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Differential optics for illumination design in the
presence of caustics
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Alternatively to using time-consuming Monte-Carlo simulations the irradiation at a target plane can also be calculated by differential optics
methods. In the case of caustics, these methods yield to infinite irradiance and its results are not directly comparable to those of Monte-
Carlo simulations. In this paper, a differential based algorithm for an on axis point source and a rotationally symmetric optical system is
presented, which yields to the same results as a Monte-Carlo simulation. However, the differential optical methods are about three orders
of magnitude faster than the latter one, thus allowing fast trial and error design of such kind of illumination systems. An applet is presented
that uses sliders to change the shape of the lens and other properties of the illumination system whereas the irradiance profile is nearly
immediately perceived. For beginners in the field, this does not only accelerate the design process itself but also the learning process is
improved considerably. Some extensions and special cases are shortly discussed.
[DOI: http://dx.doi.org/10.2971/jeos.2012.12018]
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1 INTRODUCTION

Design of illumination systems incorporates regularly Monte-
Carlo simulations tracing of the order of a million of optical
rays. This is a robust but time consuming method to evaluate
the irradiance profile at a target plane. Even for simple sys-
tems consisting of a point source and a single lens simulation
times of the order of one minute have to be accepted. Target-
ing for a specified irradiance distribution, an approach by trail
and error is therefore impeding for beginners. Additionally,
for these simple illumination systems of standard optical ele-
ments there is, in contradiction to imaging optical systems, a
lack of textbooks which allow to get a feeling of the effect of
such systems. In this latter field, due to the fact that only of
the order of hundred rays are sufficient to evaluate a typical
target function like the geometrical MTF or similar measures,
trial-and-error methods (called here in reference to [2] ’design
by sliders’) can be efficient to get a feeling of the problem.

Alternative ways to the above mentioned Monte-Carlo
method of calculating the irradiance at a target plane, which
will be presented here, are based a) on tracing local wave-
fronts associated with each ray and b) calculating analytically
the local ray density at the target plane. Both methods use
differentials as its base and called here differential optics
methods. The advantages of these methods are that the
irradiance can be calculated at much higher spatial density,
with much lower computing effort and without any statistical
noise compared to Monte-Carlo methods. However, at caus-
tics, where the wavefront is folded, both differential optics
methods yield to infinite irradiance. This unrealistic result has
led to the fact that this methods are considered inappropriate
for most of the illumination designers who deal with systems

where caustics are not avoidable from the scratch. Only very
few specialists have reported of successful use of the first
mentioned methods in real world problems (where caustics
could be avoided) [5].

Infinite irradiance at caustics is indeed computationally cor-
rect in the case where a point source with infinite radiance
(but finite intensity) is used and diffraction is neglected. In
Monte Carlo methods, based on the same assumptions, this
outcome cannot be observed because always a receiving ele-
ment with finite area (called bin) is used and thus this local ef-
fect is averaged out. In order to make the outcome of differen-
tial optical methods comparable to Monte Carlo methods, the
same averaging at the receiver has to be realized. In this pa-
per an appropriate algorithm is proposed and its convergence
is discussed. Finally, an application based on these methods
is presented that features design by sliders for a illumination
system consisting of single lens, where the shape factor of the
lens (and other properties) can be changed by the user in ’real-
time’ while observing the irradiance profile output. It is fur-
ther pointed out that the methods are also powerful for the
analysis and design of advanced illumination systems.

2 CALCULATING THE IRRADIANCE FOR
SPHERICAL SYSTEMS BY THE
DIFFERENTIAL Q-U-METHOD

Spherical surfaces are due to manufacturing and metrology
reasons the standard geometry of optical elements. Most of-
the-shelf lenses are of this type. The focusing properties in
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terms of spot-diagrams of such lenses for point source objects
are teached in nearly all optic courses and a variety of online
accessible applets are available to get insight by trial and error.
In simple cases, design by sliders is faster than a systematic
approach by aberration theory. Also for combinations of such
lenses, e.g. triplets, such an approach has been proposed [1],
[2]. The author of this paper suggests that a comparable in-
troductionary subject in illumination design is the analysis of
the irradiance profile of a point source collimated by a spheri-
cal lens (and later on by a combination of these). However, to
the knowledge of the author, this subject is not treated by text-
books and similar applets like in imaging applications are not
available. The author himself has teached students and other
newcomers in illumination design by using educational li-
censes of complex commercial software based on Monte Carlo
methods from the scratch. This kind of teaching, supported by
standard illumination ray tracing, is threatened by a number
of facts, one of them is that students get disappointed by the
high latency between input (e.g. change of the lens param-
eters) and output, i.e. the irradiance profile. In this chapter a
method is presented that is suitable for rapid calculation of the
irradiance profile of spherical systems illuminated by a point
source, thus allowing trial-and-error methods and design by
sliders for this subject.

