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We present an effective modeling approach for a fast calculation of the Talbot carpet from an initially 2-dimensional mask pattern. The
introduced numerical algorithm is based on a modified angular-spectrum method, in which it is possible to consider the border effects
of the Talbot region from a mask with a finite aperture. The Bluestein’s fast Fourier transform (FFT) algorithm is applied to speed up the
calculation. This approach allows as well to decouple the sampling points in the real space and the spatial frequency domain so that both
parameters can be chosen independently. As a result an extended three-dimensional Talbot-carpet can be calculated with a minimized
number of numerical steps and computation time, but still with high accuracy. The algorithm was applied to various 2-dimensional mask
patterns and illumination setups. The influence of specific mask patterns to the resulting field intensity distribution is discussed.
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1 INTRODUCTION

The self-imaging properties of the Talbot effect was discov-
ered in the early nineteenth century [1] and theoretically in-
terpreted for the first time by Rayleigh [2]. The Talbot effect
occurs when a two-dimensional periodic mask is illuminated
with a monochromatic light source. Due to diffraction effects,
a series of self-images of the initial periodic structure occurs
in the adjacent region behind the mask in multiples of a well-
defined distance.

In optics, the self-imaging properties of the Talbot effect have
attracted significant technological interest, as it allows the
replication of an even high-frequent periodic structure with-
out the need of any additional optical elements.

The unique characteristics of the Talbot effect opens up a
broad spectrum of different applications. For example, Talbot
interferometry allows to study the surface profile of transpar-
ent objects [3], the slope contours of bent plates [4] and also
was used for collimation testing [5]. Additionally, the self-
imaging properties of the Talbot effect are also suitable for
sub-wavelength focusing of light [6] and offer new solutions
for spectroscopy [7, 8].

An essential application field concerns lithography. In com-
parison to alternative laser based lithographic techniques, the
Talbot lithography allows to combine advantages of both, se-

rial and parallel processes, so that also micro-optical struc-
tures can be realized in a single exposure step [9]. The uti-
lization of two-photon effects in Talbot lithography allows the
manufacturing of well-defined three-dimensional (3D) nanos-
tructures [10]. The application of Talbot Lithography in a mask
aligner system with an adapted illumination system allows
the manufacturing of small pitched structures and sub-micron
resolution also in an industrial fabrication environment [11,
12]. With the introduction of displacement techniques, Talbot
lithography offers the possibility for high-resolution pattern-
ing of large areas [13].

Based on the wide variety of the application spectrum of
the Talbot effect it is necessary to get an accurate and fast
prediction of the expected three-dimensional Talbot carpet.
In the past, typical Talbot carpets are established along the
x- and z-direction, which occurs from a one dimensional
transfer function of the mask. Proceedings from these
simulation results is the basic characteristic of the Talbot
effect discussed like the fractional characteristic or typical
carpet patterns behind amplitude or phase masks. The
next stage of the developing the simulation algorithm was
the calculation of the intensity distribution behind a two-
dimensional mask in a special distance z. But there were
only x – y intensity layers presented not a complete three
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dimensional pattern [14]–[16]. The challenge is the dealing
with the high number of sampling points to gauge the
transfer function of the mask and to sample the resulting
x - y layers, which can be overlay to generate three dimen-
sional profiles.

The here introduced algorithm offers the simulation of three
dimensional intensity profiles of light behind a mask with a
finite aperture. The base of the algorithm is the angular spec-
trum method. We combine the angular spectrum method with
the Bluestein’s FFT algorithm and show that the algorithm is
able to calculate typical Talbot intensity patterns with less nu-
merical effort. That means in detail that the sampling rate can
be chosen independently in the spatial and frequency domain
and also along the x and y axis as it required. In addition, it
is possible to generate the intensity profile at the edge of the
mask. With this feature it is possible to observe an adequate
intensity profile for real lithography applications.

2 THE CHIRP-Z-TRANSFORMATION FOR
MODELING FINITE TALBOT CARPETS

In the basic Talbot setup a two-dimensional mask is illumi-
nated by an incoming monochromatic plane wave with a
wavelength λ, which causes a complex field distribution in
the adjacent region behind the mask. The mask possesses a fi-
nite aperture oriented parallel to the xy-plane in a Cartesian
coordinate system, and the light wave propagates in the di-
rection of the positive z-axis.

