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Computation of Hopkins’ 3-circle integrals using Zernike
expansions
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The integrals occurring in optical diffraction theory under conditions of partial coherence have the form of an incomplete autocorrelation
integral of the pupil function of the optical system. The incompleteness is embodied by a spatial coherence function of limited extent.
In the case of circular optical systems and coherence functions supported by a disk, this gives rise to Hopkins’ 3-circle integrals. In this
paper, a computation scheme for these integrals (initially with coherence functions that are constant on their disks) is proposed where
the required integral is expressed semi-analytically in the Zernike expansion coefficients of the pupil function. To this end, the Zernike
expansion coefficients of a shifted pupil function restricted to the coherence disk are expressed in terms of the pupil function’s Zernike
expansion coefficients. Next, the required integral is expressed as an infinite series involving two sets of Zernike coefficients of restricted
pupils using Parseval’s theorem for orthogonal series. Due to a convenient separation of the radial parameters and the spatial variables,
the method avoids a cumbersome administration involving separate consideration of various overlap situations. The computation method
is extended to the case of coherence functions that are not necessarily constant on their supporting disks by using a result on linearization
of the product of two Zernike circle polynomials involving Wigner coefficients. [DOI: http://dx.doi.org/10.2971/jeos.2011.11059]
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1 INTRODUCTION AND OVERVIEW

The calculation of the image intensity produced by an optical
system, like a microscope or a projection lens, is mostly car-
ried out via an analysis of the transfer of spatial frequencies
from object to image plane. In this view the optical system
acts as a low-pass filter. The first analysis in the frequency-
domain goes back to Abbe, see [1], Sec. 8.6.3. (b), who studied
the image formation in the case of a coherently illuminated
object. He represented a general object with the aid of a peri-
odic, grating-like structure. The concept of spatial frequency
was introduced in optics by Duffieux, see [1], Sec. 9.5. He es-
tablished the spatial frequency transfer function of an opti-
cal system when the object is incoherently illuminated and
found it to be equal to the Fourier transform of the intensity
point-spread function of the imaging system. Approximately
a decade later, Hopkins [2] gave a detailed analysis of the fre-
quency transfer by an optical system and the resulting modu-
lation of the image intensity when the object is illuminated by
a source of finite extent. In terms of coherence of object illumi-
nation, one speaks in this case of partial coherence. The spatial
coherence function is neither unity (coherent) or a delta func-
tion (incoherent) but rather a complex function of the spatial
coordinates that is bounded in modulus by its value at the ori-
gin.

From Abbe’s theory, it is known that the frequency transfer
function of a coherently illuminated object equals unity on the
support of the circular pupil function. The spatial frequencies
outside the pupil circle are lost for image formation and the
transfer function vanishes there. For an incoherently illumi-
nated object, the frequency transfer function is given accord-

ing to Duffieux by the autocorrelation function of the pupil
function. Hopkins general approach for the frequency trans-
fer in the case of partial coherence requires the evaluation of
the autocorrelation integral of the circular pupil function with
integration area delimited by a third circle of different radius,
see [2], [3]. For this reason, the term “3-circle overlap integral”
is commonly used, also see [1], Sec. 10.6.3, and, in particular,
Fig. 10.18. Numerical methods have generally been used to
calculate these 3-circle overlap integrals, in the presence of an
arbitrary transmittance and aberration of the pupil function of
the imaging system.