The so called Q-U-method is an analytical method for tracing
meridional rays. This known method is extended here by cal-
culating the ray density based on differentials and from that in
a straight forward way the irradiance. We repeat here shortly
the Q-U-method and add the differential with respect to the
starting ray angle ϕ:

The starting equations for a meridional ray, emerging on axis
with an angle ϕ1 at distance s from the first surface vertex are:

ϕ1 = ϕ

Q1 = s · sin ϕ1 (1)

dQ1

dϕ
= s · cos ϕ

From these quantities, the angle of incidence is calculated by
using the curvature ci of the i th surface:

εi = a sin (sin ϕi − ci ·Qi)

dεi
dϕ

=
cos ϕi ·

dϕi
dϕ − ci · dQi

dϕ√
1− (sin ϕi − ci ·Qi)

2
(2)

Refraction is described by the well know equation

ε′i = a sin
(

ni
n′i
· sin εi

)
dε′i
dϕ

=

ni
n′i
· cos εi · dεi

dϕ√
1−

(
ni
n′i
· sin εi

)2
(3)

From this quantity, the ray angle after the surface is also
straight forward to calculate:

ϕ′i = ϕi − εi + ε′i
dϕ′i
dϕ

=
dϕi
dϕ
− dεi

dϕ
+

dε′i
dϕ

(4)

The parameter Q is now updated as follows:

Q′i = Qi ·
cos

(
ϕ′i+ε′i

2

)
cos

(
ϕi+εi

2

) (5)

The derivative dQ′i
/

dϕ is again derived by standard math. Be-
cause the result is a bit lengthy, it is omitted here. The transfer
from surface i to the next surface i + 1 at vertex distance di+1
reads as:

ϕi+1 = ϕ′i

dϕi+1

dϕ
=

dϕ′i
dϕ

Qi+1 = Q′i − di+1 · sin ϕ′i

dQi+1

dϕ
=

dQ′i
dϕ
− di+1 · cos ϕ′i ·

dϕ′i
dϕ

(6)

For the final height of the ray at the last surface k one gets

yk = Qk ·
cos

(
ϕi−εi

2

)
cos

(
ϕi+εi

2

)
zk = Qk ·

sin
(

ϕi−εi
2

)
cos

(
ϕi+εi

2

) (7)

Again, the derivative dyk
/

dϕ and dzk
/

dϕ are easy to derive
but are a bit lengthy an omitted here. The height of the ray at
some distance d′ behind the last surface is finally derived as
follows:

h′ (ϕ) = yk −
(
d′ − zk

)
· tan

(
ϕ′k
)

(8)

where all the quantities (except d′) are functions of ϕ

It is now straight forward, however a bit lengthy, how to co-
agulate the ray density dh′

/
dϕ successively.

In the case of a single lens (k = 2) this differential can even be
calculated by symbolic math software in close form. The au-
thor has done this with the Symbolic Math Toolbox of MAT-
LAB®. From the symbolic expression, an executable function
can be automatically generated, which has in this case about
150 lines of code. From this differential and the given inten-
sity I (ϕ) of the point source the irradiance at the impact point
h′ (ϕ) of the ray (with emerging ray angle ϕ) is finally calcu-
lated by

E′ (ϕ) =
dΦ′

dA′
=

I (ϕ) · sin ϕ · dϕ dθ

h′ · dh′dθ

= I (ϕ) ·

∣∣∣∣∣∣ sin ϕ

h′ (ϕ) · dh′(ϕ)
dϕ

∣∣∣∣∣∣ (9)

Together with Eq. (8) this results in a parametric description
of point pairs (h′ (ϕ) , E′ (ϕ)).

