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Distribution of temperature in a single lens due to
absorption of light and heat conduction: an adaptive
solver
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We develop an algorithm for the solution of the stationary heat-equation in a single lens due to absorption of light, heat-conduction and
transfer of the heat to the environment while we assume rotational symmetry for the whole situation. The proceeding is based on an easy
to implement finite difference scheme, which is best suited for rectangular areas. Therefore, we have to transform the heat equation and
the boundary conditions from the original domain, i.e. the surface of section of the lens by the aid of tensor methods to a rectangle. So
the algorithm generates a grid, which adopts automatically to the actual shape of the lens. In this sense, we characterize the method as
adaptive. In the examples, we investigate the effect of a high-transmission glass on the distribution of temperature and further demonstrate
the adjustment to a realistic lens shape with a strong deviation from a spherical surface in form of a kink near the edge. We compare the
results with a simple model for the distribution of temperature and show the strong dependency of the results on the transmission of the
materials.
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1 INTRODUCTION

Depending on the application, raising the power of light
transferred through optical systems may have very different
advantages, reaching from the reduction of machining times
in laser-material processing to a more intense experience of
movies due to modern digital cinema projectors [21].

Thus, the search for optical glasses for high power light flux
applications has a history of at least two decades, see e.g. [6]
and the literature cited there, but due to new powerful sources
of light their importance is increasing, so that new high-power
glasses are developped and offered [21].

This high power flux, however, does not only raise the tem-
perature in the optical elements homogeneously due to the
absorption of light, but is also the source for an inhomoge-
neous distribution of temperature, which in turn influences
considerable the optical quality of the system. Measurements
of such effects are challenging but of great interest and are
therefore an issue in latest research [17].

Here we want to calculate the distribution of temperature in
a single lens due to the absorption of light, heat conduction
and the thermal interaction with the environment. The rele-
vant scientific basics in the sense of a phenomenological de-
scription have been known in principle for a long time [42],
even if some of the historical explanations are antiquated to-
day. The development of this formalism marks a glorious era
in early classical theoretical and experimental physics, begin-
ning, very simplified speaking, with works of I. Newton and
the legendary Théorie analytique de la chaleur of J.B. Fourier,
which was called the ’bible of the mathematical physicist’ by

A. Sommerfeld [56], and culminating finally in the discovery
of the conservation of energy. In an earlier work [41], we dis-
cussed a few of the basic topics of the theory very briefly and
derived approximations for a thin single lens.

The task to be solved here is given by Poisson’s equation,
which is one of the most fundamental equations in mathemat-
ical physics. Hence, for the solution of this class of problems,
there is no absence of numerical schemes (see, e.g. [7], [8], [20],
[23], [29], [30], [32], [37], [48], [62], or the literature on electro-
static field calculation). In the following, we will choose a way
which is taylored for the shape of lenses, may they be aspheres
or not.

Generally, we will neglect the transport of heat in the interior
of the lens by radiation which may get important for higher
differences of temperature.

First we will set up the stage and state the problem in mathe-
matical form, i.e., we write down the differential equation and
the boundary conditions. In the second step, we will trans-
form the coordinates in such a way that the new domain is a
rectangle. For the description of this transformation we use
a few elements of tensor calculus which will be briefly ex-
plained. Then the problem will be discretized, leading to a
system of linear equations which may be solved by different
methods. Here, one of the iterative strategies is suggested to
avoid the need of additional linear algebra subprograms.

We will also look at a few examples, and compare the results
with a simple approximation.
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FIG. 1 The domain where the problem has to be solved. Boundary no. 1 is the optical

axis, boundary no. 2 and 4 are the upper ("t: top") and lower ("b: bottom") optical

surfaces, respectively, and boundary 3 is the edge of the lens. D is the center thick-

ness and R is half the diameter of the lens. nt is is the outer unit normal of the upper

(t:"top") surface. For later convenience, we will sometimes write x1 for ρ and x2 for

z.

Finally, we discuss hints for further generalizations.

2 MATHEMATICAL STATEMENT OF THE
PROBLEM

The theoretical basics and sign conventions as well as the no-
tation of the thermal quantities can be found in more detail in
[34], [41].

The original problem is a 3D one, but due to symmetry around
the z-axis, which we assume here, it is sufficient to consider
the surface of section of the lens shown in Figure 1.
In the inner of the volume, the distribution of temperature is
governed by the stationary heat equation [34]:

− ∆T(r) =
ν(r)

λ
or

− ∂2

∂ρ2 T(r)− 1
ρ

∂

∂ρ
T(r)− ∂2

∂z2 T(r) =
ν(r)

λ
, (1)

where the last equation is in cylindrical coordinates, having
dropped the additional term − 1

ρ2
∂2

∂φ2 T(r) due to our assump-
tion of rotational symmetry.

Here, λ is the heat conductivity in
[

W
K·m

]
, and the source

term ν(r) in
[

W
m3

]
is the spatial density of the heat produced

by absorption of light.

Due to the theory of partial differential equations, the state-
ment of the problem is only complete with boundary condi-
tions, which we will consider in the sequence given by the
numbering of the boundaries in Figure 1:

1. On the optical axis, we have:

∂T(ρ, z)
∂ρ

∣∣∣∣
ρ=0

= 0. (2)

One way of comprehension bases on Gauss’ theorem.
Consider a cylindrical volume-element in the inner of the
lens around the optical axis with radius ρ and height dz
and integrate over the surface resp. volume of this cylin-
der:

{
∇T · dA =

y
∆T dV = −

y ν(r)
λ

dV. (3)

For small ρ, the left hand side of this equation is

πρ2 · ∂T
∂z

∣∣∣∣
top
− πρ2 · ∂T

∂z

∣∣∣∣
bottom

+ 2πρ · dz · ∂T
∂ρ

, (4)

where our assumption of rotational symmetry around
the optical axis causes the actual form of the last term.
Now, ν shall be a smooth function and therefore for small
ρ, the right hand side is

− 1
λ
· πρ2 · dz · ν(ρ = 0, z). (5)

Since the right hand side of this equation vanishes like
O(ρ2) for ρ→ 0, the LHS does so, too. This gives

∂T(ρ, z)
∂ρ

∣∣∣∣
ρ→0

= O(ρ). (6)

2. If there is no transfer of heat to the environment through
the optical surfaces, the current density of heat and thus
the gradient of temperature has to be parallel to the tan-
gent vector of the surface. In other words, the dot prod-
uct between the unit normal vector nt (which is shown
schematically in Figure 1) directing outwards of the sur-
face and the gradient of temperature vanishes.
As a generalization, one can take the exchange of heat
with the environment into account. To do this, we first
need the definition of the current density of heat [34]:

j = −λ∇T(r). (7)

The component of the current density in normal direction
is therefore given by:

jn = −λ nt(r) · ∇T(r). (8)

This definition of the current density implies a flow of
heat outside the volume if jn is positive. If there are no
sources of heat at the surface, jn has to be continuous
across the boundary [50].

