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We introduce a simple and fast iterative algorithm, named SCAOS (simple counterpropagation algorithm for optical signals), for simulating
the counterpropagation of optical signals within a nonlinear fiber. Being based on the split-step Fourier method, the algorithm is easily
implementable in many traditional optical simulators. Applications of the SCAOS algorithm to the vectorial nonlinear counterpropagation of a
polarized pump and a probe signal demonstrate the phenomenon of lossless polarization attraction. The evolution of the signal polarization
along the fiber, obtained by simulation, reveals that polarization attraction always entails a certain amount of degradation of the signal’s
degree of polarization. Two different setups are studied, involving different types of fibers with Kerr nonlinearity, and highlighting the
dependence of the attraction phenomenon, as well as of its effectiveness, on the fiber type.
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1 INTRODUCTION

In many photonics applications, especially in optical fiber
based systems, the state of polarization (SOP) of light remains
so far en elusive uncontrolled variable, that can dramatically
affect systems performance and that one would like to con-
trol as finely as possible. Recent experiments and simulations
[1]–[4] have demonstrated that a lossless polarization attrac-
tor can be realized, even using telecom fibers at moderate sig-
nal powers [2]. The principle of operation of such a device,
that is schematically depicted in Figure 1(b), is based on the
injection of a counterpropagating fully polarized continuous-
wave (CW) pump, whose SOP attracts any input probe signal
SOP towards the same output polarization. As an example,
Figure 1 (a and c) report, on the Poincaré sphere, an ensemble
of 50 random (uniformly distributed) input probe SOPs and
their corresponding output SOPs, as obtained from the system
described in Section 4. The output probe signal SOPs clearly
sorround the pump SOP (blue, in Figure 1(c)), set by the po-
larization controller (PC, in Figure 1(b)) on S1, in this example.
It is worth noting that, as opposed to other devices that em-
ploy polarization dependent loss/gain, as, e.g., those based
on the Raman amplification [5, 6], the physical mechanism be-
hind the lossless polarization attractor is merely the Kerr effect
[3]. Repolarizing an arbitrarily (un-)polarized optical signal
by means of a lossless instantaneous nonlinear interaction is a
fundamental effect of great interest for telecommunication ap-
plications and optical signal processing systems. Rather than
discussing possible applications, we concentrate here on the
numerical simulation techniques for this phenomenon, which

entails counterpropagating signals as a fundamental prereq-
uisite for the lossless attraction to happen [1].

Simulating polarization attraction requires the joint integra-
tion of the two vectorial nonlinear Schroedinger equations
(VNLSE) of the pump and probe fields. Since the fields ini-
tial values are supplied at opposite fiber ends, the problem
at hand is a Boundary Value Problem (BVP), that cannot be
tackled with the split-step Fourier method (SSFM). Resort-
ing to traditional finite difference integration requires large
amounts of memory and long computation times: the authors
of [1, 2] perform numerical simulations in the case of a short
fiber (2 m) [1], leaving to experiments the case of long fibers
(kilometers) [2].

The effects described in this paper are the same as those seen
by other authors [2]–[4]. Hence, as we stress, there isn’t any
new physics, here. In this work, we describe a novel iterative
algorithm for the numerical simulation of counterpropagat-
ing optical signals [7], which is based on the SSFM, hence can
be implemented in many traditional optical simulators that
were originally devised for copropagating channels. In ad-
dition, having the SSFM as the fast and efficient core of the
algorithm’s iterations makes it suitable for simulating coun-
terpropagation even in (kms) long fibers [2], where finite dif-
ference integration is not practical. The proposed algorithm,
named SCAOS (simple counterpropagation algorithm for op-
tical signals), is then applied to simulate the nonlinear polar-
ization interaction between a probe and a pump signals, that
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(a) (b) (c)

FIG. 1 (a) 50 random (uniformly distributed) input probe SOPs; (b) schematic setup of a lossless polarization attractor (polarization controller, PC, sets the pump SOP) ; (c) output

average probe SOPs (DOP=magnitude), attracted towards the pump SOP (blue, here set on S1).

