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Synthesis of sources with Markovian features
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We realize the design and synthesis of partially coherent secondary sources illuminating an ensemble of mobile transmittances in a tandem
array. The motion states of the transmittances are random variables which are synchronized by means of the conditional probability density
function whose control allows generating sources whose light emission corresponds with a Markov chain. The experimental results are
shown. [DOI: http://dx.doi.org/10.2971/jeos.2013.13005]
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1 INTRODUCTION

In recent times, in almost all the optical areas, it has become
necessary to synthesize partially coherent sources. For ex-
ample, in microscopy it is necessary to have low coherence
sources in order to control the diffraction effects, in commu-
nication system, coherence modulators have been proposed
to drive and send a great volume of information. In metama-
terials, it is necessary to use a partially coherent field to in-
duce tuneable resonance effects to generate self-transparency,
in plasmon optics is necessary to transfer the partially coher-
ence features to surface plasmon fields in order to generate
long range surface plasmon modes [1]–[5].

A great part of coherence theory is supported by the fact that
primary sources can be visualized as formed by a set of point
sources, where all of them are statistically independent. This
means that light emerging from each point does not influence
the emission of the neighbouring points. For incandescent and
discharge sources the emission time from each point is typ-
ically of 10−8 s. Then, for smaller times, we can expect cer-
tain correlation between the light emerging from each point
and the hypothesis on statistical independence is no longer
valid. These effects become evident in pulsed lasers, where
the pulse width may be in the range of nano/femto-seconds
and the coherence length is extremely short. In order to anal-
yse this effect, correlation processes of third and fourth order
are necessary. In this way, the Markov process can be a suit-
able model to describe the coherence structure of light, this
is because in a Markov process the future states depends of
the past and presents states. The definition of a Markov pro-
cess is given by the conditional probability density function

P(xi+p, ti+p, ...; xi+1, ti+1|xi, ti, ...; x1, t1), where xi are the states
of a random variable at given time ti [6], for the present study
xi represents the motion states of the boundary condition for
the optical field and it is applied to the synthesis of a new kind
of sources whose light emission depends on its history, corre-
sponding to the Markov process.

The principal feature of these sources is that they have a
substructure that can be controlled. The study is performed
in the context of the physical optics, where, in general, the
control of light is obtained by the design and illumina-
tion of objects that have a transmittance functions T(x, y),
corresponding to the boundary condition of the optical
field. In order to induce partially coherent features, it is
necessary to employ time-dependent transmittances [7]–[10].
We propose to use separable transmittances of the form
T(x, y, t) = T1(x, y, t1)T2(x, y, t2)...TN(x, y, tN) [11].

The reason to use this transmittance is that we can to con-
trol the number N of transmittances Ti and put each one in
independent motion state, also the movements can be time
ordering in a probabilistic sense. With this configuration we
generate optical fields whose amplitude correlation function
is easily controlled. The motion states of each transmittance
are considered as random variables, having two possible val-
ues “1” with probability p or “0” with probability q, mean-
ing that each transmittance Ti is static or in motion respec-
tively, however the kind of movements implemented are com-
pletely deterministic and for experimental convenience they
are considered as harmonic oscillating movements. With this
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configuration it is possible to generate correlation functions of
several orders, where the motion state of one of the transmit-
tances called, transmittance of control, determinates the mo-
tion states of the other transmittances. The diffraction field
on the Fraunhofer plane is interpreted as a secondary source
where the transversal structure depends on the motions state
of each constitutive transmittance, in consequence the light
emission from each point on source is time ordered in a prob-
abilistic sense, corresponding this to a Markov process.

When the motions of the constitutive transmittances are sta-
tistically independent, the optical field is a random process
whose coherence parameters depend on the product of the
individual probability density functions. The representation
of mobile transmittance, in frequency space implies convolu-
tion functions among time-dependent functions for the phase
term. The diffraction fields are subjected to a time-dependent
amplitude/energy redistribution that carries on the manifes-
tation of the partially coherent features and the traditional
study of coherence can be applied.