A well established and probably the most simple way to
model the exchange of heat with the ambient surround-
ings is by an empirical law, the so-called Newton’s law of
cooling (see, e.g. [33], [44], [50], [59], [60], and many oth-
ers); it is also used for optical components e.g. [4], [24],
[61].
According to e.g. [47], the combined action of conduc-
tion, convection and radiation can be described by

jn = αN (T(r)− Ts) , (9)

where αN is the Newtonian heat-transfer coefficient[
W

K·m2

]
and Ts the temperature of the ambient sur-

roundings.
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Finally, we find at the optical surfaces:

nt;b(r) · ∇T(r) = −αN
λ
· (T(r)− Ts) , (10)

with αN = 0, if the transfer of heat through the optical
surfaces is surpressed.

In the case of the upper surface no. 2, we have with the
outer unit normal nt (”t” : top)

nt · (∇T) = −αN
λ
· (T(rt)− Ts)

nt ·
(

∂T
∂ρ

Iρ +
∂T
∂z

Iz

)
= −αN

λ
· (T(rt)− Ts) . (11)

Here, Iρ and Iz are the orthonormal cylindrical base vec-
tors in ρ and z-direction, respectively.

3. For simplicity we will choose

T(ρ = R) = const., (12)

although more complicated boundary conditions could
be treated as well. Notice, however, that the solution will
only be fixed uniquely, if not all the boundary conditions
are given by derivatives of the temperature; otherwise
one could add any constant value to the distribution of
temperature in the lens, i.e. to one solution, to get a new
one.

4. Here, with the outer unit normal nb (”b”: bottom), we
have the same conditions as in item no. 2, i.e.,

nb · (∇T) = −αN
λ
· (T(rb)− Ts)

nb ·
(

∂T
∂ρ

Iρ +
∂T
∂z

Iz

)
= −αN

λ
· (T(rb)− Ts) . (13)

The finite difference method which we will use here is best
suited for rectangular domains, and in a former calculation
of the author the treatment of boundary points and even the
creation of an accurate grid caused problems for some lens
shapes. Thus, it seemed likely to transform the surface of sec-
tion of the lens to a rectangle. The price to pay is the transfor-
mation of the differential equation and the boundary condi-
tions, which will be done in the next sections.

3 TRANSFORMATION OF THE GEOMETRY

For convenience, we will sometimes write x1 for ρ and x2 for
z, and will use upper indices here to be consistent with the
tensor notation later. They should not be confused with pow-
ers; the latter will be marked by brackets like [.]2 throughout
the whole article.

We considered the surface of section of the lens in cylindrical
(ρ|z) resp. pseudo-cartesian (x1|x2) coordinates.
Now we want to transform this domain into the logical rect-
angle [0; L1] × [0; L2] in the new coordinates (q1|q2), see Fig-
ure 2. Mathematically this could be interpreted as a mapping
(the ”alibi” oder ”active” point of view), but we will take this
transformation as a description of the original points by the

FIG. 2 Transformation of the surface of section of the lens to a rectangle.

aid of new coordinates (the ”alias” oder ”passive” point of
view) [26]. So here the points do not change their location (that
may eventually be senseful e.g. for the treating of thermal
expansion, depending on the way of description), but they
change their name, i.e. coordinates. Such a change of the co-
ordinate system is common practice in physics and engineer-
ing. The temperature T(q(x)) at a fixed point in space is the
same, regardless of the way of denomination of the coordi-
nates. Therefore, scalar quantities like the temperature need
not be transformed. The derivatives, however, obviously do
depend on the chosen coordinate system which will be treated
by using the cain rule of multi-varibale calculus.
The transformation could be done directly from 3D cartesian
coordinates, but it seems to be simpler to choose cylindrical
coordinates as a starting point.

3.1 The transformation equations of the
coordinates

We demand for the following properties of the transforma-
tion:

1. Points with x1 = 0 (i.e. the optical axis) shall be mapped
to points with q1 = 0:(

0
x2

)
7→
(

0
q2

)
(14)

2. A point from the upper surface xt =

(
x1

Ht(x1)

)
shall

be mapped on a point q =

(
q1

L2

)
:

xt =

(
x1

Ht(x1)

)
7→ q =

(
q1

L2

)
(15)

3. Points with x1 = R shall be mapped to points with
q1 = L1: (

R
x2

)
7→
(

L1
q2

)
(16)

4. For a point of the lower surface, it shall be:

xb =

(
x1

Hb(x1)

)
7→ q =

(
q1

0

)
(17)
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A possible transformation of the coordinates is given by:

q1 =
L1

R
· x1, q2 = L2 ·

x2 − Hb(x1)

H(x1)
, (18)

with

H(x1) = Ht(x1)− Hb(x1), (19)

and where Ht(...), Hb(...), and H(...) are considered as func-
tions of x1.
The inverse transformation is therefore

x1 =
R
L1
· q1, x2 =

H
(

R
L1
· q1
)

L2
· q2 + Hb

(
R
L1
· q1
)

. (20)

The choice of the values of L1;2 will be considered later.

As one easily can verify, this transformation maps the points
in Figure 2 P 7→ P’, Q 7→ Q’, and R 7→ R’, S 7→ S’, respectively,
and points on the left, upper, right, and lower boundary are
mapped to their corresponding counterparts.

3.2 Elements of tensor calculus

Unlike a change to cylindrical or spherical coordinates,
our transformation generates a mesh which is not locally
orthogonal. Thus, the adequate formalism is that of tensor
analysis. Therefore, we want to fix the notation and briefly
provide the basics of tensor calculus used here. Mainly the
notation bases on [2]. That book we found very useful for our
purposes here and recommend it for further reading in case
of need.
We will make use of the summation convention, i.e., we will
sum up over two indices if they are symbolized by the same
letter in a term, one as a sub- and one as a superscript.
In this section, it is simpler to consider the general three-
dimensional case because the distinction between coordinate
lines resp. coordinate surfaces is clearer. So here, our indices
take the values 1, 2, 3, while later it will be possible to restrict
our calculations to the two-dimensional case.