In this paper, a semi-analytical expression for the value of
Hopkins’ 3-circle integral is proposed in terms of the expan-
sion coefficients of the pupil function with respect to the or-
thogonal Zernike circle polynomials on the pupil circle. The
pupil function and a shifted copy of it are restricted to the
third disk and either restricted pupil function is expanded
into the system of Zernike circle polynomials pertaining to the
third disk in which the expansion coefficients are expressed in
those of the pupil function on the pupil disk. For this an exten-
sion of a recent result, [4], Theorem 4.1, on the correlation of
two circle polynomials is used. The required Hopkins integral
then assumes, via Parseval’s theorem for the inner product of
two functions expanded into a set of orthogonal functions, the
form of an infinite series involving the two sets of expansion
coefficients and the normalization constants of the circle poly-
nomials pertaining to the third disk. The required expansion
coefficients, obtained via [4], Theorem 4.1 in terms of correla-
tions of Zernike circle polynomials, also have the form of an
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FIG. 1 Three circles Ca in the v-plane, with general centers va and radii ra,

a = 1, 2, 3 , where C1 and C2 support a generalized pupil function F1(v − v1)

and F2(v − v2), respectively, and the third disk C3 supports a transmittance

G(v− v3) which is often constant on C3. Supporting set of Z0
0(v) F1(v− v1) and of

Z0
0 (v) F2(v− v2) with vertical and horizontal hatching, respectively.

infinite series. An examination of the latter series reveals vari-
ous symmetries, separation of radial parameters and cartesian
variables, and opportunities to reuse results from previous
calculations. This renders the new method a potentially attrac-
tive alternative to the more numerically oriented approaches.
The convergence issues for both type of series that occur in
the method are discussed by considering special, but realistic,
cases that allow explicit analytic results from which one can
tell what to expect in the general case. Finally, the method,
initially proposed for the case of constant transmittance on
the third disk, is extended for use with non-uniform transmit-
tances. For this, a result is employed that linearizes the prod-
uct of two Zernike polynomials on the third disk using Wigner
or Clebsch-Gordan coefficients.

2 MAIN RESULT AND COMPUTATION
SCHEME

Figure 1 shows three disks in the plane with centers νa and
radii ra, a = 1, 2, 3 , in a general overlap situation in which it is
allowed that none of the three disks is contained in the over-
lap region of the other two. It is assumed that both disk 1 and
2 support a generalized pupil function (comprising phase and
amplitude non-uniformities) F1 and F2. The integrals consid-
ered in this paper are of the form

I =
∫

|ν−ν3|≤r3

∫
F1(ν− ν1) F∗2 (ν− ν2) dν , (1)

i.e., an incomplete correlation integral of F1 and F2 in which
the incompleteness is embodied by restriction of the integra-
tion to ν in the disk with center ν3 and radius r3. Due to this
limited integration range, a direct use of [4], Sec. 4 on the com-
putation of the optical transfer function is not possible since
there a full integration range is required. However, an edu-
cated use of [4], Theorem 4.1, together with Parseval’s theo-

rem for orthogonal series, leads to a semi-analytic result for
the integral in Eq. (1). This will be elaborated below.

It is assumed without limitation of generality that ν3 = 0 and
r3 = 1. The pupil functions Fa, a = 1, 2 , are assumed to be
given in the form of Zernike series as

Fa(ν) = ∑
n,m

γm
n,a Zm

n (ν/ra) , |ν| ≤ ra , (2)

where the Zernike circle polynomials Zm
n vanish outside the

unit disk and are given in complex notation as

Zm
n (ρ eiϑ) = R|m|n (ρ) eimϑ , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ < 2π , (3)

with integer n, m such that n− |m| is non-negative and even
and R|m|n the radial polynomials. With ν3 = 0 and r3 = 1, the
integral I in Eq. (1) can be written as

I =
∫ ∫

Z0
0(ν) F1(ν− ν1) (Z0

0(ν) F2(ν− ν2))
∗ dν , (4)

the circle polynomial Z0
0 being constant 1 on the unit disk and

0 outside it. Assume now that the Zernike expansion

Z0
0(ν) Fa(ν− νa) = ∑

n,m
βm

n,a(νa) Zm
n (ν) , |ν| ≤ 1 , (5)

of the pupil function Fa, shifted to center νa and restricted to
the unit disk, is available. See Figure 1, where the supporting
set of Z0

