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We present a self-calibrating scheme for microscopes using model-based wavefront sensorless adaptive optics. Unlike previous methods,
this scheme permits the calibration of system aberration modes without the need for a separate wavefront sensor or interferometer.
Basis modes are derived from the deformable mirror influence functions and an image cross-correlation method is used to remove image
displacement effects from these modes. Image based measurements are used to derive an optimum modal representation from the
displacement-free basis modes. These new modes are insensitive to system misalignments and the shape of the illumination profile.
We demonstrate the effectiveness and robustness of these optimal modes in a third harmonic generation (THG) microscope. [DOI: http:
//dx.doi.org/10.2971/jeos.2011.11045]
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1 INTRODUCTION

Aberrations frequently affect the performance of high resolu-
tion microscopes. In order to overcome this problem, adaptive
optics (AO) techniques have been introduced in a range of dif-
ferent microscope modalities. These AO systems employ an
adaptive element, such as a deformable mirror (DM) or spatial
light modulator, to correct the specimen and system-induced
aberrations. Unlike in conventional adaptive optics systems,
most of the AO microscope implementations have been “sen-
sorless”, employing indirect wavefront measurements rather
than wavefront sensors. Modal methods of sensorless AO pro-
vide an efficient method of indirect wavefront measurement,
but require careful calibration of the adaptive element to func-
tion effectively, particularly when using a DM; this calibration
encodes the control signals that generate aberration modes
from a suitable basis set, such as the Zernike polynomials.
For this reason, systems have incorporated interferometers
or wavefront sensors, which required increased complexity
in the overall optical design and operation. The operation of
these systems is also sensitive to the alignment of the adaptive
element relative to the pupil of the objective lens [1].

The optical layout of these AO microscopes could be con-
siderably simplified if the sensor or interferometer were re-
moved. Further benefit would be obtained by using a cali-
bration scheme that is insensitive to misalignments. In this
paper, we propose a fully empirical determination of aberra-
tion modes that can be implemented in any optical microscope
and does not require a wave front sensor. We demonstrate this
scheme in an adaptive third harmonic generation (THG) mi-
croscope and show its effectiveness in the presence of system
misalignments.

2 Principles of sensorless adaptive
optics

We outline in this section the principles of model-based sen-
sorless AO schemes for use in microscopes. In particular, we
explain the importance of the choice of modal expansion for
the aberration representation and the relationship between
image shifts and certain aberration modes.

2.1 Functional representation of
aberrat ions

The DM is controlled by a set of signals that drive the individ-
ual actuators that deform the mirror surface. This produces a
limited range of shapes that are determined by the mechani-
cal properties of the mirror and the actuator arrangement. The
influence function of an actuator is defined as the DM shape
produced when a unit signal is applied to that actuator. We as-
sume that the DM operates in a regime where linearised con-
trol signals can be used. This means that the overall shape of
the DM is determined by the linear superposition of the ac-
tuator influence functions. This is a reasonable approximation
for many practical systems, particularly for small aberration
amplitudes. The DM aberration can then be expressed as

Φ(r) =
N

∑
i=1

ciψi(r) (1)

where N is the number of actuators, ci and ψi are respectively
the control signal and the influence function for the ith actua-
tor, and r is the position vector in the pupil.

The set of influence functions forms a basis that can repre-
sent any DM shape. However, it is usually desirable to control
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the DM using a different set of basis modes that have par-
ticular mathematical characteristics, such as orthogonality. In
this case, we can express the aberration as a combination of M
modes:

Φ(r) =
M

∑
i=1

aiXi(r) (2)

where Xi is the ith mode with coefficient ai. The control sig-
nals are related to the modal coefficients via a linear transfor-
mation, represented by the matrix-vector equation

c = Ba (3)

where B is the N × M transformation matrix and ai and ci
comprise respectively the elements of the vectors a and c. For
mathematical convenience, sets of analytic functions such as
Zernike polynomials are frequently used as the basis modes.
As these modes do not perfectly describe the mirror deforma-
tions, the representations of Eqs. 1 and 2 are not equivalent
and describe different function spaces. Instead of analytical
modes, one can derive sets of deformation modes that are lin-
ear combinations the influence functions. These are advanta-
geous compared to analytic modes as they match perfectly the
actual deformations of the mirror. In this case, the number of
modes is exactly the same as the number of actuators (M = N)
and the square matrix B describes a (usually non-singular) lin-
ear transformation.

