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Focusing of electromagnetic waves into a dielectric
slab. II. Numerical results
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Based on existing exact and asymptotic Kirchhoff solutions for focused electromagnetic fields inside a dielectric slab we present numerical
comparisons between them also for the special cases of focusing through a single interface or in a single medium. These comparisons
show that the exact and asymptotic Kirchhoff solutions for focusing in a single medium or through a single interface agree well, except at
observation points near to the interface, while a small difference between the two solutions for the focused electrical field inside a dielectric
slab is observed, especially at observation points near to one of the interfaces. This difference is believed to be due to contributions from
surface waves, which are not accounted for in the asymptotic Kirchhoff solutions. At low Fresnel numbers focal shift phenomena are
observed in all three cases. [DOI: 10.2971/jeos.2011.11036]
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1 INTRODUCTION

Focusing of electromagnetic waves in a layered medium of
different refractive indices is of interest in many different ap-
plications, such as optical data storage [1, 2] and hyperther-
mia treatment [3, 4]. The first investigation of such focusing
problems was carried out by Ling and Lee [3], who consid-
ered focusing of electromagnetic waves from air through a
plane interface of a dielectric. To save computing time their
computations of focused fields were based on asymptotic so-
lutions with restricted range of validity. But their approach
was based on the physical-optics or Kirchhoff approximation,
making the results valid also at low Fresnel numbers. Flagello
et al. [2] considered focusing in a layered medium, and Török
et al. [5-8] considered essentially the same problem as in [3],
but based on the Debye approximation, implying that their
results are valid only at sufficiently high Fresnel numbers.

In focusing at low Fresnel numbers of scalar [9]-[14] as well as
electromagnetic waves [3, 15] asymmetries about the geomet-
rical focal plane and associated focal-shift phenomena have
been found theoretically in the Kirchhoff approximation, but
not in the Debye approximation. Since corresponding asym-
metries and focal shifts have been observed experimentally,
both for electromagnetic [16] and scalar waves [13, 17], one
can conclude that the Debye approximation is invalid at low
Fresnel numbers. In spite of this the Debye approximation
is often used instead of the Kirchhoff aproximation because
the former may provide a significant reduction in computing
time [18]. But in practical designs of low-Fresnel number fo-
cusing systems where it is important to know the precise posi-
tion of maximum energy concentration, the Kirchhoff approx-
imation is inevitable. Such precise knowledge can be of crit-
ical importance when electromagnetic waves are focused in-
side a thinly layered medium. Optimization of focused fields

and shaping of the focused intensity distribution are of inter-
est in fields such as photolithography, microscopy, and mate-
rials science [19-25].

To enable one to study the effects of focusing in a thin layer, ex-
act Kirchhoff solutions for focused electromagnetic fields in-
side a dielectric slab were presented in [26], where also corre-
sponding exact solutions for reflected and transmitted fields
were given. Asymptotic Kirchhoff solutions for the focused
field inside the slab were obtained by expressing the impulse
response of the problem as a plane-wave expansion and eval-
uating the corresponding exact (kx, ky) integral by the method
of stationary phase [26].

For focusing of two-dimensional (2D) electromagnetic waves
[27]-[29] Kirchhoff solutions were shown to be very accurate,
both for low Fresnel numbers and high angular apertures. Nu-
merical results based on Kirchhoff solutions were compared to
experimental results for focusing of 2D waves through a plane
dielectric interface and good agreement was found [30, 31].

The paper is organized as follows. For the sake of complete-
ness, we summarize in section 2 exact and asymptotic Kirch-
hoff solutions for focused electromagnetic fields inside a slab
due to a time-harmonic linearly polarized aperture current.
Numerical techniques for computing focused fields inside the
slab are discussed in section 3. In section 4, exact and asymp-
totic Kirchhoff results are presented for electromagnetic fields
obtained by focusing in a single medium, through a single in-
terface, and into a dielectric slab. Our findings are summa-
rized in section 5.
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2 Focusing into a slab