For the ordinary orthonormal cartesian base vectors we will
write Ik or Im, where the indices like k and m take the values
1, 2, 3. The orthonormality of the cartesian base vectors gives
for the dot product

Ik · Im = δm
k , (21)

where

δm
k =

{
0 for k 6= m
1 for k = m

. (22)

We now insert new coordinates ql by an invertible transfor-
mation of the cartesian coordinates xn:

q1 = q1(x1, x2, x3)

q2 = q2(x1, x2, x3)

q3 = q3(x1, x2, x3); (23)

the points in space are now functions of the new coordinates

r = r(q1, q2, q3) =

 x1(q1, q2, q3)

x2(q1, q2, q3)

x3(q1, q2, q3)


= x1(q1, q2, q3) I1 + x2(q1, q2, q3) I2 + x3(q1, q2, q3) I3

= xm(q1, q2, q3) Im. (24)

We get the coordinate line belonging to q1 if the values of the
coordinates q2 and q3 are fixed, while q1 is varied. So, we find
the tangent vector to the coordinate line by

G1 =
∂r(q1, q2, q3)

∂q1 =


∂x1

∂q1

∂x2

∂q1

∂x3

∂q1


=

∂x1

∂q1 I1 +
∂x2

∂q1 I2 +
∂x3

∂q1 I3 =
∂xm

∂q1 Im. (25)

Three such tangent vectors may define a local base, the so-
called covariant base (l = 1, 2, 3):

Gl =
∂xm

∂ql Im = αm
l (q) Im, (26)

where we have defined

αm
l (q) =

∂xm(q)
∂ql . (27)

A coordinate surface for q1 is given by the (in terms of xm:
implicit) function

q1 = q1(x1, x2, x3) = const., (28)

and the vector

G1 =


∂q1

∂x1

∂q1

∂x2

∂q1

∂x3

 = ∂q1

∂x1 I1 + ∂q1

∂x2 I2 + ∂q1

∂x3 I3 = ∂q1

∂xm Im (29)

is the gradient to this surface and therefore orthogonal to it in
the point (x1, x2, x3).
By the aid of three such vectors, we define the contra-variant
base (k = 1, 2, 3):

Gk =
∂qk

∂xm Im = βk
m(x) Im, (30)

with

βk
m(x) =

∂qk(x)
∂xm . (31)

From the chain rule we get the following

δk
l =

∂qk(x1, x2, x3)

∂ql

=
∂qk

∂x1 ·
∂x1

∂ql +
∂qk

∂x2 ·
∂x2

∂ql +
∂qk

∂x3 ·
∂x3

∂ql

= βk
1 · α1

l + βk
2 · α2

l + βk
3 · α3

l

= αm
l · β

k
m. (32)
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Thus, the dot product between the co- and contra-variant base
vectors is:

Gl ·Gk = αm
l (q) Im · βk

n(x) In = αm
l βk

n δn
m = αm

l βk
m = δk

l . (33)

So the bases Gl and Gk are said to be reciprocal to each other,
while the cartesian base is the reciprocal to itself, see Eq. (21).
Hence, for cartesian systems, a distinction between co- and
contravariant indices is neither necessary nor common prac-
tice in most circumstances.

Again, from the chain rule, we have

δn
m =

∂xn(q1, q2, q3)

∂xm

=
∂xn

∂q1 ·
∂q1

∂xm +
∂xn

∂q2 ·
∂q2

∂xm +
∂xn

∂q3 ·
∂q3

∂xm

= αn
1 · β1

m + αn
2 · β2

m + αn
3 · β3

m

= αn
k · β

k
m. (34)

If we multiply Eq. (30) with αn
k , we therefore find

αn
k Gk = αn

k βk
m Im = δn

m Im = In, (35)

or
In = αn

k (q) Gk. (36)

By renaming of indices, Eq. (26) can be written as
Gk = αn

k (q) In. Multiplication with βk
m gives

Im = βk
m(x) Gk. (37)

Now, we are able to write down the laws for transformation of
the components of a vector V given in cartesian coordinates:

V = vn In = vn · αn
k (q) Gk = Vk Gk, (38)

i.e.,
Vk = αn

k (q) · vn, (39)

and
V = vm Im = vm · βk

m(x) Gk = Vk Gk, (40)

thus
Vk = βk

m(x) · vm. (41)

Finally, we want to find the formula for the partial derivative
of a scalar function ϕ(xm). In cartesian coordinates, the gradi-
ent of ϕ is given by:

∇ϕ(x) =
∂ϕ(x)

∂x1 I1 +
∂ϕ(x)

∂x2 I2 +
∂ϕ(x)

∂x3 I3

=
∂ϕ(x)
∂xm Im = ϕ,m(x) Im, (42)

where we have used the comma-notation for the partial
derivative.
In the new coordinates, the gradient is according to the chain
rule given by:

∇ϕ =
∂ϕ(q)

∂qk
∂qk

∂xm Im =
∂ϕ(q)

∂qk βk
m Im

=
∂ϕ(q)

∂qk Gk = ϕ,k(q) Gk. (43)

Hence, it is
ϕ,m(x) Im = ϕ,k(q) Gk. (44)

3.3 Differentials of the transformation

Now we will turn back to our effective two-dimensional prob-
lem; the indices will take the values 1, 2.
The differentials of the transformation, esp. the β’s will be-
come important later, so we calculate the quantities defined in
Eq. (27) and Eq. (31):

For the αl
m’s we find

α1
1(q) =

R
L1

α1
2(q) = 0 (45)

α2
1(q) =

q2

L2
· R

L1
· ∂H

∂x1 +
R
L1
· ∂Hb

∂x1 α2
2(q) =

H
(

R
L1
· q1
)

L2
.

The βm
k ’s are given by

β1
1(x) =

L1

R
β1

2(x) =0

β2
1(x) =−

L2

[H (x1)]
2 ·

∂H
∂x1 ·

(
x2 − Hb

(
x1
))

− L2

H(x1)
· ∂Hb

∂x1

β2
2(x) =

L2

H(x1)
. (46)

As one can see easily, our transformation comes true with the
requirements Eq. (32) and (34), which are eight single equa-
tions in total.

Later, we will need the derivatives of the β’s, too:

β
j
i,m(x) =

∂

∂xm β
j
i(x) : (47)

β1
1,1(x) = 0 (48)

β1
2,2(x) = 0 (49)

β2
1,1(x) =− L2

(
x2 − Hb(x1)

)
·
(
− 2

[H(x1)]
3

[
∂H
∂x1

]2
+

1

[H(x1)]
2

[
∂

∂x1

]2
H

)

+
2L2

[H(x1)]
2

∂H
∂x1

∂Hb
∂x1 −

L2

H(x1)

[
∂

∂x1

]2
Hb (50)

β2
2,2(x) = 0. (51)

From the point of view of tensor calculus, there is a relation
between the αm

i ’s or βm
i ’s and the metric tensor or the deriva-

tives of the differentials and the Christoffel symbols. More-
over, the Laplacian ∆ in the transformed system may be com-
puted from the metric tensor, see e.g. [26]. But here we will do
the transformation of the Laplacian by straightforward calcu-
lation and such a deep entering into mathematical theory is
not necessary, since we do not need e.g. derivatives of a vec-
tor [2].
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3.4 Transformation of the differential
equation

Clearly, the functional dependency on the variables is a differ-
ent one in T(q) resp. T(x), and thus it might be formally more
correct to write

qk = qk(xl); θ(qk(xl)) = T(xl) (52)

for the transformation (see, e.g. [11]) in what follows. But
here, we want to emphasize the fact that at one and the same
point in space, the value of the temperature is the same and
thus take the same symbol T for both sets of coordinates, as
customary in physics and engineering.