The source with Markovian features is obtained when the mo-
tions of one of the transmittances is correlated with the motion
of the second one and so on. This behavior is characterized by
means of the joint probability density function. In this con-
text, the simplest case is obtained when the Markov process
corresponds with a Markov chain whose analysis is the goal
pursuit of the present study. We show that the structure of
the secondary source depends on the initial state of the first
transmittance, whose transition to the motion states of the fol-
lowing transmittances generates a set of allowed states whose
final result is associated to the mean intensity of the source.

In this paper we synthesize partially coherent secondary
sources by controlling the light propagation through a set of
mobile transmittances in a tandem array, where the motion
state of the constitutive transmittance are time ordered by
means of a conditional probability density function.

2 SYNTHESIS OF COHERENT SECONDARY
SOURCES

With the purpose to have a visual reference to the optical field
associated to static transmittances, we describe the diffraction
field on the Fraunhofer plane for a set of transmittances illu-
minated with a plane wave, the optical field is given by the
Fourier transform of the transmittance function and z = 0 de-
fine the plane of the secondary source whose amplitude rep-
resentation is given by

φ(u, v,z = 0) =
∞∫
−∞

∞∫
−∞

∏ Ti(x, y)e−i2π(xu+yv)dxdy, (1)

where u = x0/λ f , v = y0/λ f . In Eq. (1) we have omit-
ted a non-relevant term. This optical field is generated on
the focal plane of a lens as was described by Goodman
[12] and the optical system is sketched in Figure 1. The
mathematical representation for the diffraction field corre-
sponds with the convolution function between the Fourier
transform associated to each transmittance represented
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FIG. 1 The experimental set-up. The lens images the virtual source plane placed at

infinity and the source becomes real. The transmittances are placed on an oscillating

mount controlled with a signal generator.

FIG. 2 Secondary coherent source obtained in z=0 for: (a) a single Ronchi grating. In (b)

for an ensemble of six linear Ronchi gratings. The convolution function has associated

a transversal energy redistribution, the optical field is completely coherent, and all

the transmittances are static. The period of each grating is 100 lines per inch and each

transmittance was recorded on high resolution plate HRP.

by φ(u, v, z = 0) = T1(u, v)⊗ T2(u, v) ⊗ ...⊗ Tn(u, v). In
Figure 2, we show the experimental results for an ensemble of
linear gratings, in this case, the convolution function explain
the energy redistribution.

3 SYNTHESIS OF PARTIALLY COHERENT
SECONDARY SOURCES

Partially coherent fields imply random temporal fluctuations;
these may be induced and controlled by considering a tem-
poral dependence on the transmittance function. A suitable
system to be implemented in the laboratory consists of a set
of mobile transmittances in a tandem array. The analysis pre-
sented here considers motion only along one coordinate. The
extension to two coordinates is straightforward. Their repre-
sentation takes the form

T̄(x, t) =
n

∏
i=1

T̄i(x− fi(t)). (2)

Using the displacement property of the Fourier transform and
considering it for an arbitrary time t, the intensity of the sec-
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ondary source is

I(u, z = 0, t) = |T1(u)ei2πu f1(t) ⊗ T2(u)ei2πu f2(t)

⊗ ...⊗ Tn(u)ei2πu fn(t)|2. (3)

We have that the convolution generates energy redistribution
and the motions induce a time-dependent phase term on each
point of the source which makes the difference with the coher-
ent case, consequently, the source presents partial coherence
features that will be analyzed in brief.

As an interesting example, let us consider two circular mo-
bile transmittances in a one-dimensional harmonic movement
along the x coordinate. The temporal functions proposed are
given by f1(t) = α cos w1t, f2(t) = α cos w2t, α, β are the am-
plitudes and w1,2, are the frequencies of each oscillation. The
mean intensity of the source is

〈I(u, z = 0)〉
= 〈|T1(u) exp(i2πu f1(t))⊗ T2(u) exp(i2πu f2(t))|2〉

= lim
T→∞

1
T

T/2∫
−T/2

|T1(u)ei2πu f1(t) ⊗ T2(u)ei2πu f2(t)|2dt. (4)

Writing the expression for the convolution function explicitly
and reversing the order of integration, we find that the mean
intensity acquires the form

〈I(u, z = 0)〉 = 〈|T(u, t, )|2〉

=

∞∫
−∞

∞∫
−∞

〈T1(h)T2(h− u)T∗1 (s)T
∗
2 (s− u)〉M(h, s, u)dhds, (5)

which corresponds to a double convolution function, and

M(h, s, u)