0(ν) F1(ν− ν1) and that of Z0
0(ν) F2(ν− ν2) have verti-

cal and horizontal hatching, respectively, and the integration
region for I in Eq. (4) consists of the intersection of the two
hatched regions. Then, by orthogonality of the Zm

n on the unit
disk and the normalization∫ ∫

|Zm
n (ν)|2 dν =

π

n + 1
, (6)

there holds

I = ∑
n,m

π

n + 1
βm

n,1(ν1)(βm
n,2(ν2))

∗ . (7)

The Zernike coefficients βm
n,a = βm

n,a(νa) in Eq. (5) are given in
integral form as

βm
n,a =

n + 1
π

∫ ∫
Z0

0(ν) Fa(ν− νa) (Zm
n (ν))∗ dν . (8)

Inserting the Zernike expansion of Eq. (2), with summation
variables n′, m′ rather than n, m, into Eq. (8) yields

βm
n,a =

n + 1
π ∑

n′ ,m′
γm′

n′ ,a(Zm′
n′ (·/ra) ∗∗corr Zm

n )(−νa) , (9)

where ∗∗corr denotes correlation,

(F ∗∗corr G)(ν) =
∫ ∫

F(ν′ + ν) (G(ν′))∗dν′ , ν ∈ R2 , (10)

of two square integrable functions F, G. The correlations as
required in Eq. (9) are given by Theorem 2.1 below that gen-
eralizes [4], Theorem 4.1, which deals with the case c′ = c
in Eq.(11). This generalization is also relevant in the context
of incoherent illumination when a pupil function, expanded
on a full disk as a Zernike series, is partially obstructed by
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a, not necessarily centralized, subdisk as occurs in astronomi-
cal observation using mirror telescopes. Such a pupil function
should be written as the difference of the unobstructed pupil
function and the obstructed part of the full pupil function.
The obstructed part has a Zernike series representation into
circle polynomials pertaining to the obstructing disk, with co-
efficients that can be obtained from those of the unobstructed
pupil function on the full disk via [4], Theorem 3.1. The auto-
correlation function of the partially obstructed pupil function
is then the sum of two auto-terms and two cross-terms, where
the latter require Theorem 2.1 in its general form to produce an
analytic result for the correlation function of two circle poly-
nomials with reference disks of unequal radii.

Theorem 2.1. Let n′, m′ and n, m be integers such that n′− |m′|
and n− |m| are non-negative and even, and let c′, c > 0. Then
for any ξ ′, η′ and ξ, η there holds

∫ ∫
Zm′

n′

( ξ ′ + ν′′

c′
,

η′ + µ′′

c′
)

×
(

Zm
n

( ξ + ν′′

c
,

η + µ′′

c

))∗
dν′′ dµ′′

=∑
n′′

Cm′m
n′n,n′′ Zm′−m

n′′

( ξ ′ − ξ

c′ + c
,

η′ − η

c′ + c

)
, (11)

with summation over all integer n′′ such that n′′ − (n′ + n)
is non-negative and even, and where we identify
Z(ρ eiϑ) ≡ Z(ν, µ), see Eq.(3), when ν + iµ = ρeiϑ. The
C’s are given by

Cm′m
n′n,n′′ =

( c′c
c′ + c

)2 (−1)n(n′′ + 1)π
(n′ + 1)(n + 1)

×
[
Sn′′+1

n′n − Sn′′+1
n′+2,n − Sn′′+1

n′ ,n+2 + Sn′′+1
n′+2,n+2

]
(12)

with

Sk+1
ij =

( 1
2 (k + i + j))! ( 1

2 (k− i− j))!
( 1

2 (k + i− j))! ( 1
2 (k + j− i))!

(c′)i cj

(c′ + c)i+j

×
(

P(i,j)
1
2 (k−i−j)

( c− c′

c + c′
))2

(13)

for integers i, j, k ≥ 0 such that k − i − j is non-negative and

even, and Sk+1
ij = 0 otherwise. The P(α,β)

l (x) are the Jacobi
polynomials, see [5], Ch. 22, of degree l corresponding to the
weight function (1− x)α(1 + x)β on [−1, 1].