We are starting with the chain rule:

∂T(q(x))
∂xi =

∂T
∂q1

∂q1

∂xi +
∂T
∂q2

∂q2

∂xi

=
∂T
∂q1 · β

1
i (x) +

∂T
∂q2 · β

2
i (x)

=
∂T
∂qj · β

j
i(x). (53)

For a function F
(

qk(xm)
)

it is therefore:

∂

∂xm F = βk
m(x) ·

∂F
∂qk , (54)

which we will use in the next calculation.

The second derivatives can be calculated by:

∂

∂xm
∂

∂xi T =
∂

∂xm

(
∂T
∂qj ·

∂qj

∂xi

)
=

∂qj

∂xi ·
∂

∂xm
∂T
∂qj +

∂T
∂qj ·

∂

∂xm
∂qj

∂xi

= β
j
i(x) · β

k
m(x) ·

∂

∂qk
∂

∂qj T + β
j
i,m(x) ·

∂T
∂qj . (55)

In the last formula (55), we are especially interested in the case
i = m for the further calculation[

∂

∂x1

]2
T = β

j
1(x) · β

k
1(x) ·

∂

∂qk
∂

∂qj T + β
j
1,1(x) ·

∂

∂qj T, and[
∂

∂x2

]2
T = β

j
2(x) · β

k
2(x) ·

∂

∂qk
∂

∂qj T + β
j
2,2(x) ·

∂

∂qj T, (56)

where

β
j
1,1(x) =

∂

∂x1 β
j
1(x)

β
j
2,2(x) =

∂

∂x2 β
j
2(x). (57)

Now we are ready to transform the differential equation (1):

−
[

∂

∂ρ

]2
T − 1

ρ

∂

∂ρ
T −

[
∂

∂z

]2
T =

ν(r)
λ

, (58)

or, by replacing ρ→ x1 and z→ x2:

−
[

∂

∂x1

]2
T − 1

x1
∂

∂x1 T −
[

∂

∂x2

]2
T =

ν(r)
λ

. (59)

Hence, we find the transformed differential equation:

−
(

β
j
1βk

1 + β
j
2βk

2

) ∂

∂qk
∂

∂qj T

−
(

β
j
1,1 + β

j
2,2 +

L1

R
· 1

q1 · β
j
1

)
∂T
∂qj =

ν(r)
λ

. (60)

Without use of the summation convention, the transformed
differential equation reads:

−
(
[β1

1]
2 + [β1

2]
2
) [ ∂

∂q1

]2
T

− 2
(

β1
1β2

1 + β1
2β2

2

) ∂

∂q1
∂

∂q2 T

−
(
[β2

1]
2 + [β2

2]
2
) [ ∂

∂q2

]2
T

−
(

β1
1,1 + β1

2,2 +
L1

R
· 1

q1 · β
1
1

)
∂

∂q1 T

−
(

β2
1,1 + β2

2,2 +
L1

R
· 1

q1 · β
2
1

)
∂

∂q2 T

=
ν(r)

λ
. (61)

This could be further simplified, since β1
2 = 0 and

β1
1 = L1/R = const., while β1

1,1 = β1
2,2 = β2

2,2 = 0.

3.5 Transformation of the boundary
condit ions

Now we have to transform the boundary conditions. We will
start with the dot product of the outer unit normal vector and
the gradient of temperature:

n(r) · ∇T(r). (62)

The transformation laws for the vectors are given by Eq. (40)
and Eq. (44):

n(r) · ∇T(r) = nj Ij · T,m(x) Im

= Nl Gl · T,k(q) Gk = Nl T,k(q) Gl ·Gk

= Nl T,k(q) δk
l = Nl T,l(q), (63)

where according to Eq. (41) the components of the normal in
the q-system are:

Nl = βl
m nm = βl

1 n1 + βl
2 n2, (64)

i.e.,

N1 = β1
1 n1 + β1

2 n2

N2 = β2
1 n1 + β2

2 n2. (65)

Thus, from Eq. (10), we get at the optical surfaces:

N1(x) T,1(q) + N2(x) T,2(q)

=N1(x)
∂T(q)

∂q1 + N2(x)
∂T(q)

∂q2 = −αN
λ
· (T(r)− Ts) . (66)

A charming property of tensor calculus and the dot product is
that one can change directly from Eq. (10) to Eq. (66).
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First, we consider the boundary no. 2:
The vector of location of the upper surface is given by:

r =
(

ρ

Ht(ρ)

)
=

(
x1

Ht(x1)

)
= x1I1 + Ht(x1)I2. (67)

Thus we find a secant resp. a tangent vector of the upper sur-
face:

∆r =
(

∆ρ

∆Ht(ρ)

)
∝

(
1

∆Ht(ρ)
∆ρ

)
∆ρ→0−→

(
1

∂Ht(ρ)
∂ρ

)

=

(
1

∂Ht(x1)
∂x1

)
. (68)

In cartesian coordinates, the upper unit normal (which directs
to the positive z- resp. x2-direction for ρ → 0 i.e. it is an outer
normal of the lens at this boundary) of the surface is therefore:

nt(x1) =
1√

1 +
[

∂Ht
∂x1

]2
·
(
− ∂Ht

∂x1

1

)
. (69)

Hence the cartesian components of the normalized upper nor-
mal are:

n1
t (x1) = −

∂Ht
∂x1√

1 +
[

∂Ht
∂x1

]2
, and n2

t (x1) =
1√

1 +
[

∂Ht
∂x1

]2
. (70)

Incidentally, we note that

G1 =
∂xm

∂q1 Im = αm
1 (q) Im = α1

1(q) I1 + α2
1(q) I2, (71)

as defined in Eq. (26), is collinear to the tangent vector (68) of
the upper surface q2 = L2, while

G2 =
∂q2

∂xm Im = β2
m(x) Im = β2

1(x) I1 + β2
2(x) I2, (72)

as defined in Eq. (30), is collinear to the the unit normal vector
if one takes x2 = Ht(x1) for the upper surface.

From Eq. (65), we have

N1
t (x) = β1

1(x) n1
t (x1) + β1

2(x) n2
t (x1)

N2
t (x) = β2

1(x) n1
t (x1) + β2

2(x) n2
t (x1). (73)

Since the argument x of the β’s has to be evaluated at the fixed
upper surface x2 = Ht(x1), it will later be sufficient to con-
sider N1;2

t (x1) as functions of x1 alone.