= lim
T→∞

1
T

T∫
0

exp (i2πu(h− s)(α cos w1t + β cos w2t)) dt. (6)

Using the Jacobi identity to transform the exponential [13] and
considering the special case of equal frequencies [14], we ob-
tain an approximate expression for Eq. (6)

M(h, s, u) ≈ J0(2πu(α)(h− s))J0(2πu(β)(h− s)). (7)

The mean intensity distribution of the source acquires the
form

〈I(u, z = 0)〉

=

∞∫
−∞

∞∫
−∞

〈T1(h)T2(h− u)T∗1 (s)T
∗
2 (s− u)〉

× J0(2πu(α)(h− s))J0(2πu(β)(h− s)dhds. (8)

From the last expression, we deduce that the motions of the
transmittances generate a curve (represented by the product
of the Bessel functions) which is convolved with the irradiance
distribution generated when the transmittances are static. The
last statement explains the experimental results shown in Fig-
ure 3(a) we show the diffraction field for two static circular
transmittances of the same diameter. Superimposed on this
figure we schematically show the product of the Bessel func-
tions generated by the oscillations with different amplitude

FIG. 3 Experimental results for the synthesis of partially coherent sources. In (a), we

see a completely coherent source generated by the diffraction of two static circular

transmittances in tandem. The radius of each circle is approximately 2 mm. In (b)

and (c) each transmittance is in harmonic movement with the same frequencies,

approximately 300 Hz, but different amplitude, α = β = 2 mm, α = 2 mm, β = 3 mm.

The yellow and red lines in (a) represent the product of the two zero order Bessel

functions. Each transmittance was placed on an oscillating mount controlled by a

signal generator.

values represented by α, β, and in Figure 3(b) and (c) we show
the effect of the convolution between the coherent source and
each curve for two slightly different amplitudes. The coher-
ence parameters of the source can be obtained following the
Wolf formalism [6, 15], this implies integrals hard to calculate.
We avoid the explicit calculus of this, using the fact that co-
herence features are manifested by the redistribution energy,
that is, the radiometric features of the optical field are mod-
ified. Then, it is possible to compare the radiometric fluctua-
tions of the partially coherent source to those completely co-
herent sources. This propose will be applied later to describe
the coherence parameters of Markovian sources. To evaluate
the coherence of the optical field, we use a correlation coeffi-
cient similar to the visibility function given by

γ(x, y, z) =
〈Ic(x, y, z)〉 − 〈Iinc(x, y, z)〉
〈Ic(x, y, z)〉+ 〈Iinc(x, y, z)〉 (9)

This expression has the information of the energy redistribu-
tion generated in partially coherent sources. A similar expres-
sion to determinate the degree of polarization was proposed
by Goodman [16].

In Eq. (9) 〈Ic(p)〉 represents the mean irradiance on a point
p(x, y, z) when the transmittances are static (coherent case),
〈Iinc(p)〉 is the mean irradiance associated when the transmit-
tances are moving (partially coherent case). From this repre-
sentation the partially coherent features are detected from the
redistribution energy. If the transmittances are non-mobile we
have 〈Iinc(p)〉 = 0 and the correlation coefficient is γ(p) = 1,
corresponding with a completely coherent source. It must be
noted that the correlation coefficient function can be nega-
tive. This occur because it is possible that on some points
and Iinc 6= 0. This means that the optical fields are com-
pletely non-correlated, in this case, the correlation coefficient
is γ(p) = −1. It must be noted that for static transmittances,
that is, substituting the values α = β = 0, in Eq. (8), the cor-
relation coefficient takes the value of 1, which means that we
have optical sources completely coherent. The correlation co-
efficient can be obtained from the experimental results shown
in Figure 3, this is done by comparing the measurements of the
irradiance on each point and substituting the values in Eq. (9).
The diffraction field associated to mobile transmittances is dif-
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FIG. 4 a) Schematic system to generate Markovian sources. b) Diagram kind tree to associate the transition probabilities for a Markov chain with two states A and B.

ferent to static transmittances, generating redistribution en-
ergy, consequently modifies the radiometric features of the
source according with modern radiometric theory of Wolf [6].
The propagation of the coherence features to other planes is
described in the appendix.