2.1 Exact results

Consider an electromagnetic wave (Ei, Hi) that is incident
upon a slab with interfaces at z = z0 and z = z1. The permit-
tivity, permeability, and conductivity are ε0, µ0, and σ0 in the
half-space z ≤ z0, ε1, µ1, and σ1 inside the slab (z0 ≤ z ≤ z1),
and ε2, µ2, and σ2 in the half-space z ≥ z1. In [26] analytical
results were presented for the electromagnetic field transmit-
ted into the slab in terms of a given field or source current
in the region z < z0 producing the incident field (Ei, Hi). In
this paper the incident wave is assumed to be due to a time-
harmonic, x polarized source current in the aperture plane
z = 0 that produces a converging wave with focus at the point
(0, z f ) inside the slab. In accordance with the physical-optics
or Kirchhoff approximation the source current is assumed to
vanish outside the aperture area A in Fig. 1 and is assumed
to have an amplitude distribution A(x′, y′) and a phase dis-
tribution φ(x′, y′) inside A. With these assumptions the exact
Kirchhoff solution for the focused electric field inside the slab
is given by [26]

E(r, t) = <{E(r)e−iωt} ; E(r) = E(r)+ + E(r)−

E±(r) = ETE±(r) + ETM±(r) ,
(1)

Ep±(r) =
∫∫
A

A(x′, y′) exp [−iφ(x′, y′)]

× Fp±(x′, y′)dx′dy′ (p = TE, TM),
(2)

where the impulse response Fp±(x′, y′) is given by the spectral
integral

Fp±(x′, y′) =
∫∫ ∞

−∞
fp±(kx, ky) exp [ih±(kx, ky)]dkxdky, (3)

with

h±(kx, ky) = kx(x− x′) + ky(y− y′) + kz0 z0± kz1(z− z0), (4)

fTM± =
ωµ0

πc2k0k1
TTM± kx

k2
t

k± × (kt × êz), (5)

fTE± =
ωµ0

πc2 TTE± ky

kz0 k2
t

kt × êz, (6)

k± = kt ± kz1 êz ; kt = kx êx + ky êy, (7)

kzj =
√

k2
j − k2

t ; k2
j = (

ω

c
)

2
µj(εj +

4πiσj

ω
) (j = 0, 1, 2), (8)

where the permittivity, permeability, and conductivity of
medium j are given by εj, µj, and σj, respectively. Ep+ and
Ep− are electric fields comprised of plane waves having
wave vectors with positive and negative z components,
respectively.

The transmission coefficients Tp± (p = TE, TM) in (5)-(6) are
given by

Tp+ =
tp
01

1 + rp
01rp

12 exp (i2δ1)
; Tp− = Tp+rp

12ei2δ1

δ1 = kz1(z1 − z0),

(9)

FIG. 1 Focusing into a dielectric slab. The focal plane is at z = z f .

where rmn and tmn (m, n = 0, 1, 2) are Fresnel reflection and
transmission coefficients for a single interface, given by

rp
mn =

qp
m − qp

n

qp
m + qn p

; qTM
j =

µjkzj

k2
j

;

qTE
j =

kzj

µj
(j = m, n),

(10)

tTM
mn =

2kmµn

knµm

qTM
m

qTM
m + qTM

n
; tTE

mn =
2qTE

m
qTE

m + qTE
n

. (11)

We let the amplitude of the aperture current distribution be
uniform, i.e. A(x′, y′) = 1, and let the phase φ(x′, y′) be deter-
mined from geometrical optics so as to cancel the aberrations
introduced on refraction through the first interface of the slab.
Figure 1 shows that the requirement of equal phase at the fo-
cal point (0, z f ) inside the slab for fields along all geometrical
rays from different source points (x′, y′, 0) via different refrac-
tion points (x00, y00) at the interface z = z0 is given by

φ(x′, y′) = k0D11 + k1D22 − k0z0 − k1(z f − z0), (12)

where D11 is the distance from a source point (x′, y′, 0) in
the aperture plane to the corresponding refraction point
(x00, y00, z00) at the first interface, and D22 is the distance from
(x00, y00, z00) to the focal point (0, 0, z f ), i.e. (see Fig. 1)

D11 =[(x00 − x′)2 + (y00 − y′)2 + z2
0]

1/2

D22 =[x2
00 + y2

00 + (z f − z0)
2]1/2.