Proof. The proof consists of a repetition of the argument used
to prove [4], Theorem 4.1, combined with the comments in
Notes 1, 2 after the proof of [4], Theorem 4.1. Here the result of
Bailey for the integral of the product of three Bessel functions
is used as in [4], Sec. 6 to establish

∞∫
0

Ji(c′′ua)Jj(c′′ub)Jk+1(c′′u)du = (c′′)−1(−1)
1
2 (k−j) Sk

ij, (14)

with c′′ = c′ + c, a = c/c′′, b = c′/c′′.

Thus the computation scheme for I in Eq. (1) can be summa-
rized as follows: I is given by Eq. (7), where βm

n,a, a = 1, 2 , is
computed from the Zernike expansion coefficients γm

n,a of Fa
in Eq. (2) according to Eq. (9), in which the correlations of two

Zernike circle polynomials is given by Theorem 2.1, choice
c′ = 1/ra, c = 1, (ξ ′, η′) = −νa, (ξ, η) = 0. Note that the
method avoids a cumbersome administration with many in-
stances, calling for separate consideration, as would occur in
approaches based on numerical integration. In particular, the
overlap situation of the three involved circles does not enter
into the method.

3 DISCUSSION OF THE MAIN RESULT
AND COMPUTATION SCHEME

3.1 Comments on Theorem 2.1

At the heart of the new computation method lies the result
in Theorem 2.1 on the correlation of two circle polynomials.
There is a number of obvious facts that follow from general
properties of correlations F ∗∗corr G of two functions F and G
supported by disks rF and rG, such as

F ∗∗corr G = (G∗ ∗∗corr F∗)∗ ;

(F ∗∗corr G)(ν) = 0 , |ν| ≥ rF + rG . (15)

These results apply also to the correlation integral of two
circle polynomials as given in Theorem 2.1. Note, for in-
stance, that the right-hand side of Eq. (11) vanishes when
|(ξ − ξ ′, η′ − η)| > c′ + c. There are the following special fea-
tures.

3.1.1 The Cm′m
n′n,n′′ do not depend on m′ and m, except that they

are used in Eq. (11) for ranges of n′, n and n′′ that do de-
pend on m′ and m. Furthermore, the circle polynomials Z at
the right-hand side of Eq. (11) all have the same azimuthal
order m′ − m. These two facts reduce the computational task
considerably. For instance,

Zm′
n′ ∗∗corr Zm

n = Zm′+2k
n′ ∗∗corr Zm+2k

n (16)

for all integer k such that |m′ + 2k| ≤ n′, |m + 2k| ≤ n. For
the case that c′, c, ξ ′, η′, ξ, η are such that the support of one
of the shifted-and-scaled Z’s at the left-hand side of Eq. (11)
is entirely contained in the support of the other, Theorem 3.1
in [4] gives a closed form result for the correlation integral in
Eq. (11). This closed form result, however, does not extend to
the general situation and involves both m and m′ as well as
c′, c, ξ ′, η′, ξ, η in a complicated and less transparent way.

3.1.2 The Cm′m
n′n,n′′ depend on the radial parameters c′, c but not

on the spatial variables ξ ′, η′, ξ, η. Normally, in an application,
the radial parameters are fixed while the spatial variables
may vary freely. Hence, the same set of C’s can be used for
all instances of spatial variables that occur in the application.
Note also that the right-hand side of Eq. (11) depends on
ξ ′, η′, ξ, η only through the differences ξ ′ − ξ, η′ − η.

3.1.3 The circle polynomials at the right-hand side of
Eq. (11) are required for potentially large degree n′′. Then the
direct form of the radial polynomials

Rm
n (ρ) =

p

∑
s=0

(−1)s (n− s)! ρn−2s

s! (p− s)! (q− s)!
(17)

with non-negative integers n, m satisfying n−m non-negative
and even, and p, q defined as p = 1

2 (n−m), q = 1
2 (n + m), is
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cumbersome to use. However, there holds

Rm
n (ρ) = ρm P(0,m)

p (2ρ2 − 1) , (18)

with P(α,β)
l (x) the Jacobi polynomials. From the recursion re-

lations that are satisfied by the Jacobi polynomials, the follow-
ing recursive scheme for fixed m = 0, 1, ... holds: Rm

m−2(ρ) = 0,
Rm

m(ρ) = ρm and for n = m + 2, m + 4, ...