In model-based sensorless AO systems, the modes are chosen
to exhibit properties that enable optimum performance of the
AO scheme. The derivation of the optimum modes from the
basis sets is outlined in the following sections.

2.2 Aberrat ions and displacements in
three-dimensional imaging systems

In the context of imaging systems, aberrations modes can be
separated into three types: those that have no effect on images,
those that cause image displacement, and those that affect im-
age quality. The simplest aberration is the piston mode – a con-
stant phase offset. In most microscopes, piston has no effect on
the imaging process or the AO system. Hence, it is frequently
neglected in analysis. Throughout this paper, for simplicity, all
aberrations are assumed to have zero mean phase and hence
zero piston component.

The tip and tilt modes consist of linear phase gradients in or-
thogonal directions across the pupil and correspond to lateral
translations in the image plane. There also exists a defocus
mode that is equivalent to a refocusing of the imaging sys-
tem. In the paraxial approximation, the defocus mode varies
quadratically with radius; in high numerical aperture (NA)
system, it is a higher order radial function. The three modes
tip, tilt and defocus represent image translations or distortions
in three dimensions; they do not however affect the resolu-
tion or contrast of the image. From here-on, we shall refer col-
lectively to the tip, tilt and defocus modes as “displacement
modes”. All other aberration modes affect the resolution and
contrast of images.

In three-dimensional imaging AO systems, it is important to
avoid image displacements during the correction process. To

achieve this, displacement modes should be excluded from
the AO scheme. Moreover, the other aberration modes should
not contain any component of the displacement modes, as
their inclusion would induce image shifts during the aberra-
tion correction process, which could in turn affect aberration
measurements. By excluding displacement modes, one can
ensure that only the aberration components affecting image
quality will influence the measurements. Furthermore, the ex-
clusion of displacement modes reduces the total DM surface
distortion, thus reduces the possibility of actuator saturation
during operation.

2.3 Optimum modes for model-based
sensorless adaptive optics

A sensorless adaptive optics scheme is based around the opti-
misation of a chosen metric, such as image intensity. This met-
ric should be chosen to enable an efficient optimisation pro-
cess. One approach is to choose a metric with a well-defined
parabolic maximum, where the maximum metric value corre-
sponds to the best imaging conditions. This is usually equiva-
lent to zero aberration. It has been shown in [2, 3] that for any
choice of metric with this property and any set of basis modes
Xi, a new set of optimal modes Yi can be derived, which en-
able the metric to be expressed in separable quadratic form:

M ≈ q

(
1−

N

∑
i=1

βib2
i

)
(4)

where q and βi are constants and bi are the coefficients of the
new modes. As the different modal coefficients appear sep-
arately in the expansion of M, each mode can be optimised
independently using a one-variable quadratic maximisation
algorithm without explicit knowledge of the other variables.
It has been shown [3] that the required quadratic characteristic
is linked to the orthogonality of the modes Yi, where orthog-
onality is defined by a particular inner product (IP). In prin-
ciple, the IP can be derived mathematically from the Taylor
expansion of the metric with respect to the modal coefficients.
However, the complexity of the mathematics describing the
imaging process means that simple expressions for the inner
product are not readily obtained for many microscopes. Sim-
ilarly, conventional analytic modal sets, such as the Zernike
polynomials, may not have the required mathematical prop-
erties.

Generally, it is necessary to derive new sets of modes for a par-
ticular application to ensure optimal performance of the sen-
sorless system. Three different methods that have been used
to obtain optimum modes in these systems – analytical, nu-
merical and empirical – are explained below.