In the limit ϕ → 0 (on axis) the above equation is not
directly applicable. In this limit the ray height yields with
∆s = a + f ′ = s− sH + f ′ (the axial offset of the point source
with respect to the focal point) and the locations of the prin-
cipal planes sH , s′H′ with respect to the surface vertices of the

12018- 2



J. Europ. Opt. Soc. Rap. Public. 7, 12018 (2012) P. Ott, et.al

FIG. 1 Layout (with different scaling in z and y) of a simple system (plano-convex lens

with n = 1.5, d = 10, f ′ = 100, h = 25, point source at the focal point with NA = 0.24)

with corresponding rays (51 rays, equidistant in positive emitting angle).

system:

h′ϕ→0 = a · ϕ ·
(

1−
d′ − s′H′

a′

)
= a ·

(
1−

d′ − s′H′
f ′ · a

/
( f ′ + a)

)
· ϕ

=

(
− f ′ + ∆s−

(
d′ − s′H′

)
· ∆s

f ′

)
· ϕ (10)

From this result one gets the irradiance in the limit ϕ → 0
(please note that this is not necessarily identical with the on
axis irradiance due to other contributions, see below):

E′ (0) =
I (0)(

− f ′ + ∆s−
(
d′ − s′H′

)
· ∆s

f ′

)2 (11)

Consider now the following simple example: a lambertian
point source is located at the focal point of a plano-convex
lens of focal length of 100 mm with thickness of 10 mm, a di-
ameter of 50 mm and a refraction index of 1,5. The irradiance
profile at a distance of 2000 mm from the lens is seeked (or
just consider a scaled version of this example). An application
of such a scaled version would be the starting design (based
on a point source) of a spot light with a (obviously truncated)
lambertian LED and a single spherical lens. A simple ray plot
of the situation is shown in Figure 1.

The corresponding result for the irradiance based on 500 rays
is displayed in Figure 2. From this figure the typical problems
associated with this method described up to here are obvious:

• The irradiance at the caustic approaches infinity (only
due to the finite ray resolution, one gets here finite val-
ues). The peak is however quite narrow.

• At the caustic the wavefront is ’folded’ inwards, as a con-
sequence two irradiance values at the same height below
the caustic are observable.

• The folded wavefront extends to negative height values
which yield to a third irradiance value at positive height
from the rays emitting downwards from the source (not
shown in Figure 1).

• The density of irradiance values changes considerably
with the ray height at the detector plane (better observ-
able with less rays).

FIG. 2 Ray height and irradiance at the detector plane (d′ = 2000) for a lambertian

point source (I(0) =1W/sr) calculated with the Q-U-method and its derivative for

500 rays, emitting equidistantly in positive direction, as shown in Figure 1 (black).

Result of a Monte-Carlo simulation for comparison in blue.

3 YIELDING COMPARABLE RESULTS TO
MONTE-CARLO SIMULATIONS

The big difference to the result of a Monte-Carlo-simulation in
the example above may lead to the consequence, that the pro-
posed approach is not suitable. To convince users, the method
should yield comparable results as vastly used Monte-Carlos
simulations. In these latter ones, due to the unavoidable sta-
tistical noise, detector bins have a relative large size in the
range of a 10th to a 100th of the detector size. The bins are
typically (but not necessarily) equidistant. The irradiance out-
put of Monte-Carlos simulations is an average value over the
bin area.

In order to yield to these requested comparable results, the
non-equidistant irradiance of Eq. (8) has to be averaged over
the same bin area used in a Monte-Carlo simulation. In the al-
gorithm used in this paper, the first step is to interpolate the
irradiance value at the lower and upper bound h′bin,lb, h′bin,ub
of the bin. We than use trapezoidal integration to calculate the
flux in the bin (to be more precise: the flux in the ring with the
same cross section as the bin) and average it over the corre-
sponding bin area

(
h′bin =

(
h′bin,ub + h′bin,lb

)/
2
)

.

E′bin
(
h′bin

)
=

h′bin,ub∫
h′bin,lb

E′ (h′) · h′dh′

h′bin ·
(

h′bin,ub − h′bin,lb

) (12)

Care has however to be taken at the caustic, which is easily
detectable from the results of Q-U-differentials (a sign change
in dh′ (ϕ)

/
dϕ. Trapezoidal integration including the irradi-

ance value closest to the caustic can yield in a few cases, de-
pending on the choice of rays, to drastically wrong results. It
was heuristically assumed here, that the product E′ (h′) · h′ be-

haves like E′c · h′c
/√

1− h′
/

h′c near the caustic at location h′c.
Assume, that the caustic is detected between ray with index ic
and ic + 1. The parameters of the function above can then be
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FIG. 3 Center bin location h′bin and averaged irradiance after adding all overlap-

ping parts of the wavefront (d′=2000) for a (truncated) lambertian point source

(I(0)=1W/sr) calculated with the Q-U-method and its derivative for 500 equidis-

tant emitting rays shown (green). Result of a comparable Monte-Carlo simulation

(2 000 000 rays, 33 bins at positive height shown) for comparison in blue.