The complex field distribution which is generated directly
behind the mask (z = 0) is represented by the scalar field
U(x0, y0; 0). In order to find the field distribution in any plane
z behind the mask, a free-space propagation has to be per-
formed, which is done in Fourier space. Figure 1 shows the
schematic representation in both the real space and the spatial
frequency domain.

We use the classical angular spectrum approach in combina-
tion with a chirp-Z-transformation [17] to be able to take fi-
nite boundaries of the mask aperture into account. Following
the basic angular spectrum approach (cf. [18]), the initial field
U(x0,y0;0) is, first, transferred into the spatial frequency do-
main by the two-dimensional Fourier transform:

F
(

fx, fy; 0
)
=

∞∫
−∞

∫
U (x0, y0; 0)

· exp
[
−i2π

(
fx · x0 + fy · y0

)]
dx0dy0. (1)

Here fx and fy represent the two axes in the spatial frequency
domain. Secondly, with the background of the Helmholtz
equation, the Fourier components F( fx, fy; z) at z > 0 are ac-
cessible by the initial Fourier components at z = 0 where α and
β are the direction cosines of the propagating waves, which
read:

fx =
α

λ
and fy =

β

λ
(2)

Eqs. (2) define the angular spectrum at any transverse plane

FIG. 1 Coordinate systems and variables for both the real space and the spatial fre-

quency domain. These systems are related to each other by Fourier transformation.

perpendicular to the propagation direction z:

F
(

fx, fy; z
)
= F

(
fx, fy; 0

)
· exp

(
i
2π

λ
z
√

1− α2 − β2
)

(3)

The resulting field distribution in the real space at a position
z > 0 can be calculated by superposing the propagated com-
ponents, which is a transformation from the spatial frequency
domain back to the real space:

U (x, y; z) =
∞∫
−∞

∫
F
(

fx, fy; z
)

· exp
[
i2π

(
fx · x + fy · y

)]
· d fx · d fy (4)

To find the extended three-dimensional Talbot carpet gener-
ated by arbitrary mask structures, numerical simulations have
to be performed, in which the Fourier integral is commonly
approximated by a discrete fast Fourier transform (FFT). Con-
sequently, in the mask plane (z=0) and for each field position
z > 0, all coordinate axes, both in real space (x, y) and in the
spatial frequency domain ( fx , fy), are specified by appropri-
ate sampling points Nx and Ny.

In the modification of the standard free-space propagation,
which we have solved using the angular spectrum method,
two essential aspects are added in the presented calculation
procedure: first, Bluestein’s FFT algorithm, and, second, a fast
convolution procedure.

The Bluestein’s FFT algorithm comprises, in principle, a sim-
ple binomial equation for the x- and y-direction in the real and
in the spatial frequency domain:

−2 · x0 · fx = (x0 − fx)
2 −

(
x2

0 + f 2
x

)
(5)

−2 · y0 · fy =
(
y0 − fy

)2 −
(

y2
0 + f 2

y

)
(6)
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The direct insertion of both binomial Eqs. (5) and (6) into Eq.
(4) yields:

F
(

fx, fy; 0
)
= exp

[
−iπ

(
f 2
x + f 2

y

)] ∞∫
−∞

∫
U (x0, y0; 0)

· exp
(
−iπ · x2

0

)
· exp

[
iπ (x0 − fx)

2
]

· exp
(
−iπ · y2

0

)
· exp

[
iπ
(
y0 − fy

)2
]

dx0dy0 (7)

Due to the fact that now the differences x0− fx and y0− fy oc-
cur, the Fourier transformation can be interpreted in terms of a
convolution applied to the two-dimensional space as follows

(g1 ∗ g2) (t1, t2) =

+∞∫
−∞

∫
g1 (u1, u2)

· g2 (t1 − u1, t2 − u2) du1du2 (8)

where the functions g1 and g2 for the Bluestein algorithm in
forward transformation are defined from Eq. (7):

g1(u1, u2) = U(u1, u2; 0) · exp
[
−iπ

(
u2

1 + u2
2

)]
(9)

g2(w1, w2) = exp
[
iπw2

1

]
· exp

[
iπw2

2

]
(10)