4 SECONDARY SOURCES WITH MARKOV
CHAIN FEATURES

As a generalization of the previous analysis, we describe the
synthesis of light whose amplitude function φ(x, y, z = 0, ti)

depends on its recent past state φ(x, y, z = 0, ti−1). The optical
system is a set of n-transmittances in a tandem array. We can
consider the system as a Markov chain with two states, letting
the state ”1” represents the mobile transmittance and the state
”0” represents the static transmittance. P(Xi = 1) represents
the probability that the i-th transmittance is moving. The sta-
tionary transition probabilities are given by

P(Xi+1 = 1|Xi = 0) = p, P(Xi+1 = 0|Xi = 1) = q. (10)

The first expression in Eq. (10) represents the probability p
that i+1-th transmittance is moving if the i-th transmittance is
static. The kind of motion of each transmittance is determin-
istic harmonic oscillations where all of them have the same
amplitude and frequency. The mean irradiance distribution of
the ensemble takes the form

〈I(u, z = 0)〉

=
1
N

N

∑
s=1

(s)

|T1(u)ei2πu f1(t) ⊗ ...⊗ Tn(u)ei2πu fn(t)|2, (11)

where the super index (s) represents the number of realiza-
tions and 0 ≤ t ≤ t f , such that t f is the time duration of
each realization. The mean irradiance for each realization is
obtained as follows, for a Markov chain, we know that the
conditional probability density function takes the form [17],
[18]

ρ(X1, ..., Xn) = ρ(X1)ρ(X2|X1)ρ(X3|X2)...ρ(Xn|Xn−1). (12)

The mean intensity of each realization contains the informa-
tion of the correlation process between the motions of the

transmittances. From the Markov chain theory, the probabil-
ity of the n-th transmittance being static is given by [17]

P(Xn = 0) =
q

p + q
+ (1− p− q)n

(
α(0)− q

p + q

)
, (13)

where ρ(X1) = α(0) is the probability that the first transmit-
tance is static. The motion state of the first transmittance de-
terminates the motion state of the other transmittances, for
this reason, the first transmittance is considered as the con-
trol transmittance. The probability that the n-th transmittance
is mobile is given by

P(Xn = 1) =
p

p + q
+ (1− p− q)n

(
α(1)− p

p + q

)
(14)

5 EXPERIMENTAL SYNTHESIS OF THE
MARKOV CHAIN SOURCES

Here we describe the synthesis of the Markovian sources us-
ing three transmittances. The process has 23 possible states,
given by the set {i, j, k}= {(1,1,1), (1,1,0), (1,0,1), (1,0,0), (0,1,1),
(0,1,0), (0,0,1), (0,0,0)}. The first element of the set means that
the three transmittances are moving, the second means that
the first two transmittances are moving and the third remains
static, and similarly for other elements. The experimental set
up is sketched in Figure 4.

The time duration of each state is t0 and the time duration of
the realization is T = Nt0 where N is the number of transmit-
tances, and the diffraction field of the realization has associ-
ated the mean intensity Iijk.

With the Markov property given by Eq. (12), and using
Eqs. (13) and (14), the expression for the correlation for three
transmittances is given by

P(X1 = αi, X2 = β j, X3 = γq)

= P(X1 = αi)P(X2 = β j|Xi = αi)P(X3 = γq|X2 = β j), (15)

where αi, β j, γq can take two possible values, represented
by (0,1). The expression for the probability for case where all
transmittances are statics is given by

P(X1 = 0, X2 = 0, X3 = 0)