Together with Eq. (66), we find the boundary condition at the
upper optical surface:

N1
t (x) T,1(q) + N2

t (x) T,2(q)

=N1
t (x)

∂T(q)
∂q1 + N2

t (x)
∂T(q)

∂q2

=− αN
λ
· (T(q)− Ts) . (74)

We proceed with boundary 4:
The lower normal (which directs to the negative z- resp. x2-
direction for ρ → 0) of the surface is in cartesian coordinates:

nb(x1) =
1√

1 +
[

∂Hb
∂x1

]2
·
(

∂Hb
∂x1

−1

)
(75)

The cartesian components of the lower normal are:

n1
b(x1) =

∂Hb
∂x1√

1 +
[

∂Hb
∂x1

]2
, and

n2
b(x1) = − 1√

1 +
[

∂Hb
∂x1

]2
. (76)

Hence the boundary condition at the lower surface is given
by:

N1
b (x) T,1(q) + N2

b (x) T,2(q)

=N1
b (x)

∂T(q)
∂q1 + N2

b (x)
∂T(q)

∂q2

=− αN
λ
· (T(q)− Ts) , (77)

with

N1
b (x) = β1

1(x) n1
b(x1) + β1

2(x) n2
b(x1)

N2
b (x) = β2

1(x) n1
b(x1) + β2

2(x) n2
b(x1). (78)

Finally, we treat the boundary no. 1:
In this case we have:

∂T(ρ)
∂ρ

∣∣∣∣
ρ=0

= 0. (79)

The cartesian normal is given by

nl =

(
1
0

)
(80)

The cartesian components of the left normal are:

n1
l = 1, and n2

l = 0. (81)

Here, we use the normal pointing inside the volume, but this
will make no difference in the following.

According to Eq. (53) resp. the chain rule, we have:

0 =

(
∂T(ρ)

∂ρ

)∣∣∣∣
ρ=0

=

(
∂T(q)

∂q1 ·
∂q1

∂x1 +
∂T(q)

∂q2 ·
∂q2

∂x1

)∣∣∣∣
x1=0 ,resp. q1=0

=

(
β1

1(x) ·
∂T(q)

∂q1 + β2
1(x) ·

∂T(q)
∂q2

)∣∣∣∣
q1=0

=

(
β1

1 ·
∂T(q1)

∂q1

)∣∣∣∣
q1=0

, (82)

since β2
1(x) vanishes for an ordinary lens at the optical axis

due to ∂H/ ∂ρ
ρ→0−→ 0.

This finally gives:

∂T(q1)

∂q1

∣∣∣∣
q1=0

= 0. (83)

In case one wishes to investigate an axicon, one has further to
treat the last but one equation in (82).
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FIG. 3 Discretization of the rectangle.

If the original problem is given by a planparallel plate, the
surface of section is already a rectangle. As one can verify eas-
ily, in that case, the transformed problem (i.e. the differential
equation with boundary conditions) reduces to the original
one as it should.

4 DISCRETIZATION AND METHOD OF
SOLUTION

Now we will discretize the rectangular domain. We choose
M1 + 1 points along the q1-axis, and M2 + 1 points along q2.
The distance between the grid points shall be δ in both direc-
tions. This results in the dimensions L1;2 of the rectangle, see
Figure 3:

R 7→ L1 = δ ·M1, M1 ∈N

H 7→ L2 = δ ·M2, M2 ∈N. (84)

We introduced the scale factors L1;2 in the transformation
Eq. (18) to have a quadratical grid in the q-space for numeri-
cal convenience, while in the original geometry, we can choose
the subdivision independently in ρ− resp. z−direction by tak-
ing appropriate values of M1;2.

The grid points are:

q1(I) = I · δ, I = 0, 1, 2, . . . , M1

q2(J) = J · δ, J = 0, 1, 2, . . . , M2. (85)

Hence, the grid points in the original (x1|x2)-coordinate sys-
tem are according to Eq. (20):

x1(I) =
R
L1
· I · δ =

R
M1
· I,

x2(I, J) =
H
(

R
L1
· I · δ,

)
L2

· J · δ + Hb

(
R
L1
· I · δ

)

=
H
(

R
M1
· I
)

M2
· J + Hb

(
R

M1
· I
)

. (86)

4.1 Discret izat ion of the differential
equation

The inner points are given by:

1 ≤ I ≤ M1 − 1 (87)

1 ≤ J ≤ M2 − 1, (88)

while for the boundaries it is either I = 0 (first boundary),
J = M2 (second boundary), I = M1 (third boundary), or J = 0
(fourth boundary).

Since there is no penury of numerical differentiation formulas,
there are a number of schemes for discretization of Eq. (61).
The most simple way would probably be the usage of approx-
imations like the following ones given e.g. in [28]:

fxx(x, y) ≈ f (x + h, y)− 2 f (x, y) + f (x− h, y)
h2 (89)

fyy(x, y) ≈ f (x, y + k)− 2 f (x, y) + f (x, y− k)
k2 (90)

fxy(x, y) ≈ f (x + h, y + k)− f (x− h, y + k)
4 hk

+
− f (x + h, y− k) + f (x− h, y− k)

4 hk
. (91)

As we remark in passing: in this book and in further pub-
lications (e.g., [3], [15] or [26]), there are even formulas and
methods for domains which are bound by curved surfaces like
in our original task. But here we want to overcome problems
caused by individual lens shapes by our transformation to a
rectangle.

Now, for the discretization, we use a method discussed in [15]
which is a little more advanced; it seems to be a good compro-
mise between flexibility, stability, accuracy, pace and ease of
implementation, while there are still even more sophisticated
algorithms.

In [15] a discretization scheme is given for the following equa-
tion:

−
(

a11
∂2u
∂x2 + 2 a12

∂2u
∂x ∂y

+ a22
∂2u
∂y2

)
+ b1

∂u
∂x

+ b2
∂u
∂y

+ cu = f . (92)

A comparison with Eq. (61) gives:

a11 =
[

β1
1(x)

]2
+
[

β1
2(x)

]2
, (93)

a22 =
[

β2
1(x)

]2
+
[

β2
2(x)

]2
, (94)

a12 = β1
1(x) · β2

1(x) + β1
2(x) · β2

2(x), (95)

b1 = −β1
1,1(x)− β1

2,2(x)−
L1

R
· 1

q1 · β
1
1(x), (96)

b2 = −β2
1,1(x)− β2

2,2(x)−
L1

R
· 1

q1 · β
2
1(x), (97)

c = 0, (98)

f =
ν(r)

λ
. (99)

(100)
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Moreover, it is

a+12 := max(a12; 0) ≥ 0, (101)

a−12 := min(a12; 0) ≤ 0. (102)

(103)

Here, β2
1(x) = β2

1(I, J) has to be evaluated at the grid points
Eq. (86), and a12 should be understood as a12(I, J), for exam-
ple.