Because of the fact that g2 is a product of either dimension, the
2D-convolution is separable, and, instead, a 1D–convolution
can be applied successively to each of the real space coordi-
nates of Eq. (2). In consequence, not a two-dimensional matrix
convolution but a more convenient vector convolution has to
be calculated, which reduces the numerical effort significantly.
Rewriting Eq. (7) with the convolution from Eqs. (8)–(10) re-
sults in the chirp-Z-tranformation of the initial field distribu-
tion:

F
(

fx, fy; 0
)
= exp

[
−iπ

(
f 2
x + f 2

y

)]
·
({

U (x0, y0; 0) · exp
[
−iπ

(
x2

0 + y2
0

)]}
∗ exp

[
iπ · x2

0

]
∗ exp

[
iπ · y2

0

]) (
fx, fy

)
(11)

Based on this last formulation and in analogy to the preceding
general procedure, the complex field distribution U(x, y; z) at
a definite plane z > 0 is accessible by calculating the corre-
sponding propagated Fourier components and applying the
convolution approach for the reverse Fourier transformation.
The calculation speed is significantly increased as compared
to the 2D-Fourier transform without convolution.

This approach allows avoiding the correlated contributions of
the real space and the spatial frequency domain, so that sam-
pling points of the coordinate system for either domain can
be chosen independently, and, in particular, the choice is not
restricted to integer multiples of 2, as it is the case for the FFT.

For each of the coordinate pairs in the real space and in the
spatial frequency domain, (x, y),(x0, y0) and

(
fx, fy

)
, resp., we

define specific variables M f , M0 and M with:

M f = f 2
x + f 2

y , M0 = x2
0 + y2

0 and M = x2 + y2. (12)

With this approach and the inverse transform we obtain the
complex field distribution at z > 0:

U (x, y; z) = exp (iπ ·M) ·
{[

F
(

fx, fy; z
)
· exp

(
iπ ·M f

)]
∗ exp

(
−iπ · f 2

y

)
∗ exp

(
−iπ · f 2

x

)}
(x, y). (13)

For the numerical calculation the initial complex field distri-
bution U(x, y; z) at z = 0 has to be sampled. If a plane,
monochromatic wave is incident perpendicular to the mask,
the field distribution is assumed to be equal to the mask
structure. With the chirp-Z-transformation outlined above,
the sampling point N and range of the spatial domain can be
adapted to the specific region of interest within the initial field
and frequency domain. That means, it is possible to increase
or reduce the number of the necessary sampling points with
respect to the periodic structure of the initial field.

From this approach follows an optimum number of sampling
points for each initial distribution, and, in particular, the sam-
pling points in the frequency domain can be adapted to the
specific modes appearing in the mask structure and effects
of finite mask aperture can be taken into account without
increasing the sampling points in the spatial domain. As a
consequence, the computation time will be further reduced,
and still the required accuracy of the Talbot pattern can be
achieved.

An essential numerical aspect concerns the computation of the
convolution. Here, an effective approach is based on the con-
volution theorem, which indicates that the convolution of two
functions is identical to the inverse Fourier transform of the
product of the Fourier transform of these two functions. In
the discrete case of a numerical calculation, the convolution
theorem can then be written as:

(g1 ∗ g2)k = =
−1 {[= (g1) · = (g2)]}k (14)

Here g1 and g2 are the original functions in the real space. F is
the discrete Fourier transform and F−1 is the discrete inverse
Fourier transform, resp. In the discrete one-dimensional sum
notation the Fourier transformation and the inverse transfor-
mation are:

=(g)k :=
N−1

∑
n=0

gn · exp
(
− i · 2π · n · k

N

)
(15)

=−1 (G)k :=
1
N

N−1

∑
n=0

Gk · exp
(

i · 2π · n · k
N

)
(16)

Here N represents the number of the sampling points, k is in-
dicating the variable of the real space and n is the variable of
the wave number or frequency domain, respectively.

The application of the discrete convolution theorem allows us
to calculate the two-dimensional problem of the complex field
distribution at z > 0 with a product of three subsequent FFT
terms:

F
(

fx, fy; 0
)
= exp

(
−iπ ·M f

)
· =−1

{
=
[
=−1 [= [U (x0, y0; 0)

· exp (−iπ ·M0)] · =
[
exp

(
iπ · y2

0

)]]]
·=
[
exp

(
iπ · x2

0

)]}
(17)
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FIG. 2 Mask z = 0 (a), FFT calculation by z = zT/2 (b) and the chirp-Z-transformation simulation with huge aperture (c) and small aperture (d) in the half of the Talbot distance.