1. Analytical: In some situations, it is possible to define a set
of analytic functions that are orthogonal with respect to
the inner product. This method has been employed, for
example, using Zernike modes in a focussing system [4]
or Lukosz modes in a focussing system [5] or in an in-
coherent microscope using image low spatial frequency
content as the metric [6]. This analytical approach is of
relatively limited application, as there are few sets of
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known analytic modes that could be matched to any par-
ticular adaptive system.

2. Numerical: If the functional form of the inner product is
known, for example from the Taylor expansion of the
metric function, then the optimum orthogonal modes can
be obtained numerically. As a starting point, one selects
a suitable set of modes as a basis set (e.g. a subset of low-
order Zernike polynomials). The optimum modes are
then constructed from the basis set using an orthogonal-
isation process based around the inner product. This has
been shown in structured illumination and two-photon
fluorescence microscopes [3, 2].

3. Empirical: If the functional description of the inner
product is not available, the basis modes can be or-
thogonalised using an empirical process in which the
form of the metric function is determined from image
measurements. A sequence of images is acquired with
different bias aberrations applied by the adaptive el-
ement. The corresponding metric measurements map
out the shape of the metric function in the vicinity of
the paraboloidal peak. The new modes are obtained
as a linear combination of the basis modes by finding
the coordinate system that aligns the primary axes of
the paraboloidal maximum with the coordinate axes.
This approach has been demonstrated in structured
illumination, two-photon and harmonic generation
microscopes [3, 2, 7].

In each of these three approaches, it is essential that the dis-
placement modes are excluded from the basis modes, to avoid
the problems associated with image shifts. In method 1, the
displacements modes are excluded simply by removing the
corresponding modes from the analytic set. In implementa-
tions of methods 2 and 3, the displacement modes have been
removed from the basis set in advance of the orthogonali-
sation process. In each case, the derivation of the modes re-
quired the direct measurement of the DM introduced phase
using a wavefront sensor or interferometer. These measure-
ments provided the information required to calculate and re-
move the displacement modes from the basis set.

2.4 The correct ion procedure

The modal aberration correction scheme is based upon the se-
quential correction of a suitable set of N basis modes through
maximisation of a chosen image quality metric, such as the
total image intensity. The maximisation is implemented by in-
tentionally introducing predetermined aberrations, or biases,
into the system using the DM. In this paper, we use the fol-
lowing procedure. First, a positive bias +bYi of the measured
mode Yi is added, where b was the bias amplitude, and an im-
age is acquired; from this image the metric value M+ is calcu-
lated. Then a negative bias of the same mode −bYi is applied,
providing the metric value M−. Additionally, the metric value
M0 is calculated with no bias aberration. The bias amplitude b
is chosen to have a suitable value, which is typically less than
the half width at half maximum of the response curve of M for
that mode being measured. The correction aberration is then

found through a maximisation procedure defined as:

acorr =
b(g+ − g−)

2g+ − 4g0 + 2g−
, (5)

where g+, g− and g0 are the reciprocal of the metric values
M+, M−, and M0 respectively. The measurement and correc-
tion cycle is then repeated for each of the N modes of interest.
Correction of N modes require 2N + 1 measurements in to-
tal. This cycle is then repeated to test whether convergence is
complete.

3 Ful ly empir ical mode cal ibrat ion

3.1 Limitat ions of previous sensorless
adaptive optics schemes

The specification of a sensorless AO scheme, as outlined
above, relies upon the accurate correspondence between the
mathematical description of the aberration modes and their
realisation in the optical system. In practice, there are various
sources of error that can lead to discrepancies. There are two
major sources of error that can affect sensorless AO systems:
non-common-path errors and alignment errors. We now dis-
cuss the origin and effects of these errors.