(p + 1)(q + 1)
(n + 1)(n + 2)

Rm
n+2(ρ)

=
(

ρ2 − p(p + 1) + q(q + 1)
n(n + 2)

)
Rm

n (ρ)−
pq

n(n + 1)
Rm

n−2(ρ), (19)

see [6], Eq. (2.29). Alternatively, for any n = 0, 1, ... and any
ρ, 0 ≤ ρ ≤ 1, the values of all radial polynomials Rm

n (ρ) with
m = n, n − 2, ..., n − 2b 1

2 nc = 0 or 1 can be computed using
an algorithm of the DFT-type on N (≥ 2n + 1) points, see [7].

The computation of the Jacobi polynomials P(α,β)
l (x), as used

in the expression in Eq. (13) for the S’s, can also be done using
recursion techniques.

3.1.4 As to the convergence of the series expression at the
right-hand side of Eq. (11), there are the following comments.
There holds

|Zm
n (ρ eiϑ)| ≤ 1 , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ < 2π , (20)

while |Zm
n (ρ eiϑ)| decays typically as 1/n1/2, n → ∞, when m

is fixed and ρ is away from 0 and 1. To assess decay behaviour
of Cm′m

n′n,n′′ as n′′ → ∞, the special case that

c′ = c = 1 , n′ = m′ = n = m = 0 (21)

is considered. Then the function

(Z0
0 ∗∗corr Z0

0)(ρ) = 2
(

arccos 1
2 ρ− 1

2 ρ
√

1− ( 1
2 ρ)2

)
,

0 ≤ ρ ≤ 2 , (22)

arises and

C00
00,2k =

π

4
(2k + 1) [S2k+1

0,0 − S2k+1
2,0 − S2k+1

0,2 + S2k+1
2,2 ] ,

k = 0, 1, ... , (23)

are the quantities of interest. The S-quantities are ex-
pressed in terms of Jacobi polynomials with argument
x = (c− c′)/(c + c′) = 0 per Eq. (13), and a further elabora-
tion, using the recursion properties in [8], Ch. V, (4.4), (4.16),
yields

C00
00,4l+2 = − π

4
(4l + 3)

(P(0,0)
2l (0))2

2(l + 1)2 , l = 0, 1, ... , (24)

C00
00,4l =

π

4
(4l + 1)

(P(0,0)
2l (0))2

2(l − 1
2 )(l + 1)

, l = 1, 2, ... . (25)

Then from

P(0,0)
2l (0) = (−1)l Γ(l + 1

2 )

Γ( 1
2 ) Γ(l + 1)

≈ (−1)l
√

πl
, l → ∞ , (26)

see [8], Ch. V, (10.17), it follows that C00
00,2k = O(1/k2),

k → ∞. This indicates that one should expect a decay be-
haviour 1/(n′′)2 of the Cm′m

n′n,n′′ as n′′ → ∞. Hence, the se-
ries expansion in Eq. (11) for the correlation integral con-
verges absolutely, but not particularly fast. However, from the

asymptotics of the Jacobi polynomials of large degree, see [8],
Ch. V, (5.5), it follows that the terms in the series possess,
asymptotically, much structure. For such series, various con-
vergence acceleration techniques exist.

