-zero elements

βxzx = βyzy = b1 +
1− cos θ

2
b̃1, (8)

βzxx = βzyy = b2 +
1− cos θ

2
b̃2, (9)

where the nanodimer geometry and the interaction symmetry
are taken into account. The optical response of the disc nan-
odimer is therefore considered to be completely described by
the four different multipole polarizabilities αxx, αzz, βxzx, and
βzxx.

In order to verify the proposed analytical expressions for
the nanodimer polarizabilities, we numerically calculate
the excited multipoles as functions of θ. The calculated
components of the excited electric dipole moment px for
the TE polarization and py and pz for the TM polariza-
tion are shown in Figures 3(a) and 3(b), respectively, by
the solid and dashed curves standing for the real and
imaginary parts of the moments. In the same figure (see
circles and stars) we show the results obtained from
Eqs. (4)–(6) with a1 = 0, ã1 = (4.2 + 1.6i) × 10−33Cm2/V
and a2 = 1.2 × 10−33Cm2/V. These coefficients were calcu-
lated by using the numerical data obtained for θ = 0, θ = π/2
and θ = π.

Similarly, the excited current quadrupole moments Qxz and
Qzx for the TE polarization and Qyz and Qzy for the TM po-
larization are shown in Figures 3(c) and 3(d), respectively.
The real and imaginary parts of the moments are shown
by the solid and dashed lines, respectively. For the current
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quadrupole polarizability coefficients we have

b1 = (−1.59− 0.08i)× 10−40Cm3/V ,

b̃1 = (0.52 + 1.15i)× 10−40Cm3/V ,

b2 = (0.19 + 0.02i)× 10−40Cm3/V and

b̃2 = (−0.05− 0.13i)× 10−40Cm3/V .

Figure 3 shows a remarkable agreement between the analyti-
cal model introduced by Eqs. (4)–(9) and the rigorous numer-
ical calculations. At angles θ ≈ π/2, there is a minor devia-
tion in the analytical multipole moments py, Qyz and Qzy for
the TM polarized light. This deviation originates from the fact
that also the z-component of the electric field is able to par-
tially excite these multipoles. This coupling can be added to
the model by introducing additional non-zero polarizability
elements, which can be solved from the multipole response at
θ = π/2. The magnitudes of these additional elements are,
however, quite small and therefore they do not considerably
affect the total light-nanodimer interaction.

The multipole polarizability model introduced here is based
on considering the interference of the waves scattered by the
two spatially separated dipolar particles. Thus, the model is
not restricted to the case of the disc nanodimer and the elec-
tric dipole suppression phenomenon, but can be applied for a
general description of light interaction with pairs of subwave-
length particles.

The angular dependence of the multipole excitations is re-
sponsible for the spatial dispersion in optical nanomaterials.
It is therefore important to have a complete picture of this de-
pendence for the nanoscatterers composing such nanomate-
rials. If, for example, the nanomaterial consists of nanoscat-
terers of the type considered here, one can obtain the macro-
scopic dipole and quadrupole polarizations for each propa-
gation direction and polarization of the field by multiplying

the calculated p and
↔
Q with the density of the particles in the

material. The multipole polarizabilities in this case have to be
calculated by taking into account the interaction between the
particles in the nanomaterial.

4 CONCLUSIONS

We have shown that subwavelength-size nanodimers can ex-
hibit electric dipole suppression for a wide range of incidence
angles. In these cases, the light-nanodimer interaction can be
described solely by the current quadrupole excitations. For a
simplified and more insightful description of this interaction
at arbitrary angles of incidence, we have presented an ana-
lytical model that introduces dipole and quadrupole polariz-
ability tensors for the nanodimers. This simple model shows
an excellent agreement with rigorous numerical calculations.
Knowing the analytical expressions for the plane wave re-
sponse of the dimer at all possible incidence angles, the re-
sponse to an arbitrary propagating field is easily obtained by
superposition. The introduced multipole polarizabilities can
also be used to determine the spatially dispersive macroscopic
optical parameters of a homogenized optical nanomaterial
constructed of resonant nanodimers.
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