Non-common path errors: The derivation of modes using the
methods described above requires at some stage measure-
ment of the influence functions. This can be implemented us-
ing a wavefront sensor or an interferometer. These measure-
ments may include additional aberrations that are not encoun-
tered in the microscope optical path. This arises because the
sensor must in practice use an optical path that is not com-
mon to the microscope imaging path. As a consequence, the
influence function measurements may include systematic er-
rors. When modes are obtained empirically, the effects of these
errors are reduced: Although the initial influence functions
are obtained using the sensor, the final modes are obtained
via image-based measurements that rely only upon the mi-
croscope imaging path.

Alignment errors: It is essential that the active area of the adap-
tive element is correctly imaged on to the pupil of the objective
lens and the sensor pupil. A slight offset in the lateral position
of the objective pupil could lead to significant errors in the
pupil phase, especially where regions from outside of the sen-
sor pupil lie inside the objective pupil. Similar problems occur
if the magnification between the pupils is incorrect. With such
misalignments, even when the sensor detects that a mode is
perfectly generated by the DM, the actual phase at the objec-
tive pupil could be considerably different. Significant experi-
mental effort has been expended in ensuring that the correct
pupil was used for the DM calibration. For example, in ref-
erences [3, 2, 8] the beam was passed through the objective
lens, then reflected from a mirror back through the same lens
in order to ensure the correct limiting aperture from the objec-
tive pupil was used at the sensor. This adds complexity to the
system and can introduce additional non-common path aber-
rations from the extra optical components.

We propose to eliminate these errors by implementing a cali-
bration procedure that is entirely sensorless and does not need
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a wavefront sensor or interferometer for the initial calibration.
This removes the existing limitation of the empirical mode
derivation method, which required measurement of the basis
modes in order to remove any displacement components.

3.2 Outl ine of the empir ical cal ibrat ion
scheme

The first step of proposed scheme is the calculation of influ-
ence functions using an approximate model of the DM me-
chanical response. Mirror deformation modes are then con-
structed from the set of influence functions. The next step is
the removal of displacement mode components from the de-
formation modes.

Rather than starting with a mathematical description of dis-
placement modes, we instead define the displacements in
terms of the phenomenon of image shifts. In an ideal imag-
ing system, this definition of the three displacement modes
should correspond perfectly with the x, y and z image shifts.
These shifts are quantified by observation of the effects of
each mode on a three-dimensional image stack. As the light
forming the image follows exactly the path we need to cor-
rect, the method automatically corrects for any alignment er-
rors and avoids any non-common path errors. The resulting
displacement-free deformation modes form the basis set for
the empirical derivation of the optimal modes.

The following sections detail the steps of this calibration
scheme and its implementation in a practical microscope
system. For this demonstration, we used an adaptive third-
harmonic generation (THG) microscope [8], although the
method is applicable to all three-dimensional microscope
systems. The system consisted of a Cr:Forsterite laser (Del-
Mar Photonics Mavericks), which emitted 65 fs pulses at a
repetition rate of 76 MHz. The central wavelength was at
1230 nm and the output average power was about 200 mW.
Laser scanning was performed by a pair of galvanometric
mirrors (VM1000, GSI Lumonics) which were imaged onto
the deformable membrane mirror (MIRAO 52-e, Imagine
Optic). The DM was then imaged onto the pupil plane of
the objective lens (UApo/340 water immersion objective,
40×, NA = 1.15). The THG signal was collected in trans-
configuration by an oil immersion condenser (NA=1.4) and
was focussed onto a photomultiplier tube (PMT). A suitable
bandpass filter was inserted before the PMT to filter out THG
signal from the illumination light. Specimen scanning in the
axial direction was performed by a piezo actuator attached to
the sample stage.