= P(X1 = 0)P(X2 = 0|X1 = 0)P(X3 = 0|X2 = 0), (16)
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P(X1) P(X2) P(X3) P(X1, X2, X3) 〈I〉
P(X1 = 0) P(X2 = 0) P(X3 = 0) α(0)(1− p)2 〈Ic(0, 0, 0)〉
P(X1 = 0) P(X2 = 1) P(X3 = 0) α(0)pq 〈Iinc(0, 1, 0)〉
P(X1 = 0) P(X2 = 0) P(X3 = 1) α(0)(1− p)p 〈Iinc(0, 0, 1)〉
P(X1 = 1) P(X2 = 0) P(X3 = 0) (1− α(0))(1− p)q 〈Iinc(1, 0, 0)〉
P(X1 = 1) P(X2 = 0) P(X3 = 1) (1− α(0))qp 〈Iinc(1, 0, 1)〉
P(X1 = 0) P(X2 = 1) P(X3 = 1) α(0)(1− q)p 〈Iinc(0, 1, 1)〉
P(X1 = 1) P(X2 = 1) P(X3 = 0) (1− α(0))(1− q)q 〈Iinc(1, 1, 0)〉
P(X1 = 1) P(X2 = 1) P(X3 = 1) (1− α(0))(1− q)2 〈Iinc(1, 1, 1)〉

TABLE 1 Triple correlation values for three transmittances.

FIG. 5 (a),(b),(c), and (d) are the allowed states when α(0) = 1. The transmittances consist of three screens containing a circle of 1 mm of radius. Each transmittance was placed

on an oscillating mount. The amplitude oscillation is 0.5 mm and the frequency is of 300 Hz. The results were obtained using the values p = q = 0.5. The mean source generated

with the allowed states is shown in (e).

FIG. 6 Same motion states as it was described in Figure 5. (a),(b), (c), and (d) are the allowed states when α(0) = 0. These results were obtained when p = q = 0.5. The mean

source generated with the allowed states is shown in (e).

From Eq. (10) is easy to show that the transition probabilities
must be

P(X2 = 0|X1 = 0) = P(X3 = 0|X2 = 0) = (1− p). (17)

Of course, this process has an associated intensity 〈Ic〉 which
is the intensity value for the completely coherent field. The all
set of possible values for the triple correlation are obtained
using Eq. (10) and it is shown in Table 1. We remark that
each correlation has a mean intensity value associated with
it, which depends on the initial state (α(0) or α(1)) and on the
transition probabilities (p,q).

In general all the mean intensity values for each state listed in
Table 1 are different because depends on the movement state
of each transmittance. With this set of irradiance values, we
can calculate the mean intensity of the secondary source. If the
experiment is performed S times, it means that we expect that
the intensity I000 appears α(0)(1 − p)2S times, the intensity
I010 appears α(0)pqS times and so on for the other intensities.

For the experimental development, the transmittances are
placed on individual oscillating mounts and each one con-
sists in a screen containing a circle of approximately 0.5 mm
of diameter. The kind of movements are harmonic oscil-

lations perpendicular to the optical axis, with frequencies
range [200-1000] Hz and amplitude oscillations in the range
[0.1-0.5] mm. The process starts by illuminating the first trans-
mittance for a time t0, after this time, the motion state of the
second transmittance is obtained according to the transition
probabilities (p, q). If the first transmittance is static, the prob-
ability value p of the motion state of the second transmittance
is assigned; otherwise, we assign the probability value q. In a
similar way we assign the probabilities of the motion state of
the third transmittance.

The probability transitions are implemented with a sequen-
tial computer algorithm, following the tree graph sketched in
Figure 4(b). The motion parameters are driven with a signal
generator and the mean intensity values were registered with
a ccd detector, in order to have an intensity function depen-
dent on position. To associate a physical meaning to Table 1,
we identified two simple cases. The first case is obtained when
α(0) = 1, which means that the first transmittance is static and
only the states allowed are {(0,0,0), (0,1,0), (0,0,1), (0,1,1)}. The
second case occurs when the first transmittance is mobile, that
is α(0) = 0. The corresponding allowed states are given by
{(1,0,0), (1,0,1), (1,1,0), (1,1,1)}. The corresponding experimen-
tal results are shown in Figure 5 and 6. Also in these figures we
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show the mean intensity of the source, generated with these
four states. To obtain the mean intensity we use the values
p = q = 0.5, this implies that all the states are equally proba-
ble.

By comparing the experimental results given by Figure 5(e)
and Figure 6(e) is evident that the two sources have mean in-
tensities completely different. These results make evident the
dependence of the source structure with the probability α(0)
to the motion state for the control transmittance. This means
that selecting different values of these probability values, the
temporal evolution of the source goes by different paths, gen-
erating different mean intensity values.