The discrete version of the transformed differential equation
for the inner points is given by:

1

[δ]2
{

a−12 · T(I − 1; J + 1)− (a22 − |a12|) · T(I; J + 1)

− a+12 · T(I + 1; J + 1)− (a11 − |a12|) · T(I − 1; J)

+ 2 (a11 + a22 − |a12|) · T(I; J)− (a11 − |a12|)
· T(I + 1; J)− a+12 · T(I − 1; J − 1)

−(a22 − |a12|) · T(I; J − 1) + a−12 · T(I + 1; J − 1)
}

(104)

+
1
2δ
{b2 · T(I; J + 1)− b1 · T(I − 1; J) + b1

·T(I + 1; J)− b2 · T(I; J − 1)}

=
ν(I; J)

λ
. (105)

Later we want to use an iterative scheme for solution so this
equation must be solved for T(I; J):

T(I; J) =
[δ]2

2 (a11 + a22 − |a12|)
· ν(I; J)

λ

− 1
2 (a11 + a22 − |a12|)

·
{

a−12 T(I − 1; J + 1)

− (a22 − |a12|) T(I; J + 1)− a+12 T(I + 1; J + 1)

− (a11 − |a12|) T(I − 1; J)− (a11 − |a12|)
· T(I + 1; J)− a+12 T(I − 1; J − 1)− (a22 − |a12|)
·T(I; J − 1) + a−12 T(I + 1; J − 1)

}
− δ

4 (a11 + a22 − |a12|)
{b2 T(I; J + 1)

− b1 T(I − 1; J) + b1 T(I + 1; J)

−b2 T(I; J − 1)} . (106)

4.2 Discret izat ion of the boundary
condit ions

1. Boundary: I = 0; 0 ≤ J ≤ M2:
At this boundary, condition Eq. (83) applies.
In [3] we find the following forward difference formula:

f ′(x) =
−3 f (x) + 4 f (x + h)− f (x + 2h)

2h

+
[h]2

3
f ′′′(ξ). (107)

With Eq. (83) this gives the discrete version of the
boundary condition at the boundary no. 1:

T(q1 = 0; q2) ≈4
3

T(q1 + δ; q2)− 1
3

T(q1 + 2δ; q2)

⇒ T(I = 0; J) =
4
3

T(0 + 1; J)− 1
3

T(0 + 2; J) (108)

2. Boundary: 0 < I < M1, J = M2:
In the q1-direction, we use the discrete approximation of
the first derivative given in [1]:

∂ f (x, y)
∂x

=
1

2h
[ f (x + h, y)− f (x− h, y)]

+ O([h]2). (109)

Therefore, we need a left and a right neighbour point, i.e.,
this formula may only be used for 0 < I < M1.
In q2-direction, we use [3] with h → −h, thus obtaining
the corresponding backward formula:

f ′(x) =
3 f (x)− 4 f (x− h) + f (x− 2h)

2h

+
[h]2

3
f ′′′(ξ). (110)

So we find:

T,1(q) =
T(q1 + δ; q2)− T(q1 − δ; q2)

2δ
+ O([δ]2)

T,2(q) =
3 T(q1; q2)− 4 T(q1; q2 − δ) + T(q1; q2 − 2δ)

2δ

+ O([δ]2). (111)

From Eq. (74) we find at the upper surface (2):

T(q1; q2)

≈
N1

t (x1) λ
[
T(q1 + δ; q2)− T(q1 − δ; q2)

]
−3N2

t (x1) λ− 2δ αN

+
N2

t (x1) λ
[
−4 T(q1; q2 − δ) + T(q1; q2 − 2δ)

]
−3N2

t (x1) λ− 2δ αN

+
−2δ αN Ts

−3N2
t (x1) λ− 2δ αN

; (112)

or

T(I; J = M2)

=
N1

t (I) λ [T(I + 1; M2)− T(I − 1; M2)]

−3N2
t (I) λ− 2δ αN

+
N2

t (I) λ [−4 T(I; M2 − 1) + T(I; M2 − 2)]
−3N2

t (I) λ− 2δ αN

+
−2δ αN Ts

−3N2
t (I) λ− 2δ αN

. (113)

3. Boundary: I = M1, 0 ≤ J ≤ M2: From Eq. (12), we have

T(q1; q2)
∣∣∣
q1=L1

= const. = 20◦C, (114)

or

T(M1; J) = 20◦C. (115)

4. Boundary: 0 < I < M1, J = 0: With

T,1(q) =
T(q1 + δ; q2)− T(q1 − δ; q2)

2δ
+ O([δ]2)

T,2(q) =
−3 T(q1; q2) + 4 T(q1; q2 + δ)− T(q1; q2 + 2δ)

2δ

+ O([δ]2), (116)
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and Eq. (77) we find at the lower surface no.4 :

T(q1; q2) ≈
N1

b (x1) λ
[
T(q1 + δ; q2)− T(q1 − δ; q2)

]
3N2

b (x1) λ− 2δ αN

+
N2

b (x1) λ
[
4 T(q1; q2 + δ)

3N2
b (x1) λ− 2δ αN

+
−T(q1; q2 + 2δ)

]
− 2δ αN Ts

3N2
b (x1) λ− 2δ αN

; (117)

or

T(I; J = 0)

=
N1

b (I) λ [T(I + 1; 0)− T(I − 1; 0)]
3N2

b (I) λ− 2δ αN

+
N2

b (I) λ [4 T(I; 1)− T(I; 2)]− 2δ αN Ts

3N2
b (I) λ− 2δ αN

. (118)

4.3 Solution of the discret ized problem

Now we have for the boundary points Eqs. (108), (113), (115),
(118), while for inner points Eq. (106) holds. This is a system of
linear equations for the unknown T(I; J)’s. Since every T(I; J)
only depends directly on values of the temperature of a few
points which are spatially near, this system is said to be sparse,
and a direct solution would at least demand for a lot of mem-
ory and the usage of subroutines for doing numerical linear
algebra. To avoid this, it is customary to solve such systems
by iterative methods; here, one can make use of the relaxation
method (SOR), which may even be parallelized. For further
details, see e.g. [3], [15], or [45]. Faster schemes based on nu-
merical linear algebra routines can be found in e.g. [8].

5 An approximation of the solution

In the examples, we want to compare the results of our our
algorithm with an approximative method, taylored for thin
lenses, which will be discussed now.

5.1 Model for the generation of heat due
to absorption

As we are interested in the heat produced in the lens by the
absorption of light, we have to speak about optical radiation
issues. For the purposes of this article, i.e. the description of
a numerical algorithm for the distribution of temperature, a
simplified discussion is sufficient. More realistic simulations
would demand for more sophisticated methods for the deter-
mination of the light field. In case of need, readers are referred
to e.g. [43] for the basics, as well as e.g. [9], [13], [19], [27],
[36], [39], [40], [49], [54], [58], or the pertinent literature given
in [41] for a selection of methods or examples, whereas the
problems dealt with here are are still issues in active academ-
ical and industrial research [5], [14]. It is assumed, that for the
simulation of an optical system, this problem may be solved
by ray-tracing or beam-propagation software.

Light transports energy, and so the basic quantity is the flux
Φ [W] of a light source or a beam. For monochromatic light of

frequency f
[

1
s
]
, one can write

Φ = Ṅh f , (119)

where Ṅ
[

1
s
]

is the number of photons per second and

h = 6.6 · 10−34 Ws2 is Planck’s constant. The irradiance I
[

W
m2

]
is the flux per surface of section A of the beam and is given by
[46]:

I =
Ṅh f

A
=

Φ
A

. (120)

If absorption or scattering in a medium takes place, the num-
ber of photons lossed is proportional to the acute number of
photons if the events are statistically independent, i.e., if the
intensity is not too high (for the description of further effects,
including solarization, see e.g. [6] or [38]). So, it is dΦ ∝ Φ,
and thus we find the law of Lambert-Beer:

Φ(s) = Φ(0) · e
−

s∫
0

α· ds′

, (121)

where ds′ [m] is an element of the arc length along the path of

the photons, while α
[

1
m
]

is a parameter which describes the
weakening of the beam.