FIG. 2 Schematic description of the iterative SCAOS algorithm.

propagate in opposite directions, thus demonstrating the op-
eration of a lossless Kerr-based polarization attractor.

2 THE SCAOS ALGORITHM

We wish to simulate the counterpropagation of a probe
e+(z, t) and a pump signal e−(z, t), travelling within a
fiber of length L, whose initial values e+(0, t) and e−(L, t)
are given. Signal superscripts ± identify the propagation
direction, so that e+(t) propagates from z = 0 to z = L, and
vice-versa for e−(t). Hence, the final result is to calculate
the outcoming probe e+(L, t) and pump e−(0, t). The basic
idea behind the proposed algorithm is to let e+ and e−

iteratively propagate from z = 0 to z = L and vice-versa (i.e.,
in the “reverse fiber”, as seen from z = L to z = 0). In each
propagation, one of the fields forward-propagates, starting
from its given initial value, towards its output fiber end, while
the other backward-propagates, i.e., travels according to an
inverse-Schroedinger equation, starting from an estimated
value. Backward-propagation is an option that can be easily
implemented in the SSFM, which is originally devised for a
fast and efficient (forward) signal propagation. We did so,
while implementing the whole SCAOS algorithm, within

Optilux [8], the SSFM-based, open-source optical simulator
developed at the University of Parma.

Figure 2 sketches the n − th algorithmic iteration. Before the
first iteration, the initial pump estimate e−0 (0, t) is found by
letting the pump initial condition e−(L, t) forward-propagate
as a single field, from L to 0. After each half-iteration, the
backward-propagating signal completes a round-trip towards
its input fiber end, yielding a new n− th estimate for the input
field (e−n (L, t), at z = L, or e+n (0, t), at z = 0). A normalized
root mean square (rms) error is calculated, between such an
estimate and its true initial value. At the same time, the given
initial (boundary) value is substituted to the estimate, so that
the outcoming forward-propagating field (e+n (L, t), at z = L,
or e−n (0, t), at z = 0, which are the sought quantities) is re-
fined, at the next iteration.

The rms errors RMS±n , evaluated for the pump and probe at
n − th iteration, drive the stop criterion: the algorithm stops
when both RMS±n are below a certain threshold, meaning that
the round-trip field estimates are sufficiently close to their true
initial values. Figure 3(a), obtained for the polarization attrac-
tion setup of Section 3, shows a typical behavior of the nor-
malized rms errors, where the errors becomes negligible (be-
low 0.1 %) in a few iterations.
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(a)

(b)

FIG. 3 (a) Residual normalized rms error during SCAOS iterations; (b) Fraction of probe

energy that is attracted towards (solid line) a right-circular pump SOP, in a short

lossless attractor, as in [1]. The residual fraction of probe energy, i.e., the energy of

the probe component that is orthogonal to the attracting pump SOP, is plotted with

dashed lines.

3 APPLICATION TO LOSSLESS
POLARIZATION ATTRACTION IN A
SHORT HIGHLY NONLINEAR FIBER

As a first application of the SCAOS algorithm, we simulate
the system setup described in [1] and used for the first ex-
perimental demonstration of lossless polarization attraction.
The counterpropagating pump and probe beams, both con-
sisting of a completely polarized 10 ns intensity-modulated
light pulse, are transmitted on a highly nonlinear single
mode fiber, with length L = 2 m. The large Kerr coefficient
(γ = 22 W−1Km−1) and pulse intensities (up to 45 W) used
in the experiments allow a significant nonlinear interaction.
In such a short fiber, propagation is governed by the VNLSE,
where circular polarizations play a special role, hence a rigth
circular polarization is chosen for the input pump SOP (S3 in
Stokes space).

After propagating 7 different input probe SOPs with increas-
ing ellipticity and random azimuth, Figure 3 shows the frac-
tion of output probe energy that is aligned with (solid line)
or ortogonal to (dashed line) the input pump SOP, as a func-
tion of the equal pump and probe peak powers injected into
the fiber. Results coincide exactly with those reported in [1]
(obtained with finite difference integration), and show how,
as power increases, each input probe SOP is attracted towards
the right circular polarization imposed by the pump.