The resulting field distribution U(x, y; z) we obtain again by
an inverse Fourier transformation:

U (x, y; z) = exp (iπ ·M)

· =−1
{
=
[
=−1 [= [(F( fx, fy; z

)
· exp

(
iπ ·M f

)]
· =
[
exp

(
−iπ · f 2

y

)]]]
·=
[
exp

(
−iπ · f 2

x

)]}
(18)

Eq. (18) is the basis for our numerical simulation of Talbot car-
pets generated by finite mask structures.

3 SIMULATION OF 3D TALBOT CARPETS
FROM FINITE MASKS

With the numerical algorithm derived in the previous sec-
tion, we will demonstrate in the following the capability of
our modelling approach. Thereby we will show that it is capa-
ble of simulating complex three-dimensional Talbot intensity
profiles, taking into account boundary effects from the finite
mask when calculating the Talbot carpet. We demonstrate the
simulation with unequal sampling points along the x- and y-
direction both in space and in the spatial frequency domain.
Additionally, it is possible to enlarge the three dimensional in-
tensity profile to get the essential information.

First of all we prove the correctness of the above presented al-
gorithm by applying it to the example of referee [19]. The ap-

propriate mask has a square amplitude transfer function with
a period of 280 µm and is illuminated with a plane wavefront
of 632 nm. The classical Talbot distance is calculated with the
equation zT = 2p2

λ to be zT = 248 mm, for this example. The
Figure 2a shows this mask pattern with squares of 70 x 70 µm.

The other three intensity profiles of Figures 2(b-d) are simu-
lated for the half of the Talbot distance. The Figure 2(b) shows
the intensity distribution for the standard FFT algorithm. The
other drawing (Figures 2(c+d) are generated with the in-
troduced chirp-Z-transformation. The difference between the
both figures is the adopted boundary condition. The Fig-
ure 2(c) is calculated with an entire aperture of 8.4 x 8.4 mm
and is sampled with 2750 points in both axis directions. On
these terms is the resulting intensity profile of Figure 2(c) ho-
mogenous. The Figure 2(d) is developed with a smaller mask
aperture shown in Figure 2(a) so that boundary effects become
visible. It has an aperture size of 1 x 1 mm2 and is sampled
with 1001 x 1001 points.

The FFT extends the mask aperture generally to infinity along
both axes. However, the chirp-Z-transformation allows a de-
fined finite aperture size. For the FFT calculation from Fig-
ure 2(b) are 801 sampling points used for the generation of the
mask, the frequency domain and the resulting intensity pro-
file. It is sensible to take an odd sampling rate to detect correct
the zero order in the frequency spectrum.

Comparing the results of the FFT (Figure 2(b)) and the chirp-
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FIG. 3 (a) sinusoidal amplitude grating with p = 20 µm and (b) the corresponding three-dimensional Talbot carpet over 10 periods in x and y direction.

Z-transformation (Figure 2(c)), there is no significant differ-
ence in the alignment and shape of the intensity spots. Slight
variations at the edge of the squared maxima become visi-
ble. The difference between the Figures 2(c,d) is considerable.
With increasing distance to the centre, the spot maximum be-
comes more blurred.

In a second example, we applied the chirp-Z-transformation
to calculate a complete three-dimensional (3D) intensity distri-
bution in the adjacent region of a two-dimensional structured
amplitude mask. The mask has a sinusoidal amplitude profile
with a period of 20 µm in each transverse direction and is illu-
minated by a plane wave with a wavelength of λ=800 nm. For
the calculation, the structure is covered with a grid combined
of 1001 sampling points for both axes along the aperture of
1000 µm x 1000 µm see Figure 3(a).

Since a sinusoidal amplitude profile generates only the first
and zeroth order, it is not necessary to regard the entire fre-
quency spectrum. Accordingly, it is sufficient to take a fre-
quency range of ±0.05 in the direction cosines with only 200
sampling points into account. In that case, the computation
time can be reduced significantly compared to the classical
FFT algorithm.