Since we will not consider the details of propagation, we will
make a rather crude model for the distribution of irradiance
in the medium here, where the light is assumed to propagate
in positive z-direction:

I(ρ, z) = I(ρ, z = 0) · e−(αsc+αabs)·(z−Hb(ρ)). (122)

I(ρ, 0) may be given by a Gaussian

I(ρ, z = 0) = I0 · e−2( ρ
b )

2
, (123)

or a rectangular distribution

I(ρ, z = 0) =
{

I0 for ρ ≤ b
0 for ρ > b

, (124)

for example, while our algorithm is able to treat any distribu-
tion of the sources of heat ν(ρ, z) in principle.
The loss of power in the beam during propagation in the lens
is

∂I(ρ, z)
∂z

= −(αsc + αabs) · I(ρ, z), (125)

where the first term is caused by scattering and the second one
by absorption. The absorbed power is assumed to change into
heat, thus the source-density in the heat equation is given by:

ν(ρ, z) = +αabs · I(ρ, z)

= +αabs · I(ρ, z = 0) · e−(αsc+αabs)·(z−Hb(ρ))

≈ αabs · I(ρ, z = 0), (126)

where the approximation in the last step is valid for

|(αsc + αabs) · (z− Hb(ρ))| � 1, (127)

which is met normally very well for the situations in lens sys-
tems. For the implentation of our algorithm, though, we do
not need that approximation.
Due to the lack of data, we will neglect the effect of scattering
in our examples (αsc = 0) and will determine the values of
α = αabs from the transmission of the materials, while for e.g.
fused silica there are data available and scattering might be
included [53].
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5.2 An effect ive heat equation

In [41], we described an approximation called ’the modified
heat equation’ for the radial distribution of temperature in a
thin lens which we will use here for comparison. The incorpo-
ration of the transfer of heat to the environment was discussed
for the simple case of a lens with one flat optical surface, but
this can easily be generalized, compare [18]:

1
ρ · H(ρ)

· d
dρ

(
ρ · H(ρ) · d

dρ
T̄(ρ)

)
+ W(ρ) · T̄(ρ)

=− ν̄(ρ)

λ
+ W(ρ) · TS, (128)

W(ρ) =− 1
λ
· αN

H(ρ)

·

√1 +
[

∂Ht(ρ)

∂ρ

]2

+

√
1 +

[
∂Hb(ρ)

∂ρ

]2
 . (129)

The bar over the quantities shall symbolize that they belong
to the approximation, and in some sense are mean values of
the corresponding 3D quantities along the z-direction. So the
source density is given by:

ν̄(ρ) =
1

H(ρ)

Ht(ρ)∫
Hb(ρ)

ν(ρ, z) dz

=
1

H(ρ)

Ht(ρ)∫
Hb(ρ)

αabs · I(ρ, z = 0) · e−(αsc+αabs)·(z−Hb(ρ)) dz

=
αabs · I(ρ, z = 0)
(αsc + αabs) · H(ρ)

[
1− e−(αsc+αabs)·H(ρ)

]
(130)

≈αabs · I(ρ, z = 0). (131)

In Eq. (128) one has the boundary conditions

∂T̄(ρ)
∂ρ

∣∣∣∣
ρ=0

= 0 (132)

and
T̄(ρ = R) = const. (133)

Technically, the main advantage of Eq. (128) is that it is an
ordinary differential equation for T̄(ρ), which is much easier
to solve numerically than the partial differential Eq. (1). The
meaning of each of its terms can be traced back to the elemen-
tary physical effects. It seems to be typical for this approxi-
mation that it under-estimates the temperature of the lens a
little bit due to the neglection of the curvature of T in the z-
direction.

For the comparison with the approximation, we calculated
the mean values of the temperatures in z-direction of the 3D-
solution

M2
∑

J=0
T(I; J)

M2 + 1
(134)

for every value of I.

6 Examples

Now, we will look at a few examples and we will compare the
results of the method deveolped here with the approximation.

Since our primary concern here is the demonstration of the
numerical algorithm, we will show the raw data of calculation
in the 3D plots.

6.1 Comparison of a lens from N-BK7 resp.
N-BK7HT

As mentioned in the introduction, there are new glasses on the
market with enhanced transmission. Now we want to com-
pare the effects on the temperature for one such glass, N-
BK7HT.

At a wavelength of 400 nm we have a transmission of
τi = 0.997 for a layer of 10 mm N-BK7 [51]. With

τi = e−α·10 mm ⇒ α N-BK7 = − 1
0.01 m

ln(τi) (135)

we find α N-BK7 = 0.30 1
m .

For 10 mm N-BK7HT, it is α N-BK7HT = 0.20 1
m [52].

We consider a biconvex lens with the following parameters:
Upper radius of curvature: Rt = −300 mm,
lower radius of curvature: Rb = 2500 mm,
mean thickness of the lens: D = 15 mm,
half of the diameter: R = 80 mm.
The heat conductivity is given by λ = 1.114 W

m·K for both, N-
BK7 and N-BK7HT [51], [52].
The illumination is given by a Gaussian distribution Eq. (123)
with I0 = 1.0 · 105 W

m2 and b = 50 mm.
The temperatures at the edge of the lens and that of the ambi-
ent surroundings are assumed to be 20◦C; for the Newtonian
heat-transfer-coefficient we guess αN = 10 W

m2·K .

The results are shown in Figure 4 and Figure 5.

From these calculations we see that the rise of temperature
in the center of the lens relative to its edge is proportional to
the value of the exponent in the Lambert-Beer-law, α, under
otherwise similar circumstances. This agrees with our earlier
approximation [41], although the latter was without heat ex-
change to the environment.
For N-BK7, we used τi = 0.997, as was given by Schott. So, the
actual value of τi can be assumed to be between 0.9965 and
0.9974, and the actual value of α should be between 0.26 1

m
and 0.35 1

m . Therefore, we have an uncertainty of 30% in total
in α and thus in the the value of the temperature in the middle
of the lens only due to that harmless looking rounding of the
transmission data, because it is not τi but 1− τi which causes
the effect of heating.

6.2 Real ist ic lens form

Now we want to give an example for a realistic lens form with
a strong deviation from a spherical surface, in our case a kink
near the edge of the lens. In Figure 6 the form of our example
is shown, while other typical lens forms could be treated as
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FIG. 4 N-BK7, raw data and comparison with the approximation. For the parameters

see the text. Notice the different length-scales in ρ- resp. z-direction in the 3D plot.