estimated by the two values closest to the caustic:

h′c =

(
E′ic · h

′
ic

)2
· h′ic −

(
E′ic−1 · h′ic−1

)2
· h′ic−1(

E′ic · h
′
ic

)2
−
(

E′ic−1 · h′ic−1

)2

E′c = E′ic · h
′
ic

/
h′c ·

√
1− h′ic

/
h′c (13)

The irradiance contribution at the bin including the caustic is
therefore calculated by

E′bin

(
h′bin,c

)
=

h′ic−1∫
h′bin,lb

E′ (h′) · h′dh′ +
h′c∫

h′ic−1

E′c ·h′c√
1−h′/h′c h′c

dh′

h′bin,c ·
(

h′bin,ub − h′bin,lb

) (14)

where the first integral is calculated by trapezoidal integra-
tion and the second one analytically with parameters from
Eq. (13).The same procedure is used for the contribution of
the folded part of the wavefront. With this approach a robust
behavior of the averaging is achieved, see below the details on
the sensitivity.

It was also investigated if a better choice of the power m of
the heuristic model

(
1− h′

/
h′c
)m (in the procedure described

above, m = −1/2 was used) could improve the result. The
power m can be estimated, if the three data points closest to
the caustic are fitted to the model. However, an improvement
could not be observed.

As in most cases an incoherent source is assumed (the limit of
a point source is just a geometrical approximation) the inte-
gration has to be done for all parts of overlapping wavefronts
separately and the resulting irradiance has to be added up.
Doing so the result of Figure 3 is achieved for the introduced
example.

It is obvious that the method proposed in this contribution
based on differential optics achieves after the modification ex-

FIG. 4 Averaged irradiance at the bin which includes the caustic (h′bin = 8 with bin

size h′bin,ub − h′bin,lb = 0.5) for the system of Figure 1 with respect to the number of

equidistant emitted rays nray. For nray ≥ 500 the change is less than approx. 1%.

The absolute value of the irradiance at nray ≥ 500 is within the range of the standard

deviation of a Monte Carlo simulation with an equivalent of a total of 30 million rays.

plained above comparable absolute results also in the pres-
ence of caustics, justifying its relevance.

4 DISCUSSION

Comparing the proposed method with the result of a Monte-
Carlo simulation the following facts should be realized:

• The proposed method does not show statistical noise like
Monte-Carlo methods.

• The speed of the proposed method, including all de-
scribed evaluation, for Figure 3 (500 differential rays)
is about 20 msec, whereas a Monte-Carlo simulation
(2 000 000 randomly emitting rays without any symme-
try considerations) takes about 30 sec. Thus the method is
about 3 magnitudes faster, allowing for comfortable trial
and error or design by slider methods.

• The proposed method results in an only transversal av-
eraged profile of the irradiance. In Monte-Carlo methods
2D-bins are used, thus also some averaging in sagittal di-
rection is realized.

• In this implementation, the method is limited to spheri-
cal systems with an on-axis point source. Extensions are
discussed below.

As explained above, the averaged irradiance at the bin which
includes the caustic may be sensitive depending on the way
the averaging is implemented at this point. Employing the
method proposed in this paper (i.e. Eq. (14)), Figure 4 shows
this averaged value of the example depending on the number
of rays used.

It is seen that the result converges rapidly, for more than 500
rays the change is less than 1%. For comparison, a Monte-
Carlo simulation with 2 000 000 rays will result in about 1800
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FIG. 5 Part of the graphical user interface (only the input) for simulating the irradiance

profile behind a spherical lens illuminated by a lambertian point source. The shape of

the lens can be changed via the Coddingtion shape factor ′X′. Not shown is the slider

that allows to change the detector position d′ .

rays in the bin, therefore the statistical uncertainty in a stan-
dard implementation would be about 2%.

5 ILLUMINATION DESIGN BY SLIDERS

Based on the algorithm presented above, a MATLAB® applet
was developed mainly for education purpose that allows to
simulate the irradiance profile behind a spherical lens illumi-
nated by an on-axis lambertian source (it is also possible to
change the source model to a gerneralized lambertian source).
By default, the source is located at the focal point of the lens
(’ds = 0’ in Figure 5). The user may change the source on axis
position ds, the shape of the lens via the Coddingtion shape
factor X (X = (c1 + c2)/(c1− c2)) and the detector location d′

by sliders, see Fig. 5 (the slider for the detector location is lo-
cated below the layout window and is therefore not displayed
in this figure).