3.2 Decay of β -coeff ic ients

The coefficients βm
n,a occur in the infinite series expression for

I in Eq. (7), and so it is of interest to have an idea how fast
they decay to 0 as |m| ≤ n, n → ∞. It should be expected
that this decay is not fast, the βm

n,a being Zernike coefficients
of a discontinuous function. A special case is considered. For
r > 0, let

F(r)(ν) =

{
1 , |ν− (r, 0)| ≤ r ,

0 , otherwise .
(27)

Taking for a = 1, 2

Fa(ν) = lim
r→∞

F(r)(ν) =

{
1 , ν = (ν, µ) , ν > 0 ,

0 , otherwise ,
(28)

and restricting Fa(ν) to the unit disk |ν| ≤ 1, it is seen that the
βm

n,a are the Zernike coefficients of the pupil function

F(ν, µ) =

{
1 , ν2 + µ2 ≤ 1 , ν > 0 ,
0 , otherwise .

(29)

There is for this case the special result

F = 1
2 Z0

0 + ∑
n,m

2
π

in−1 n + 1
n(n + 2)

Zm
n , (30)

with summation over all integers n, m such that m is odd and
n − |m| is non-negative and even. Note that the coefficients
βm

n,a do not depend explicitly on m, except that they are under-
stood to vanish when n < |m|. The result in Eq. (30) follows
from

βm
n,a =

n + 1
π

π/2∫
−π/2

1∫
0

R|m|n (ρ) e−imϑ ρ dρ dϑ (31)

and the explicit result

1∫
0

R|m|n (ρ) ρ dρ =
(−1)

n−|m|
2 |m|

n(n + 2)
, (32)

see [9], Eq. (A2), case α = 0. Therefore, in this case, I
can be evaluated from Eq. (7) by using summation variables
(n, m) = (0, 0) and n = 2k + 1, k = 0, 1, ... and |m| = 2l + 1,
l = 0, 1, ..., k as

I =
π

4
+

∞

∑
k=0

π

2k + 2

{
2

k

∑
l=0

4
π2

( 2k + 2
(2k + 1)(2k + 3)

)2}
. (33)

In this special case, where Fa = F, a = 1, 2, and F2 = F, see
Eq. (29), there holds

I =
π/2∫
−π/2

1∫
0

ρ dρ dϑ = π/2 , (34)
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a result that also can be established from Eq. (33) by some ma-
nipulations and using ∑∞

k=0 (2k + 1)−2 = π2/8. The expres-
sion in { } at the right-hand side of Eq. (33) decays like 1/k.
Thus, a decay behaviour

∑
|m|≤n

βm
n,1(βm

n,2)
∗ = O

( 1
n

)
(35)

should be expected. Returning to Eq. (7) for I, it is seen that
there is absolute convergence for the infinite series over n, al-
though the convergence is rather slow. Again, convergence ac-
celeration techniques should be considered.

3.3 Zernike representation of pupil
functions

The expression for βm
n,a in Eq. (9) also involves the Zernike ex-

pansion coefficients γm′
n′ ,a of the pupil functions Fa, a = 1, 2 , on

their pupil circles. Normally, these pupil functions are smooth
and only a limited number of γ’s is required in the Zernike
expansion.

4 EXTENSION TO NON-UNIFORM
TRANSMITTANCE

Until now, the attention has been limited to the case that
the integration over the third disk is performed with a uni-
form weight function. Image enhancement methods, for in-
stance those used in optical lithography, successfully exploit
the effect of a spatial modulation of the source intensity dis-
tribution. This can be done by adding new, spatially sepa-
rated sources that can be handled with the analysis given so
far. Other image enhancement approaches require a modu-
lation of the source intensity within the circumscribing disk.
To cover such advanced illumination methods in our analy-
sis, we replace I of Eq. (1) by (ν3 = 0 and r3 = 1, as earlier)

I =
∫
|ν|≤1

∫
G(ν) F1(ν− ν1) F∗2 (ν− ν2) dν , (36)

where G is a smooth non-uniformity vanishing outside the
unit disk. Then, compare Eqs. (4)–(5) for the case a = 1,
the Zernike expansion of G(ν) F1(ν − ν1) rather than that of
Z0

0(ν) F1(ν− ν1) is required. From the Zernike expansions

G(ν) = ∑
j,i

γi
j Zi

j(ν) (37)

and
Z0

0(ν) F1(ν− ν1) = ∑
l,k

βk
l,1 Zk

l (ν) , (38)

see Eq. (5), it follows that

G(ν) F1(ν− ν1) = ∑
j,i,l,k

γi
j βk

l,1 Zi
j(ν) Zk

l (ν) . (39)

When G is a smooth non-uniformity, only a few terms are re-
quired in the expansion in Eq. (37).