3.3 Derivation of basis modes

Mirror deformation modes were chosen as the initial basis
set. In order to derive these modes, we first obtained influ-
ence functions by solving the membrane equation, which de-
scribes the surface displacement of a perfect thin membrane
in the presence of distributed forces [9]. Whilst not provid-
ing a full description of the mechanical properties of the MI-
RAO DM, this model is sufficient to provide close approxima-
tions to the actual influence functions. The set of eigenmodes

-2.5

2.5

FIG. 1 Normalised plots of the approximate deformation modes of the MIRAO DM

derived using the membrane equation. A subset consisting of the first 14 of these

modes was used as the basis set for the derivation of optimum modes.

was obtained by orthogonalisation of the influence functions,
performed using principal component analysis as outlined
in [10]. This provided the set of control signals required to gen-
erate the basis modes on the DM and hence the control matrix
B of Eq. 3. As an approximate mechanical model was used,
the actual modes generated by the DM may not have been
perfectly orthogonal. However, the modes did form a well-
conditioned basis set that spanned the function space of the
DM. As such, they formed a suitable basis for derivation of
the optimum modes. The basis functions obtained in this way
are denoted Xi. As the aim of this investigation was to omit
a wavefront sensor from the microscope system, we do not
present direct measurements of these modes, as produced by
the DM. However, for the purposes of visualisation, Figure 1
shows the calculated shapes of the 52 basis modes derived for
the MIRAO DM. As an approximate mechanical model was
used, these shapes may differ slightly from the actual shape
of the DM.

In principle, the influence functions themselves could be used
as the basis set for the following procedure. However, it has
been found in previous investigations that a modal basis, even
if approximate, provides a better conditioned starting point
for this procedure. This is because the properties of the modal
basis set are closer than those of the influence functions to the
orthogonal properties required for optimal operation of the
correction scheme.

3.4 Derivation of displacement-free optimal
modes

3.4.1 Measurement of tip, tilt and defocus from image shifts

The empirically derived displacement modes were obtained
from the basis modes by the following process. A specimen
consisting of glass beads (of approximate diameter 10µm)
suspended in gelatin was chosen due to its fine scale three-
dimensional structure. The DM was set such that all system
aberrations were corrected and a 3D reference image stack
I0(x, y, z) encompassing a single bead was acquired. A cho-
sen amplitude a of a basis mode Xi was added to the DM and
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another image stack I1(x, y, z) was acquired. The relative dis-
placement between the two stacks was calculated through im-
age cross correlation. For the x direction the correlation can be
expressed as

Rx(x′) =
∫∫∫

x,y,z
I0(x, y, z)I1(x− x′, y, z)dxdydz , (6)

with similar expressions used for y and z. The image shift
was then obtained by finding the value of x′ that maximised
Rx(x′). This was repeated for a range of different mode ampli-
tudes ak, resulting in image shifts x′k. A linear fit to these data
provided the gradient sx

i , which quantified the amount of im-
age shift in the x-direction per unit amplitude of basis mode
Xi. Similar calculations were performed to obtain the equiva-
lent gradients sy

i and sz
i . This was repeated for each basis mode

Xi for i = 1 to N.

Assuming that the effects of each mode add linearly, the total
image shifts from an aberration ∑N

i=1 aiXi can be derived from
these measurements as

sx =
N

∑
i=1

sx
i ai , sy =

N

∑
i=1

sy
i ai , sz =

N

∑
i=1

sz
i ai . (7)

Alternatively, this can be represented by the matrix equation

s = Ma , (8)

where s = (sx, sy, sz) and the N coefficients ai are the elements
of the vector a. The elements of the 3× N matrix M are the
values of sx

i , etc.

3.4.2 Definition of tip, tilt and defocus

The inversion of this equation provides the combination of
basis modes required to generate the image shifts. As M is
non-square, we can employ pseudo-inversion to give the min-
imum norm solution

a = M†s , (9)

where the three columns of the N × 3 pseudo-inverse matrix
M† are the coefficients required to generate unit image shifts
in the x, y and z directions. Equivalently, we defined our three
new displacement modes, denoted by Λ1, Λ2 and Λ3 respec-
tively, in terms of the basis modes Xi as

Λn =
N

∑
i=1

(
M†
)

i,n
Xi , (10)

where n = 1, 2, 3. For this demonstration we chose to correct
the first 14 basis modes, which were the most influential. The
displacement modes derived from the first 14 basis modes are
depicted in Fig. 2(a). As in Fig. 1, these are calculated shapes
that approximate the actual shapes produced by the DM.