To gain further insight into the polarization attraction process,
we report in Figure 4 details about the polarization states of
the pump and probe along the fiber, in the case of an input
probe with linear horizontal SOP and input powers 100 W.
The degree of polarization (DOP) of the launched pump and

FIG. 4 Lossless polarization attraction between pulses in a short (2 m) highly nonlinear

fiber: (a) SOP traces along z (red: probe, blue: pump) (animated GIF, 277 kB, available

online); (b) motion of the average attracted SOP; (c) resulting DOP, along z.

probe pulses is unitary. This is no longer true when the two
signal beams start interacting: Figure 4(a) shows the depolar-
ization traces, for the probe (red) and pump (blue), on the
Poincaré sphere. Each trace represents the time evolution of
the pulse’s SOP, at a given position z ∈ [0, L] along the fiber,
and the inner vectors represent its power-averaged SOP. From
each trace, we report, in Figure 4(b,c), the average SOP and the
DOP. The probe average SOP is attracted towards the pump
SOP, with a relatively small depolarization, while the pump is
much more depolarized and ends away from the input probe.
Full results, as in Figure 4(a-c), are obtained with the SCAOS
algorithm in 8 min. computation time, on an ordinary PC.

Different choices for the input probe SOP yield similar re-
sults: Figure 5(a) shows the resulting average output probe
polarizations (marked by red vectors), obtained by simula-
tion (through the proposed algorithm), when the attracting
pump SOP (marked by a blue vector) is right circular (S3).
Results were obtained by launching 50 random input probe
SOPs, with uniform distribution over the Poincaré sphere, as
in Figure 1(a). As usual, polarization attraction entails a cer-
tain amount of depolarization: the DOP of the resulting out-

12042- 3

http://www.jeos.org/suppfiles/719/719-3698-1-SP.GIF


J. Europ. Opt. Soc. Rap. Public. 7, 12042 (2012) M. Barozzi, et al.

FIG. 5 Average probe SOP (red), at the output of a short (2 m) lossless polarization

attractor (DOP=magnitude). Plots obtained for 50 random input SOPs, in the case of a

circular (a), linear (b), and elliptical (c) pump SOP (blue).

put pulses is represented by the (red) vectors’ magnitude, in
Figure 5. Figure 5(a) shows an effective polarization attraction
towards the right-circular pump SOP, for all but those probe
SOPs that were initially almost orthogonal to the pump: as we
verified, those are the input SOPs that are less attracted, on
average, and whose output DOP is the lowest.

On the contrary, polarization attraction is not equally effec-
tive, in this setup, if the pump is not circularly polarized, as
can be verified in Figure 5(b,c), obtained for a linear hori-
zontal (b) or elliptically polarized (c) pump SOP. To quantify
these results, we averaged the output probe SOPs in the fig-
ure and computed the magnitude of such an average1, to get
0.81, 0.25, and 0.60, respectively. The result obtained for a left-
circular pump, not reported in figures, was the same as that
for the right-circular pump case in Figure 5(a). Hence, an ef-
fective polarization attraction occurs only in the case of a cir-
cularly polarized pump, while in the tested linear and ellipti-

1Such an averaging process, including both the temporal average, for each
launched SOP, and an ensemble average, over the 50 launched SOPs, is the
same as that adopted in [4, eq.(12)].

cal pump cases (b,c) the attraction is much weaker: a fact that
has not been sufficiently pointed out in [1].

As a further comment on the results in Figure 5(b,c), the de-
tailed studies in [9, 10] pointed out that, in fibers where the
VNLSE holds, polarization attraction occurs towards a SOP
that has the same ellipticity as the pump but an azimuth ro-
tated by 180◦, with respect to the pump2. In [9, 10], attraction
is studied as an asymptotical condition, for CW signals and in
the limit of an infinitely long fiber. However, our results ev-
idence that, for a fiber with finite length, as the one that we
employed in the tested setup, the attraction condition is ap-
proached to a different extent, depending on the pump SOP,
and is way more effective when a circularly polarized pump
is injected.