The experimental results shown in Figure 5 and 6 are for the
values α(0) = 1 and α(0) = 0. The general case is obtained
when is in the interval [0,1], and the eight possible states
may be present, when the experiment is performed many
times the probabilistic values for each state, listed in table
becomes evident in the occurrence number, generating dif-
ferent mean intensities to the secondary source. This occurs
when the process is stabilized, this happen when the exper-
iment is performed S times, being S a large natural number.
Then the probability effects are reflected on the occurrence of
each state. From Table 1, we have that the state P(0,0,0) occurs
α(0)(1 − p)2S times, the state P(0,1,0) occurs α(0)pqS times
and so on for the other states.

From Eq. (9), the correlation coefficient is rewritten as

γ(x, y, z, p, q, α(0))

=


P(0, 0, 0)Ic(x, y, z)−

7
∑

n=1
Pn(i, j, k)Iijk(x, y, z)

P(0, 0, 0)Ic(x, y, z) +
7
∑

n=1
Pn(i, j, k)Iijk(x, y, z)

 , (18)

where the state P(0,0,0) must be excluded in the sum, and
Iijk(p) corresponds to the irradiance on a point (x, y, z) asso-
ciated to the state P(i, j, k). Eq. (18) shows that the coherence
correlation coefficient depends on the transition probabilities
(p, q) and the probability α(0) of the initial state of motion to
the first transmittance.

6 CONCLUSIONS

We presented a method to synthesize Markovian sources
whose intensity distribution and coherence parameters are
easily tuneable. The study was made by using a separable
transmittance that it is formed by the product of individual
transmittances. The separability implies that the set of com-
ponents is suitable to be motion correlated; this allows us to
induce a convolution function with time-dependent phase
function. The induced coherence features are manifested
by changes in its radiometric features. The motions of the
transmittances are time-ordering, and the light emission
from the secondary source corresponds with a Markov
chain. The motions between transmittances are synchronized
by means of a conditional probability density function
ρ(t1, t2, ..., tk|tk+1, tk2 , ..., tN), and the time evolution depends
on the motion state of the first transmittance which is consider

as the control transmittance. Consequently the radiometric
features and coherence parameters evolve by different paths.
For the design of the sources, we are free to select the
transition probability values (p, q) and the initial probability
of the motion state of the first transmittance. The kind of
transmittances and parameters motion offers the possibility
to generate a great variety of sources. The influence of these
possible values is reflected in the mean intensity of the source.

A PROPAGATION OF COHERENCE
FEATURES

An interesting point of the analysis is to describe the propaga-
tion of the coherence parameters. An accurate representation
for the amplitude function on an arbitrary point (x, z) is ob-
tained from the angular spectrum model

φ(x, z) =
∞∫
−∞

T(u)ei2π(xu+zp)du, (A.1)

where (u, p) are the spatial frequencies, T(u) is the Fourier
transform of the transmittance function. In a previous pa-
per [15], we prove that the amplitude correlation function be-
tween two arbitrary points (X1, X2), is given by

W(X1, X2) = 〈φ(X1)φ
∗(X2)〉 =

∞∫
∞

〈|T(u)|2〉ei2πX·UdU, (A.2)

where the square brackets express the expectation
value of the power spectrum whose variables satisfies
X = (x2 − x1, z2 − z1) and U = (u, p). The coherence function
for transmittance in harmonic movements according to Eq.
(4), take the form

W(X1, X2) =
∫
〈|T1(u)ei2πu f1(t) ⊗ T2(u)ei2πu f2(t) ⊗ ...

⊗ Tn(u)ei2πu fn(t)|2〉ei2π(X·U)dU, (A.3)

where X = (x, z) and x = x2 − x1, z = z2 − z1, it must be
noted that in the particular case that z2 = z1, Eq. (A.3) acquires
the form of a Fourier transform according with the Van-Cittert
Zernike theorem. For the case of the two transmittances in
harmonic movement previously presented, we find that the
coherence function takes the form

W(X1, X2, t)

=

∞∫
−∞

〈I(u, z = 0)〉ei2π((x2−x1)u+(z2−z1)p)du, (A.4)

endequation substituting the expression for the mean inten-
sity given by Eq. (8), we obtain

W(X1, X2) =

∞∫∫∫
−∞

〈T1(h)T2(h− u)T∗1 (s)T
∗
2 (s− u)〉

×M(h, s, u)ei2π((x2−x1)u+(z2−z1)p)dhdsdu, (A.5)

where M(h, s, u) satisfies Eq. (7). The Eq. (A.5) represents the
coherence distribution on arbitrary points having as a bound-
ary condition the mean intensity of the source.