(13)

All numerical results presented in this paper were obtained
using the phase φ(x′, y′) given in (12).

2.2 Asymptotic results

As indicated in Fig. 2, the asymptotic solution for the spectral
integral Fp+ in (3) is obtained by exploiting the fact that the
main contribution to each of these impulse-response integrals
(p = TE, TM) comes from one particular plane wave emitted
by the aperture point (x′, y′, 0), namely that plane wave for
which the corresponding ray on refraction through the first
interface of the slab at the point (x0, y0, z0) passes through the
observation point (x, y, z) [3, 26, 32]. Thus, by evaluating each
of the integrals in (3) asymptotically using the method of sta-
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FIG. 2 Refraction through a single dielectric interface. The main contribution from the

source point P′(x′ , y′ , 0) is due to the plane wave associated with the geometrical ray

that passes from the source point P′(x′ , y′ , 0) via the refraction point P(x0, y0, z0)

to the observation point P(x, y, z).

tionary phase, we obtain [26]

Fp+(x′, y′) ∼− 2πik0z0
D
D2

1
f p+(ks

x, ks
y)

× exp [i(k0D1 + k1D2)],
(14)

where ks
x and ks

y are given by

ks
x = k0

x0 − x′

D1
= k1

x− x0

D2

ks
y = k0

y0 − y′

D1
= k1

y− y0

D2
.

(15)

In (14), D1 is the distance from the source point (x′, y′, 0) to
the refraction point (x0, y0, z0) and D2 is the distance from
(x0, y0, z0) to the observation point (x, y, z), i.e.

D1 =
[
(x0 − x′)2 + (y0 − y′)2 + z2

0

]1/2

D2 =
[
(x− x0)

2 + (y− y0)
2 + (z− z0)

2
]1/2

,
(16)

and the quantity D is given by

D =
1

[1 + D2/ρ1]1/2
1

[1 + D2/ρ2]1/2 , (17)

with

ρ1 =
k1D1

k0
; ρ2 =

k1D3
1(z− z0)

2

k0z2
0D2

2
. (18)

Before proceeding with the asymptotic solution for the spec-
tral integral Fp−, we add the exponential factor exp(i2δ1) of
the transmission coefficient Tp− in (9) to h−(kx, ky) in (3)
and (4) to obtain

Fp−(x′, y′) =
∫∫ ∞

−∞
fp−

M (kx, ky)

× exp [ih−M(kx, ky)]dkxdky,
(19)

where

fp−
M (kx, ky) = fp−(kx, ky) rp

12
Tp+

Tp− , (20)

FIG. 3 Refraction through the first interface and reflection from the second interface of

the slab. The main contribution to Fp−(x′ , y′) in (3) from the source point P′(x′ , y′ , 0)

is due to the plane wave associated with the geometrical ray that passes through the

observation point P(x, y, z) after refraction through the first interface of the slab at

P(x0, y0, z0) and reflection from the second interface at P(x1, y1, z1).

h−M(kx, ky) = kx(x− x′) + ky(y− y′) + kz0 z0

+ kz1(d + z1 − z),
(21)

with d = z1− z0 being the thickness of the slab. The stationary
points (ks

xM, ks
yM) of the phase function h−M(kx, ky) are given

by [26]

ks
xM = k0

x′0 − x′

D1M
= k1

x1 − x′0
D2M

= k1
x− x1

D3M
, (22)

ks
yM = k0

y′0 − y′

D1M
= k1

y1 − y′0
D2M

= k1
y− y1

D3M
. (23)

Here D1M is the distance between a source point (x′, y′, 0) in
the aperture plane and the refraction point (x′0, y′0, z0) at the
first interface, D2M is the distance between (x′0, y′0, z0) and the
reflection point (x1, y1, z1) at the second interface, and D3M is
the distance from (x1, y1, z1) to the observation point (x, y, z)
inside the slab, as shown in Fig. 3. Thus,

D1M = [(x′0 − x′)2 + (y′0 − y′)2 + z2
0]