4 APPLICATION TO LOSSLESS
POLARIZATION ATTRACTION IN A
LONG TELECOM FIBER

As demonstrated in [2], polarization attraction can happen
even at moderate power levels, provided that the nonlinear
polarization interaction occurs in a longer fiber. The second
system setup to which we apply the SCAOS algorithm is sim-
ilar to the one used for the experiments in [2]. An intensity
modulated probe pulse, with duration 3 µs and peak power
1.2 W, undergoes lossless Kerr interaction with a counter-
propagating CW pump, with equal power, on an ordinary
telecom fiber, with Kerr coefficient γ = 1.99 W−1Km−1 and
length L = 10 km. Thanks to the random birefringence of
the fiber, propagation is governed by the Manakov equation
[3, 4], where the Kerr effect is isotropic, on the Poincaré sphere.
Hence, any pump SOP is expected to attract the probe SOP in
the same way.

We thus chose, without loss of generality, a linear horizontal
pump SOP (S1), and obtained the simulation results shown in
Figure 6, plotted in the same framework as those reported in
Figure 4. Results refer to a right-circular input probe SOP, here
chosen as an example, that yields the depolarization traces re-
ported in Figure 6(a) (10 traces, plotted every km of propaga-
tion). The probe average SOPs, plotted on a finer scale in Fig-
ure 6(b), show that attraction occurs towards the pump SOP,
along a spiral trajectory. The probe depolarization is visible in
the DOP curve in Figure 6(c), while the pump depolarization
is negligible here, being the pump much longer than the probe
duration.

Repeating the propagation for 50 random input probe SOPs,
i.e., those in Figure 1(a), yields similar results, as visible in Fig-
ure 7(b) (which is the same as Figure 1(c)), reporting the corre-
sponding average output probe SOPs. Polarization attraction
is testified by the 50 vectors surrounding the attracting pump
SOP (S1), and the output DOPs are reported as the vectors’
magnitude. Figures 7(a),(c) complete the picture, by verifying
numerically that a different choice of the pump SOP does not
change the attractor’s performance, at the output. Thanks to
the isotropy of the Kerr effect, in the context of the Manakov

2Of course, the azimuth is undetermined when the pump SOP is circular
(S3), hence the circular pump case appears to follow the same “rule”.
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FIG. 6 Lossless polarization attraction of a probe pulse towards a (linear horizontal)

CW pump, in a long (10 km) fiber. (a) probe SOP traces along z (animated GIF, 147 kB,

available online); (b) motion of the average probe SOP (red) along z, showing the

attraction towards the (blue) pump SOP; (c) resulting DOP, along z.

equation, and contrary to the case of a short highly-nonlinear
fiber discussed in Section 3, all pump polarizations are equally
effective in attracting the input probe SOPs. The overall per-
formance, as quantified by the magnitude of the average out-
put probe SOPs, as in Section 3, is equal 0.80, 0.76, and 0.78,
respectively, for the tested right-circular, linear horizontal, and
elliptical pump SOPs reported in Figure 7(a-c).

5 CONCLUSIONS

We introduced a novel iterative algorithm, named SCAOS, to
simulate the counterpropagation of optical signals, and im-
plemented it in the Optilux simulator [8]. We applied SCAOS
to simulate the nonlinear polarization interaction between
a pump and a probe field, due to Kerr effect. Two system
setups were analyzed, showing that polarization attraction
takes place both in a short highly nonlinear fiber, where pow-
erful signals are launched, and in a long telecom fiber, even
with moderate signal powers. We thus describe the same ef-
fects presented in recent literature [2]–[4], using an alternative
numerical approach and obtaining consistent results. The al-

FIG. 7 Average probe SOP (red), at the output of a long (10 km) lossless polarization

attractor (DOP=magnitude). Plots obtained for 50 random input SOPs, in the case of a

circular (a), linear (b), and elliptical (c) pump SOP (blue).

gorithm, always converging in a few iterations (with fast com-
putation times), allowed a detailed study of the signals’ polar-
ization evolution, thus pointing out the dynamics of lossless
polarization attraction. Results reveal that, while in the first
case (short highly nonlinear fiber) the attracting pump should
be circularly polarized, in the second case (long telecom fiber)
an effective lossless polarization attraction occurs towards any
pump polarization.
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