The Zernike expansion of G(ν) F1(ν − ν1) can be obtained
from Eq. (39) when there is a (systematic) way to write

Zi
j Zk

l = ∑
n

Aikm
jln Zm

n , (40)

with m = i + k, as a linear combination of circle polynomials
Zm

n . For this, the following result is given in [10], Eq. (22). Let
j, i and l, k be two pairs of integers such that j− |i| and l − |k|
are even and non-negative. Then (40) holds with m = i + k
and with summation range

n = max(|i + k|, |j− l|)(2)(j + l) , (41)

where a(2)b denotes a, a + 2, ..., b when b− a is non-negative
and even. The Aikm

jln are defined as follows. Let

s =
j− i

2
, t =

j + i
2

, u =
l − k

2
,

v =
l + k

2
, p =

n−m
2

, q =
n + m

2
, (42)

where n is an integer such that n − |m| is even and non-
negative. Then A is given in terms of Wigner or Clebsch-
Gordan coefficients as

Aikm
jln = (C

1
2 j, 1

2 l, 1
2 n

1
2 i, 1

2 k, 1
2 m

)2 = |( 1
2 j 1

2 l 1
2 i 1

2 k | 1
2 j 1

2 l 1
2 n 1

2 m)|2 , (43)

see [10], Eq. 22 (where 〈 | 〉 is used instead of ( | ) in the third
member of Eq. (43)) and [5], 27.9.1. In the notations introduced
in Eq. (42), there holds, see [11], (3.170)

Aikm
jln =

(n + 1)(s + u− p)!(i + s + p− u)!(k + u + p− s)!
(i + k + s + u + p + 1)!

· s! t! u! v! p! q!

·
(
∑
z

(−1)z

z!(s + u− p− z)!(s− z)!(v− z)!

× 1
(i + p− u + z)!(p− s + z)!

)2
(44)

when n is as in Eq. (41), and Aikm
jln = 0 otherwise. When n is

as in Eq. (41), all factorials in Eq. (44) in front of (∑z)
2 have

a non-negative argument. Furthermore, in ∑z those integer z
are included for which all factorials involved in the zth term
have a non-negative argument, and the summation range thus
obtained is non-empty when n is as in Eq. (41).

5 CONCLUSION AND OUTLOOK

There has been presented a semi-analytical method to com-
pute the 3-circle integrals of Hopkins from the Zernike expan-
sion coefficients of the involved generalized pupil functions
on their supporting disks. The key ingredients are Parseval’s
theorem for the inner product of two functions expanded as
orthogonal series and an explicit, infinite-series expression for
the correlation of two Zernike circle polynomials on reference
disks of general radii. The latter correlations can be evaluated
in the form of a Zernike expansion on the disk whose radius
is the sum of the two radii of the two reference disks, with
explicit expansion coefficients having various symmetry and
invariance properties. Convergence behaviour of the infinite
series that arise in the method has been assessed by consid-
ering special cases that allow analytic treatment. The method
allows extension to the case of non-uniform coherence func-
tions on the extent of the illumination source.

The new method is a potential alternative for more numer-
ically oriented methods to compute the 3-circle integrals. It
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is envisaged that for this the inherent symmetries and in-
variances are very helpful and that convergence acceleration
techniques, taking account of the structure of the terms in
the various infinite series, should be employed. At present,
there has been done some numerical work on validation of
Theorem 2.1, but otherwise there is only limited insight as to
how the method compares to more numerically oriented ap-
proaches in terms of computation time and accuracy.
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