1/2

D2M = [(x1 − x′0)
2 + (y1 − y′0)

2 + d2]1/2,
(24)

D3M = [(x− x1)
2 + (y− y1)

2 + (z− z1)
2]1/2. (25)

Using the lowest-order term in equation (9.7a) in [32], we find
the asymptotic contribution to Fp−(x′, y′) in (19) to be

Fp−(x′, y′) ∼ − 2πik0z0
DM

D2
1M

f p−
M (ks

xM, ks
yM)

× exp [i(k0D1M + k1D2M + k1D3M],
(26)

where DM is given by

DM =
1

(1 + D2M+D3M
ρ1M

)1/2

1

(1 + D2M+D3M
ρ2M

)1/2
, (27)

with

ρ1M = ρ1 =
k1D1

k0
; ρ2M =

k1D3
1Md2

k0z2
0D2

2M
. (28)
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As indicated in Fig. 3, the asymptotic solution for Fp−(x′, y′)
comes from that particular plane wave emitted by the source
point (x′, y′, 0) in the aperture which on refraction through
the first interface at (x′0, y′0, z0) and reflection from the second
interface at (x1, y1, z1) passes through the observation point
(x, y, z).

3 Numerical Techniques

3.1 Asymptotic Kirchhoff results

To provide asymptotic results for Fp+(x′, y′) in (14) for a par-
ticular observation point (x, y, z), the quantities D1 and D2 in
(16) must be determined. This was accomplished by finding
the corresponding refraction point (x0, y0, z0) at the first in-
terface in Fig. 2 by use of Fermat’s priciple. To that end, we
implemented a two-dimensional Newton’s method for non-
linear systems of equations to find the unknown variables x0
and y0. We employed numerical algorithms that combined the
rapid convergence of Newton’s method with a globally con-
vergent strategy, as explained in [33]. The same approach was
used to determine the quantities D11 and D22 in (13) (Fig. 1)
and to provide asymptotic results for Fp−(x′, y′) in (19), in
which case determination of the quantities D1M, D2M, and
D3M in (24) and (25) (Fig. 3) were required. The integrals in (2)
were computed using the SSP method [32, 34] for double inte-
grals.

3.2 Exact Kirchhoff results

The numerical techniques used to obtain exact results for the
focused electric field inside a slab are similar to those em-
ployed previously [35] for focusing of electromagnetic waves
through a plane interface. First, the spectral double integral
in (3) is computed to provide the contribution due to one
source point (x′, y′, 0) in the aperture. Second, the double in-
tegration over the aperture plane in (2) is carried out. This
quadruple integration procedure is quite time consuming.
Therefore, we reduce the spectral double integral in (3) to a
single integral by making the change of integration variables

kx = k1t cos β ; ky = k1t sin β, (29)

writing
x− x′ = ρ cos φ ; y− y′ = ρ sin φ, (30)

and using the formulas in equations (A1)-(A4) in [35] to obtain
from (2)-(3) and (9)

E± = ETE± + ETM± =
∫∫

A
A(x′, y′) exp [−iφ(x′, y′)]

× F±(x′, y′)dx′dy′,
(31)

where

F±(x′, y′) = k2
1

∫ ∞

0
[B±(t)J0(β1t) + D±(t)

2J1(β1t)
β1t

]

× exp [iψ±(t)]
kz1

tdt,
(32)

with

ψ+(t) = kz0 z0 + kz1(z− z0)

ψ−(t) = kz0 z0 + kz1(d + z1 − z),
(33)

kz0 = k1(k2
r − t2)

1
2 ; kr =

k0

k1
; kz1 = k1(1− t2)

1
2 . (34)

In (32), β1 = k1ρ = k1[(x − x′)2 + (y − y′)2]
1
2 and J0 and J1

are cylindrical Bessel functions of order zero and one, respec-
tively. The components of B±(t) and D±(t) are listed in Ap-
pendix A.