13005- 6



J. Europ. Opt. Soc. Rap. Public. 8, 13005 (2013) G. Martínez-Niconoff, et al.

References

[1] A. H. Dhalla, J. V. Migacz, and J. A. Izatt, “Crosstalk rejection
in parallel optical coherence tomography using spatially incoher-
ent illumination with partially coherent sources,” Opt. Lett. 35,
2305–2307 (2010).

[2] J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto,
“Optical coherence microscopy in scattering media,” Opt. Lett. 19,
590–592 (1994).

[3] T. Xie, Z. Wang, and Y. Pan, “High-speed optical coherence to-
mography using fiberoptic acousto-optic phase modulation,” Opt.
Express 11, 3210–3219 (2003).

[4] T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-
dimensional femtosecond spectroscopy,” Opt. Lett. 29, 884–886
(2004).

[5] G. Martínez-Niconoff, P. Martínez-Vara, J. Muñoz-Lopez,
J. C. Juarez-Morales, and A. Carbajal-Dominguez, “Partially
coherent surface plasmon modes,” J. Europ. Opt. Soc. Rap.
Public. 6, 11009 (2011).

[6] L. Mandel, and E. Wolf, Optical coherence and quantum optics
(Cambridge University Press, Cambridge, 1995).

[7] A. S. Ostrovsky, G. Martínez-Niconoff, V. Arrizón, P. Martínez-Vara,
M. A. Olvera-Santamaría, and C. Rickenstorff-Parrao, “Modulation
of coherence and polarization using liquid cristal spatial light mod-
ulators,” Opt. Express 17, 5257–5264 (2009).

[8] G. Martínez-Niconoff, J. C. Ramírez San Juan, J. Muñoz López,
and P. Martínez Vara, “Incoherent convergence of diffraction free
fields,” Opt. Commun. 275, 10–13 (2007).

[9] T. Anna, S. K. Dubey, C. Shakher, A. Roy, and D. S. Mehta,
“Sinusoidal fringe projection system based on compact and
non-mechanical scanning low-coherence Michelson interferometer
for three-dimensional shape measurement,” Opt. Commun. 282,
1237–1242 (2009).

[10] N. Nakajima, “Phase retrieval using an aperture-array filter un-
der partially coherent illumination,” Opt. Commun. 282, 2128–2135
(2009).

[11] G. Martínez-Niconoff, J. Carranza-Gallardo, and A. Cornejo-
Rodriguez, “Synthesis of tunable moiré patterns,” Opt. Commun.
126, 29–33 (1996).

[12] J. W. Goodman, Introduction to Fourier optics (McGraw-Hill com-
panies, New York, 2000).

[13] G. F. Arfken, and H. J. Weber, Mathematical methods for physicists
(Academic Press, San Diego, 2001).

[14] G. N. Watson, A treatise on the theory of Bessel functions (Cam-
bridge University Press, Cambridge, 1966).

[15] G. Martínez-Niconoff, P. Martínez-Vara, and A. Carbajal-
Dominguez, “Eikonal equation for partially coherent fields,” Opt.
Commun. 259, 488–491 (2006).

[16] J. W. Goodman, Statistical optics (Wiley-Interscience, New York,
1985).

[17] P. H. Hoel, S. C. Port, and Ch. J. Stone, Introduction to stochastic
processes (Houghton Mifflin Company, Boston, 1972)

[18] L. Wasserman, All of statistics (Springer, New York, 2004).

13005- 7


	INTRODUCTION
	SYNTHESIS OF COHERENT SECONDARY SOURCES
	SYNTHESIS OF PARTIALLY COHERENT SECONDARY SOURCES
	SECONDARY SOURCES WITH MARKOV CHAIN FEATURES
	EXPERIMENTAL SYNTHESIS OF THE MARKOV CHAIN SOURCES
	CONCLUSIONS