As output of the applet, the layout (see Figure 1) and the
averaged irradiance profile, similar to Figure 3 is displayed.
The output change is immediately perceived after an input is
given, what would not be possible with Monte-Carlo based
methods.

The applet allows to pre-design appropriate illumination
tasks by trial and error using sliders. The user quickly
experience the following facts:

• Locating the source in the focal point of the lens will re-
sult in a bright center spot together with a bright ring
in some distance of the center due to the caustic, regard-
less of the lens shape. The profile strongly differs from
a homogeneous spot. Some kind of unexpected focusing
of the rays emitted at larger angle due to the caustic is
present. Some connection to the spherical aberration of
lenses may be associated by a user familiar to aberration
theory.

• In order to achieve a more homogeneous profile, the
source has to be considerably defocused towards the
lens. The bright center spot will disappear but the irra-
diance of the bright ring will be amplified. Only for a
very divergent output ray fan a near to homogeneous
(but very large) profile can be achieved.

• Changing the shape of the lens from plano-convex
(X = −1) to convex-plan (X = 1) aggravates the

situation. A shape near to plano-convex (X = −0.8 for
n = 1.5, known perhaps from spherical aberration theory
of a thin lens) is the best compromise.

• A pre-design for the position of the source and the shape
of the lens can be quickly found. This pre-design has
to be verified or detailed by simulations based on a ex-
tended light source model, and probably Monte-Carlo
methods. However, the overall design process is consid-
erably speeded up.

For newcomers in the field of illumination design, getting the
same insight and results with standard Monte-Carlo based
illumination design software would be very laborious and
time-consuming.

The applet can be downloaded from http://www.hs-heilbronn.

de/2792241/MATLAB Applets .

6 ALTERNATIVE DIFFERENTIAL METHOD
AND EXTENSION FOR ASPHERICAL
SYSTEMS

In several papers [3]–[5] it has been shown, how differential
geometry can be exploited to calculate the irradiance of a lo-
cal wavefront associated with a ray. Rays can therefore be ex-
tended using the second derivatives of the surfaces in order
to trace the associated local wavefronts and its irradiance. This
method yields in the case of a spherical system with an on axis
point source exactly the same result as described in Sec. 2 and
shown in Figure 2. In the author’s implementation, the speed
of the latter method is only about a factor of 2 slower than
the analytical method, thus still allowing illumination design
by sliders. As already mentioned, the method is directly ap-
plicable to complex systems with more than just one element
including also aspherics.

A common goal in illumination design is to homogeneously
illuminate a target. Experimenting with the above introduced
applet, quickly the question arises, which lens shape achieves
this goal for a lambertian point source. From Eq. (9) it is ob-
vious that the system with h′ (ϕ) = f ′ · sin (ϕ), i.e. a system
which fulfills the sine-condition, is the solution [6]. In the case
of a single element with two surfaces, this condition leads
to a coupled set of differential equations [7] and its solution
to highly aspherical surfaces. The method mentioned in the
paragraph before is able to confirm this solution.

Another application of the last mentioned method is toleranc-
ing of illumination systems, were caustics could be avoided.
This is for example the case when a small, inhomogeneously
irradiating source is combined with a free form surface (con-
tinuous in the second derivative) in order to achieve a pre-
described irradiance on a target surface, see e.g. [8] and Fig-
ure 6. Tolerancing of such systems requires a lot more than ten
simulations, each with a different system set up. In the case of
a standard Monte-Carlo based approach, this is very time con-
suming and may lead to some discomfort of the designer. The
approach suggested here, based on differential geometry and
local wavefronts, can accelerate this phase dramatically.
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FIG. 6 Plane symmetric irradiance distribution produced by a nonsymmetric small point

source together with a free form mirror (only the part right to the axis of symmetry

is displayed). Left: Monte-Carlo simulation (106 rays). Right: Irradiance calculated by

differential optics with local wavefronts (1000 extended rays), without binning. The

latter shows no noise, has higher spatial resolution and its calculation is about 2

orders of magnitude faster. To the above right, a caustic is present, which is not

perceivable in the Monte-Carlo simulation due to its binning.

7 OUTLOOK

The application above directly leads to the questions, if there
is an approach in the case of caustics and off-axis sources. In
that case the method described in Sec. 3 has to be extended
from one to two dimensions. The author is currently work-
ing on an implementation of this extension. First results show,
that this is basically feasible yielding to non-noisy irradiance
distributions. However, the acceleration of simulation time is
no longer as pronounced as in the one dimensional case.
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