3.2.1 Subdivision of spectral integral

We assume that the media outside the slab are equal, so that
ε2 = ε0, µ2 = µ0, and σ2 = σ0, and that the media inside
and outside the slab have no absorption (σ0 = σ1 = 0), imply-
ing that both k0 and k1 are real. Then kz0 or kz1 has either real
or imaginary values in the whole integration interval in (32).
Further, we assume that the medium inside the slab is opti-
cally denser than the medium surrounding it, so that k1 > k0.
Then, with kr = k0/k1 < 1, both kz0 and kz1 in (34) are real
in the interval 0 ≤ t < kr; kz0 is imaginary and kz1 is real in
the interval kr < t < 1; and both kz0 and kz1 are imaginary in
the interval 1 < t < ∞. The integrand in (32) is well-behaved
in each of these three intervals, but not at t = kr or at t = 1.
Hence we divide the integral in (32) in three different parts by
writing

F± = F±H1 + F±H2 + F±I , (35)

where F±H1, F±H2, and F±I represent integrations over the inter-
vals [0, kr], [kr, 1], and [1, ∞], respectively. Here the integrands
of F±H1 and F±H2 are comprised of homogeneous plane waves in-
side the slab, while the integrands of F+

I and F−I are comprised
of evanescent plane waves.

3.2.2 Integration techniques

Exact results for a given observation point (x, y, z) were ob-
tained by first computing the spectral integrals Fp±(x′, y′)
in (32), and then subsituting the results into the integrands
of (2). The whole integration interval in (32) was covered
by dividing it into several subintervals, as explained in sec-
tion 3.1. The integration interval for each of F±H1, F±H2, and F±I
in (35) was further divided in subintervals, and the integra-
tions were carried as discussed in Appendices B and C. The
approach to compute each of these integrals was to use the
Gauss-Legendre method [36] for cases in which the integrand
contained no rapidly oscillating exponential function and to
use the SSP (Stamnes-Spelkavik-Pedersen) method [32, 34] for
cases in which the integrand was a product of an amplitude
function and an oscillating exponential function that varied
faster than the amplitude function. Also, asymptotic formu-
las for the Bessel functions in (32) were used to further reduce
the computing time. The integrals in (2) were then computed
using the SSP method [32, 34] for double integrals. Although
we were able to reduce the computing time using these effi-
cient algorithms for numerical evaluation, the computing time
for obtaining exact numerical results was still about one thou-
sand times longer than the computing time needed to obtain
asymptotic results.
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FIG. 4 Exact and asymptotic results for |E|2 along the optical axis for focusing (a)

in a single medium with ε0 = 1, (b) through a single interface with ε0 = 1 and

ε1 = 1.4, and (c) into a dielectric slab with ε0 = ε2 = 1 and ε1 = 1.4. Here z f = 8λ,

a = 8λ, z0 = 4λ, z1 = 12λ, N = a2/λz f = 8, and f –number = z f /2a = 0.5,

λ = 0.633×10−6 m. The incident field was polarized in the x direction.
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FIG. 5 Contour plots for |E|2 in the focal plane for focusing in a single medium with

the same geometry as in Fig. 4, showing (left) exact results and (right) asymptotic

results.
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FIG. 6 Contour plots for |E|2 in the focal plane for focusing through a single interface

with the same geometry as in Fig. 4, showing (a) exact results and (b) asymptotic

results.
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FIG. 7 Contour plots for |E|2 in the focal plane for focusing inside a dielectric slab with

the same geometry as in Fig. 4, showing (a) exact results and (b) asymptotic results.