3.4.3 Removal of tip, tilt and defocus

Tip, tilt and defocus components can be removed from the ba-
sis modes to provide displacement-free basis modes X′i using
the following orthogonal projection calculation:

X′ =
(

I−M†M
)

X (11)

(a) (b)

-2.5

2.5

-2.5

2.5
 

 

(c)

  0

  1

FIG. 2 (a) Plots of the tip, tilt and defocus modes as derived from the first 14 basis

modes shown in Fig. 1. (b) The absolute values of the matrix for conversion of basis

modes into displacement free modes. (c) Plots of the basis modes after removal of

the displacement mode components.

where the elements of the vectors X and X′ are the sets of
initial and derived modes, i.e. X = (X1, ... , XN) and
X′ = (X′1, ... , X′N). The matrix

(
I−M†M

)
is the projection

matrix that removes the displacement components. The re-
sulting displacement free modes X′i are shown in Fig. 2(c).
Fig. 2(b) depicts the matrix that converts the basis modes X
to X′. The control signals for driving the DM are calculated as

c = B
(

I−M†M
)

a′ (12)

where the elements of the vector a′ are the coefficients of the
displacement free modes.

3.4.4 Orthogonalisation of modes

Débarre et al. showed that optimal modes could be obtained
through measurement of the form of an image quality met-
ric M as a function of the different aberration mode coeffi-
cients [3]. We describe here a similar approach to derive new
optimal modes Yi from the displacement-free basis set X′i .

For the purposes of this procedure, we defined the metric
function M as the total THG intensity from an axial (x-z) im-
age of a coverglass-air interface. For small aberration ampli-
tudes, the metric takes the approximate paraboloidal form

M ≈ q

(
1−∑

i
∑

j
αijaiaj

)
(13)

where q is a constant. This can also be expressed conveniently
as

M ≈ q
(

1− aTAa
)

(14)
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-2.5

2.5

FIG. 3 The optimal aberration modes Yi after the experimental orthogonalisation pro-

cedure of the displacement-free modes.

where the elements of the matrix A are the values of αij. In
order to derive the optimal modes, we should first obtain the
matrix A.

For each pair of basis modes X′i and X′j with i 6= j, the met-
ric M was measured for a number of test aberrations Φ(i,j),n,
which contained certain combinations of the two modes. The
mode combinations are chosen to have a constant total mag-
nitude γ so that the nth test aberration was

Φ(i,j),n = γ

[
cos

(
2π

T
n
)

X′i + sin
(

2π

T
n
)

X′j

]
(15)

where T is the total number of test aberrations. The constant
γ was chosen to be small enough such that the assumption
of small aberration magnitude was valid. The collection of T
metric measurements form a polar plot, where the measured
metric values are interpreted as radial coordinates and the
numbers 2πn

T as angular coordinates. The resulting elliptical
plot is a “section” through the multidimensional paraboloidal
peak of M that shows the orientation of the paraboloid to the
axes.

Several of these plots, acquired for different pairs of basis
modes, provide sufficient information to reconstruct M and
obtain the optimum modes. The data were fitted to the ellip-
soid ∑i ∑j αijaiaj = aTAa = c, where c was a constant, which
in turn provided the matrix A. The eigendecomposition of this
matrix gives A = VDVT, where V consists of the eigenvectors
of A and the elements of the diagonal matrix D are the corre-
sponding eigenvalues. Using this decomposition, we can de-
fine a new modal expansion for the phase as Φ(r) = ∑i biYi(r).
Equation 14 can be rewritten as

M ≈ q
(

1− aTVDVTa
)
= q

(
1− bTb

)
= q

(
1−

N

∑
i=1

b2
i

)
(16)

where the elements of the vector b = D1/2VTa are the new
modal coefficients bi. This representation of M now has the
same desired form as Eq. 4. This shows that the new set of
modes has the optimal properties that permit the indepen-
dent optimisation of each mode. The optimum modes Yi(r)

8

-6

Ph
as

e 
(r

ad
)

-1

1.5

Ph
as

e 
(r

ad
)

0 2 4 6 8 10
0.4

0.6

0.8

1

round of correction

 I
n

te
n

si
ty

 (
a

.u
.)