Figure 3(b) shows the resulting intensity profile starting di-
rectly behind the mask. For a better visualisation of the 3D-
intensity carpet, an intensity threshold was introduced, which
suppress values below 25% of the maximum intensity. The
sampling grid for x and y is 200 x 200 sampling points, and
125 sampling points have been chosen in the z-direction. The
z-axis in Figure 3(b) has been scaled to the Talbot distance.

The Figure 3(b) illustrates a homogenous periodic intensity
distribution. The maxima energy is in the multiple of the Tal-
bot distance. Between these maxima exists subtleties which
can be influences the structure profile. To observe the 3D-
intensity distribution in detail it is the profile of Figure 3(b)
enlarged in Figure 4. An intensity maximum is visible in every
half of the Talbot distance. These maxima are shifted by half of
the period in the transverse direction similar to a body-centred
cubic pattern. In addition, the volume structure posses inter-
connection between the half of the Talbot distance. In this case,

FIG. 4 3D intensity profile with a smaller observation range from ±15 µm for the x

and y axis.

the profile can be used for generating volume gratings in a
lithographic process [20]. Such structure features cannot be
distinguished in a general view, like that of the Figure 3. For a
practical application of a spatial finite mask in Talbot lithogra-
phy, it is essential to precisely know the intensity distribution
generated. In calculating this profile, only 110 sampling points
are necessary. Hence, there is less numerical effort necessary
for the simulation. With the algorithm it is possible to allocate
more sampling points for a smaller observation range.

In addition to the ability to zoom into an intensity structure,
the algorithm allows to perform simulations with indepen-
dent sampling rates along the x- and y-axis in the spatial do-
main and fx- and fy-axis in the frequency domain. This feature
increases the flexibility of the algorithm, additionally. It is par-
ticularly suitable for micro-optical components, which change
their periodicity in only one direction.

A grating with a period of 20 µm possessing a binary ampli-
tude transfer function is displayed in Figure 5. The mask is
built with 650 sampling points along the x-axis and 250 points
along the y- axis with a size of 400 µm x 160 µm. Therefore
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FIG. 5 Binary amplitude mask with p = 20 µm and a size of 400 µm x 160 µm

FIG. 6 Intensity profile of a finite binary amplitude mask with the dimensions of

80 µm x 160 µm

the mask has a restricted aperture. Such kinds of masks are
used to structure, for example, optical fibers or their end sur-
face [21]. The small aperture of the mask strongly influences
the resulting free-space intensity distribution.

The resulting frequency domain is also modulated in one di-
rection only. Consequently, there are less numerical steps in
the frequency domain along the y-direction necessary. This
means for the calculation that the frequency space is scanned
with 800 points along the x- and with 200 points along the y-
axis.

Figure 6 shows the resulting intensity profile behind the red
rectangle of Figure 5. This 3D-profile reaches from±25 µm up
to ±80 µm with 100 and 200 sampling points, resp. For this
simulation it is useful to use different sampling rates in the
spatial domain of the mask plane, the frequency domain and
the resulting three dimensional spatial intensity profile.

These fixed parameters have been selected to make the bound-
ary effects of the spatial 3D-intensity distributions visible,
which particularly occur behind a finite mask. The volume
structure generated by the local intensity becomes smaller
with larger distance along the z axis. These facts have to be
considered in the setup of the experimental illumination as-
sembly.

4 CONCLUSION

The chirp-Z-transformation provides an effective numerical
tool to simulate the three-dimensional intensity distribution
behind a lithography mask of finite aperture. The freedom of
choosing the sampling rates in the transverse directions of
both the spatial and frequency domain provides the ability
to deal with very flexible mask geometries. This is particu-
larly useful for the prediction of lithographic structures. The
numerical algorithm presented here has specially been devel-
oped for the Talbot lithography and the generation of periodic
microstructures. In addition, it is also useful for all other ap-
plications of generating Talbot interference patterns for illu-
mination.

In the field of lithography or structured illumination it is es-
sential to observe the three-dimensional range of homogene-
ity of the intensity profile to generate high-quality illumina-
tion conditions.

Moreover, the algorithm has the potential to be easily ex-
tended to simulate the light propagation through an optical
material, such as a photoresist, e.g., in which the refraction
and absorption of light and the solubility of the resist must
be taken into account. With this extension our algorithm can
predict micro- or nanostructures in a polymer.
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