4 Numerical Results

In this section asymptotic and exact Kirchhoff results are pre-
sented for the focused electric field inside the slab, and for the
special cases in which the slab reduces to a single interface or a
single medium. All numerical results are for a focusing system
of Fresnel number N = 8 and f –number = 0.5. We considered
a dielectric slab with a thickness of 8λ and an aperture radius
of a = 8λ. The first interface of the slab was assumed to be
at a distance of z0 = 4λ from the aperture plane z = 0. In all
cases, the zeroth medium to the left of the slab and the second
medium to the right of the slab were assumed to be air with
ε0 = ε2 = 1, and the first or slab medium was assumed to
have a dielectric constant of ε1 = 1.4. This choice was made
as a compromise to represent different slab materials, such as
biological tissues with refractive indices between 1.4 and 1.45,
Si substrates in thin films with refractive indices varying from
1.2 to 1.48, minerals with refractive indices in the range from
1.4 to 2, and ice with a refractive index of about 1.31. In Figs.
4-11, the electric field is normalized to 0 dB at the focus, and
the results pertain to a region near the focus in order to clearly
see the differences between exact and asymptotic results for
the focused field. All numerical results were obtained by us-
ing the phase function φ(x′, y′) in (12) to compensate for aber-
rations introduced on refraction through the first interface of
the slab at z = z0. Figures 4(a)–(c) show asymptotic and exact
Kirchhoff results for the absolute value squared of the focused
electric field along the optical axis, inside the slab in (c) and
for the special cases in which the slab reduces to a single in-
terface in (b) or a single medium in (a). In all three cases, both
the asymptotic and exact results reveal a focal shift towards
the aperture, a common feature for focusing systems of low
Fresnel numbers. The difference between asymptotic and ex-
act results is seen to be small in the case of focusing in a single
medium or through a single interface, while it is significant
in the case of focusing into a slab. For the case of focusing
through a single interface, Fig. 4(b) shows that the difference
between asymptotic and exact results is larger when the ob-
servation point lies between the interface and the focus. For
this particular geometry, the asymptotic results are found to
deviate by 1.3% and 0.8% from the exact results at observation
points that lie 3.4λ and 4.6λ, respectively, from the interface.
Although not shown in Fig. 4(b), our numerical comparisons
revealed that the difference between asymptotic and exact re-
sults increased as the observation point approached the inter-
face, and at an observation point that was 0.5λ from the inter-
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FIG. 8 Contour plots for |E|2 in the xz plane for focusing in a single medium with the

same geometry as in Fig. 4, showing (a) exact results and (b) asymptotic results.
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FIG. 9 Contour plots for |E|2 in the xz plane for focusing through a single interface

with the same geometry as in Fig. 4, showing (a) exact results and (b) asymptotic

results.

face, the difference was found to be 1.8%. Farther away from
the interface the difference was found to gradually decrease
to become less than 0.1% when the observation point was at a
distance of 6λ from the interface. At the focal point, both the
exact and asymptotic results gave about the same result with
a deviation less than 0.1%.

Figure 4(c) shows a clear difference between exact and asymp-
totic Kirchhoff results for the absolute value squared of the
electric field near the two interfaces of the slab. The differ-
ence is 3.8% at an observation point that lies 3.4λ away from
the first interface, and is about 3.5% at an observation point
that lies 3.4λ away from the second interface. Since the di-
electric slab had a thickness of only 8λ, contributions from
surface waves, which are not accounted for in the asymptotic
results, may explain the difference between exact and asymp-
totic results. Analogously to the case of focusing through a
single interface, the difference between exact and asymptotic
results is seen to decrease with increasing distance between
the observation point and each of the two interfaces. Figure
4(c) shows that the asymptotic solution gives a focal shift of
0.23λ, whereas the exact solution gives a focal shift of 0.32λ.

Figures 5, 6, and 7 show (a) exact and (b) asymptotic Kirch-
hoff results for the absolute value squared of the focused elec-
tric field in the focal plane for the case of focusing in a sin-
gle medium, through a single interface, and into a slab, re-
spectively. The electric-field intensities are normalized to 0 dB
at the focus, and the contours are plotted on a decible scale
with isophotes being 3 dB apart. In all three cases, the ex-
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FIG. 10 Contour plots for |E|2 in the xz plane for focusing inside a dielectric slab with

the same geometry as in Fig. 4, showing (a) exact results and (b) asymptotic results.
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FIG. 11 Contour plots for (a) |Ey |2 and (b) |Ez |2 in the focal plane for focusing through

a single interface with the same geometry as in Fig. 4.