(a)

0 255Intensity (a.u.)

(b1)

(b2)

(b3)

(c)

(d)

FIG. 4 Correction of aberrations using the displacement-free optimal modes. (a) The

image intensity metric for subsequently applied correction cycles. (b1-b3) THG images

of C. Elegans specimen section, 25 µm deep in the sample before correction, after

correcting system aberrations and after further correction of specimen aberrations,

respectively. Scale bar is 10 µm. (c) Correction phase applied for compensating system

induced aberrations and (d) the additional correction for specimen aberrations.

can then be calculated as

Yi(r) = ∑
j

Vij√
Djj

X′j(r) (17)

where Vij and Djj are elements of V and D, respectively.

The DM control signals for generating the aberration
Φ(r) = ∑i biYi(r) can be calculated as

c = B
(

I−M†M
)

VD−1/2b (18)

Figure 3 shows the resulting optimal modes, as defined by
Eq. 17. Only the 11 most significant modes are shown in this
figure. The remaining three modes are degenerate, due to the
previous removal of the three displacement modes.

4 Aberrat ion correct ion using optimal
modes

The effectiveness of the displacement-free optimal modes was
verified by implementing the sensorless aberration correction
scheme in the THG microscope described in Section 3.2. Fig-
ure 4 shows the results of this correction procedure when ap-
plied to a C. Elegans specimen. The C. Elegans was maintained
in between two coverglass on nematode growth medium agar.
Firstly, the system induced aberrations were corrected using
THG signal from the coverglass-medium interface directly be-
neath the C. Elegans. Only N = 11 modes shown in Figure 3
were included in the correction procedure. Trial aberrations of
bias amplitudes b = ±0.5 were applied in a sequential man-
ner measuring the corresponding quality metric, which was
chosen to be the total image intensity [11]. The final correction
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FIG. 5 Displacement modes of a misaligned system. (a) Schematic showing the ap-

proximate misalignment introduced to the system. P: objective pupil, DM: deformable

mirror active area, I: iris. (b) The tip, tilt and defocus displacement modes. (c) The con-

version matrix for generating displacement-free modes from the first 14 basis modes.

The plots show simulations of the whole DM aperture. The functional aperture corre-

sponds to that in part (a) of this figure.

phase was then estimated as described in section 2.4. Rapid
acquisition of low resolution images was sufficient to estimate
the correction phase and one correction cycle took approxi-
mately 1 minute. In Figure 4 part (a) shows the value of the
image intensity metric after each repeated correction cycle ap-
plied to the coverglass-medium interface. The metric reaches
90% of the maximum achieved value after the first cycle. From
the second cycle onwards, the metric is greater than 96%. Fig-
ure 4(b) shows images of a lateral section , 25 µm deep in the
C. Elegans specimen taken before and after aberration correc-
tion. Part (b1) was taken without correction. Part (b2) was af-
ter correction of system aberrations. This alone improved the
image intensity by 32.5%. Part (b3) was after further correc-
tion of specimen induced aberrations. This allowed an addi-
tional 11% improvement of the image intensity. Figure 4(c)
shows the correction phase used for the system aberrations
and Fig. 4(d) is the additional correction for specimen aberra-
tions.