Visually, the curves of the approximation and the average of the numerical solution

are almost identical in this case.

well.

Ht(ρ)

=


[ρ]2

Rt
· 1

1+

√
1−
[

ρ
Rt

]2
+ Dfor ρ ≤ 60 mm

const.for 60 mm < ρ ≤ 80 mm
.

(136)

Rt = 150 mm is the radius of curvature of the upper surface,
while D = 5 mm is the thickness of the lens.
The material of the lens shall be N-BK7, so we have
λ = 1.114 W

m·K and α N-BK7 = 0.30 1
m as in the example above.

Likewise, the temperatures at the edge of the lens (boundary
no. 3) and that of the ambient surroundings are assumed to
be 20◦C; for the Newtonian heat-transfer-coefficient we guess
once more αN = 10 W

m2·K .

The illumination is given by Eq. (124) with I0 = 1.0 · 105 W
m2

and b = 40 mm.

The results are shown in Figure 7.

We see, that our algorithm is even able to treat such a form of
a lens with kink. However, a problem may arise if one of the
grid points lies directly on the kink, because e.g. the derivative
in Eq. (50) is no more defined in these cases. Here, one has
slightly to change the value of M1 to shift the grid points.

FIG. 5 N-BK7HT, raw data and comparison with the approximation. For the parameters

see the text. Notice the different length-scales in ρ- resp. z-direction in the 3D plot.

Visually, the curves of the approximation and the average of the numerical solution

are almost identical in this case.

6.3 Lack of experimental data

We extracted the density of heat sources ν from transmission
data. But in reality, there may be scattering in the volume [53]
or scattering resp. absorption in the coatings. Surface effects
may cause damage and are considered e.g. in DIN EN ISO
21254, [16], [22], [25], or [57]. Reliable, systematical and stan-
dardized data of absorption in the coatings seem to be rare
although there are a number of works dealing with methods
of measurement. One estimate from literature is an absorption
of 0.12% of the power of the beam for 1064 nm per surface of
a coated quartz lens [35]; an other is the assumption, that the
absorption in the coating approximately equals the absorption
in 10 mm bulk of quartz glass [12]. This indicates that the con-
tributions of the coatings to the absorption and thus for the
heating of the lens may be of great importance.

In the examples, we pointed out that the rise of temperature
in the center of the lens depends sensitively on the value of
transmission given for a material and a wavelength. This is
not a problem of our algorithm, which is able to calculate the
distribution of temperature from the density of heat sources,
but is due to the knowledge of that density.

The validity of the Lambert-Beer law is limited to linear ef-
fects, i.e. it will fail for very high intensities. Those points were
investigated and data published for some materials (mainly
those of interest in microlithography), but a more systemati-
cally base of data for optical glasses seems to be missing.
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FIG. 6 Lens with kink at the left surface.

The same is true for data like the coefficient in Newton’s law
or similar boundary conditions.
Therefore we neglected the effects here or tried estimated val-
ues.
This problem, however, does not concern our method of so-
lution of the mathematical problem, at least not in principle:
the results of any software will suffer by barely known input
parameters.

Our aim here was to present a way which allows the calcu-
lation of the distribution of temperature. Perhaps, it may be
the base for more advanced schemes. In any case, the devel-
opment of the algorithm made it clearer, at which places in-
formation from assumptions or models occur in the calcula-
tion. Thus, comparisons with measured data are highly de-
sirable. Hopefully, examples and methods like the one given
here may be a help for a better experimental determination of
such quantities.

7 General izat ions

The columns x1 = const. are equidistant in the present algo-
rithm, but the transformations (18) are not the most general
ones. With a more general transformation of the coordinates,
this may be overcome to achieve a very high resolution e.g.
near the optical axis or the edge of the lens for the description

FIG. 7 Lens with kink, raw data and comparison with the approximation. For the

parameters see Figure 6 and the text. Notice the different length-scales in ρ- resp.

z-direction in the 3D plot.

of effects located there. One possible generalization may be

q1 =
L1

R
· f (x1), (137)

with f (0) = 0 and f (R) = R. However, one has to pay atten-
tion to the invertibility of the transformation.
A slightly other example may be the choice

q1 = L1 ·
eAx1 − 1
eAR − 1

. (138)

If necessary, one can construct a non-uniform grid in x1-
direction with this.

By a similar treatment of the transformation along the x2-
direction, a streching near the optical boundaries may be done
for a better possibility for the modelling of surface effects.

As we have seen, absorption in the coatings or at the surfaces
is an important issue for realistic calculations. Of course, that
could be taken into consideration in the calculation. A more
explicit modelling of the coatings may eventually be possible
by the aid of a more sophisticated transformation, but requires
a better knowledge of the relevant properties of the materials
involved.

For simplicity, and for the comparison with our earlier ap-
proximation, we took the same boundary condition for all the
points at the boundary no.3 (x1 = R), i.e. at the edge of the
lens. In general this is not necessary, of course.

The present state of our algorithm does not take into account
a heat conductivity depending on temperature. The perhaps
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simplest way to overcome this would be the definition of
λ = λ(T) and the determination of that value for the grid
points with T(I; J) during each step of iteration, while the clas-
sical theory demands for a discretization of the equation [34]:

∇ (λ(r)∇T) = −ν, (139)

see [45].

In case the distribution of the sources of heat is not radially
symmetric, separation of the variables may be helpful. Then
our presented theory is part of a more general calculation.

For simplicity, we used the same temperature of the ambient
surroundings Ts on both sides of the lens. This might not be
true since, e.g., one surface of the single lens is at an outer
side of the objective, while the other is at an inner one. It is, of
course, not difficult to generalize this point to different tem-
peratures on both sides.

A method for the calculation of the distribution of tempera-
ture due to conduction and convection is discussed in [10] and
may be of interest for the treatment of the air spaces between
lenses.

Simple models for the change of the shape of the lens due to
the distribution of temperature are given in [55] or [18]. Such
methods are well suited for our present approach. A more ac-
curate way would be the solution of the equations of thermoe-
lasticity [31].

8 CONCLUSION

We developed an algorithm for the calculation of the distribu-
tion of temperature in a single lens due to absorption of light
and heat conduction for the case of a stationary situation with
symmetry around the optical axis.
First, we remarked that it is sufficient to choose a surface of
section of the lens as computational domain, then we trans-
formed this area to a rectangle. Therefore, the differential
equation and the boundary conditions had to be transformed,
too. This transformed problem is well suited for a treatment
by finite differences, regardless of the original shape of the
lens.
Thus, the task was transferred to a system of algebraic equa-
tions.
A simple model for the description of the sources of heat due
to absorption of light based on the known data of internal
transmission was discussed, and we considered a few exam-
ples. We learned, that even a small deviation in the transmis-
sion data may have a conspicuous effect in the distribution
of temperature. An other example demonstrated the ability of
the method to adjust to special but realistic lens forms.
Finally, we pointed out suggestions for experimental investi-
gations in the future and gave prospects for further general-
izations of this theory.
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