act and asymptotic results are found to give the same 3 dB
width, but the exact results to give better concentration of the
electric energy around the focus, the electric-energy contours
of the asymptotic results being more elliptical. A comparison
Fig. 6 for focusing in a single medium with Fig. 7 for focus-
ing through a single interface, shows that the 3 dB width is
smaller in the latter figure, making the energy more concen-
trated around the focus in the case of focusing into a dielec-
tric medium with ε1 = 1.4. The exacts results for the absolute
value squared of the focused field in the focal plane show that
the 3 dB width is about 0.75λ for focusing in a single medium
(Fig. 5), whereas it is 0.64λ for focusing through a single inter-
face (Fig. 6) or into a slab (Fig. 7). In all three cases, the ellipti-
cal contours near the focus are elongated along the x direction,
i.e. along the direction of polarization of the source current in
the aperture. Figures 8, 9, and 10 show contour plots for the
absolute value squared of the focused electric field in the xz
plane for focusing in a single medium, through a single in-
terface, and into a slab, respectively. In all three cases, both
asymptotic and exact results correctly predict the asymmetric
behavior of the focused field about the focal plane, which is a
common feature in systems of low Fresnel numbers [14] [37]-
[41]. Figure 8 shows that the difference between asymptotic
and exact results is small for focusing in a single medium,
while Figs. 9-10 show that it becomes significant for focus-
ing through a single interface or into a slab. Both for focusing
through a single interface (Fig. 9) and into a slab (Fig. 10), the
exact results in (a) have contours of |E|2 that are more concen-
trated around the focus than those of the asymptotic results in
(b). In the xz plane, |E|2 is more concentrated for focusing into
a slab than for focusing through a single interface or in a sin-
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gle medium. The 3 dB width of |E|2 in the xz plane is nearly
3.00λ for focusing in a single medium (Fig. 8), while it is 2.85λ

for focusing through a single interface (Fig. 9) and 2.6λ for fo-
cusing into a slab (Fig. 10).

Figures 11 show (a) the y or cross-polarized component and
(b) the z or longitudinally polarized component of the fo-
cused electric field in the focal plane for focusing from air
with ε0 = 1 through a single interface into a dielectric medium
with ε1 = 1.4. Figure 11(a) shows that the y or cross-polarized
component has a four-fold symmetry with four peaks, one in
each quadrant of the focal plane, while the z or longitudinally-
polarized component in Fig. 11(b) is seen to have a two-fold
symmetry with two peaks, one on either side of the x axis,
which coincides with the polarization direction of the incident
field. These results are in agreement with previous findings
pertaining to focusing in a single medium [1, 42]. Since the
incident field was polarized in the x direction, the x or co-
polarized component of the focused electric field contained
most of the energy, as expected. The y and z components of the
focused electric field contributed only about 0.5% and 1.0%,
respectively, to the total focused electric energy.

5 Conclusions

We have examined the focusing of electromagnetic waves in-
side a slab and also considered the two special cases in which
the slab reduces to a single interface or a single medium. To
that end, we used the exact Kirchhoff solutions for the fields
inside a slab given in [26] to develop efficient numerical so-
lutions for the focused electric field. Numerical results were
presented, both for exact and asymptotic Kirchhoff solutions,
and the validity of the latter was discussed.

Asymptotic Kirchhoff results were obtained by expressing the
impulse response, i.e. the field produced inside the slab by
a point source in the aperture, as a plane-wave expansion
and evaluating the associated spectral double integral by the
method of stationary phase [26, 35]. Since this asymptotic ap-
proach gives a significant reduction in computing time, we ex-
amined its range of validity. The asymptotic Kirchoff results
were found to be accurate for focusing in a single medium
provided that kR � 1, where k is the wave number and
R is the distance from an aperture point to the observation
point. The exact and asymptotic Kirchhoff solutions for focus-
ing through a single interface were found to agree well, except
at observation points near to the interface. This is in agree-
ment with the findings in [35], where an accuracy better than
7.8% was obtained for an aperture-interface distance of 0.5λ

when the total distance from the aperture to the focal point
exceeded 8λ, and where the accuracy was found to improve
with increasing aperture-interface distance.

We considered a geometry where the aperture-interface dis-
tance was kept at 4λ, and where the total distance from the
aperture to the focal point was kept at 8λ. This geometry
explains the small difference found between the exact and
asymptotic Kirchhoff solutions in the case of focusing through
a single interface.