5 Robustness of method

As the modal derivation was based entirely upon empirical
measurement, rather than off-line calculation, the scheme was
shown to be robust with respect to changes in experimen-
tal conditions. In particular, any misalignments of the sys-
tem were automatically taken into account by the calibration
methods. This is in contrast to off-line methods where align-
ment errors can lead to significant differences between theo-
retical predictions and practical performance. In order to illus-
trate this robustness, we repeated the procedure for aberration
mode derivation after intentionally misaligning the system.
The pupils of the DM and objective lens were offset as shown
in Figure 5(a). An iris was also used to reduce the size of the
functional pupil. The displacement modes were determined
using the method described above. The resulting DM shapes
are shown in Figure 5(b). Note that these represent the orig-
inal DM active area, whereas the new displacement modes
would be defined only over the misaligned pupil shown in

-2.5

2.5

FIG. 6 The optimum aberration modes derived for the misaligned experimental sys-

tem. The plots show a simulation of the whole DM aperture. The functional aperture

corresponds to that in the diagram of Figure 5(a).
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FIG. 7 THG image intensity as a function of the number of iterations of the correction

procedure and the corresponding correction phase.

Figure 5(a). These new displacement modes were removed
from the basis set and the conversion matrix for the generation
of these displacement free modes from the basis modes is de-
picted in Figure 5(c). The experimental orthogonalisation pro-
cedure was followed in order to derive the optimal modes for
this optical configuration. The resulting modes are shown in
Figure 6. Again, these plots show the original active DM area;
parts of the illustrated plots therefore lie outside of the system
pupil that was actually used for the calibration. As should be
expected, these results are different to those obtained previ-
ously (Figure 3) using the full, original pupil.

The THG signal from a coverglass-air interface was used to
verify the effectiveness of these aberration modes in the modal
correction scheme. Figure 7 shows the variation of image in-
tensity for successive rounds of correction and the correction
phase estimated. The optimum correction was achieved after
the first cycle. As expected, the correction quality was lower
than the case presented in the Figure 4. This is because a
smaller proportion of the DM was used in the misaligned sys-
tem.
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6 Discussion
The method presented in this paper permits the calibration of
an adaptive optical microscope without the need for an addi-
tional wavefront sensor or interferometer to characterise the
adaptive element. This considerably reduces the complexity
of the optical systems of AO microscopes, as the calibration
method uses exactly the same hardware as the adaptive imag-
ing system itself. In contrast to previous calibration methods,
all measurements, including the important step of the removal
of displacement components from the basis modes, are based
upon image phenomena.

In contrast to off-line calculation methods, the new procedure
is robust in the presence of practical variations, as illustrated
by the derivation of optimal modes for the system with mis-
aligned pupils. It is also able to cope with other non-ideal con-
figurations, such as errors in magnification between the DM
and the objective pupil, or spatial variations in beam profile,
for example due to apodisation effects or due to the laser beam
profile when using an underfilled pupil. The calibration can
also be carried out in the same microscope system for multi-
ple objective lenses, which typically have different pupil sizes
and hence use a different region of the DM for aberration cor-
rection. Since the re-imaging stage can compensate for the ef-
fects of mismatch between the pupil size and DM actuators,
the new procedure would also permit quicker re-calibration
if the objective lenses needed to be changed (tens of minutes,
but this could be shorter with optimisation for speed).

Whilst the sensorless nature of this method is in many ways
advantageous, it does have the drawback that there is no ab-
solute reference for the aberration measurements. This means
it is only possible to estimate the form and magnitude of
the correction aberration using an approximate model of the
DM. A further consequence is that this method does not per-
mit training of the DM system to produce specific aberration
modes, only sets of modes with the desired mutually orthog-
onal properties. AO systems employing spatial light modula-
tors do not generally require the measurement of the influence
functions. However, a careful alignment of the phase patterns
on these elements is also necessary for the correct operation of
the AO system. In such systems, an approach similar to that
described above could be used. Although we have demon-
strated the operation of this method in a THG microscope, we
emphasise that this method is applicable to any adaptive mi-
croscope system including confocal, multiphoton and wide-
field microscopes, as long as a suitable optimisation metric is
chosen.
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