Our numerical comparisons showed a small difference be-
tween the asymptotic and exact Kirchhoff results for the fo-
cused electrical field inside a dielectric slab, especially at ob-
servation points near to one of the interfaces. This difference is
believed to be due to contributions from surface waves, which
are not accounted for in the asymptotic Kirchhoff solutions.

At low Fresnel numbers focal–shift phenomena and asymme-
tries were observed in each of the three cases (single medium,
single interface, and slab), both in the exact and asymptotic
Kirchhoff solutions. In the case of focusing through a single
interface, the y component and the z component of the elec-
tric field in the focal plane were found to have four-fold and
two-fold symmetries, respectively, in accordance with previ-
ous findings.

6 Appendix A

The components of the vectors B±(t) and D±(t) in (32) are
given by

B+
x (t) = 2

ωµ0

c2 kz1 [
TTE+

kz0

sin2 φ +
kz1

k0k1
TTM+ cos2 φ], (36)

B−x (t) = 2
ωµ0

c2 kz1 [
rTE

12 TTE+

kz0

sin2 φ

− kz1

k0k1
rTM

12 TTM+ cos2 φ],

(37)

D+
x (t) =

ωµ0

c2 kz1 [
TTE+

kz0

− kz1

k0k1
TTM+] cos 2φ, (38)

D−x (t) =
ωµ0

c2 kz1 [
rTE

12 TTE+

kz0

+
kz1

k0k1
rTM

12 TTM+] cos 2φ, (39)

B+
y (t) = −D+

y (t) =
ωµ0

c2 kz1 [+
kz1

k0k1
TTM+ − TTE+

kz0

]

× sin 2φ,
(40)

B−y (t) = −D−y (t) =
ωµ0

c2 kz1 [−
kz1

k0k1
rTM

12 TTM+

−
rTE

12 TTE+

kz0

] sin 2φ,
(41)

B±z (t) = 0 ; D+
z (t) = −i

ωµ0

c2
TTM+kz1

k0k1
ρt2 cos φ, (42)

D−z (t) = −i
ωµ0

c2
rTM

12 TTM+kz1

k0k1
ρt2 cos φ. (43)

7 Appendix B

Consider first the two integrals F±Hj in (35), where the integra-
tion variable t is in the interval [0, 1], and let t = sin u to give

F±Hj = k1

∫ u+
j

u−j
A±Hj(u) exp [ig±Hj(u)]du, ; (j = 1, 2), (44)
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where

u−1 = 0 ; u+
1 = u−2 = ur = sin−1(kr), ; u+

2 = π/2, (45)

g±Hj(u) = k1

[
z0

√
k2

r − sin2 u
]
+ g±H2(u), (46)

g+H2(u) = k1(z− z0) cos u ; g−H2(u) = k1(d + z1 − z0), (47)

A±H1(u) =
[

B±(t)J0(β1 sin u)

+ D±(t)
2J1(β1 sin u)

β1 sin u

]
sin u,

(48)

A±H2(u) = A±H1(u) exp
(
−k1[z0

√
k2

r − sin2 u]
)

. (49)

Here B±(t) and D±(t) in (48) follow from (36)-(43) with the
substitutions

t→ sin u ; kz0 → k1

√
k2

r − sin2 u ; kz1 → k1 cos u, (50)

while B±(t) and D±(t) in (49) follow from (36)-(43) with the
same substitutions as in (50) except that

kz0 → ik1

√
sin2 u− k2

r . (51)

Consider next the integral F±I in (35), where t > 1, and let
t = cosh u to obtain

F±I = −ik1

∫ u±N

0
A±I (u) exp

(
−g±I (u)

)
du, (52)

where

g+I (u) = k1

[
z0

√
cosh2 u− k2

r + (z− z0) sinh u
]

, (53)

g−I (u) = k1

[
z0

√
cosh2 u− k2

r + (d + z1 − z) sinh u
]

, (54)

A±I (u) =
[

B±(t)J0(β1 cosh u)

+ D±(t)
2J1(β1 cosh u)

β1 cosh u

]
cosh u,

(55)

with B±(u) and D±(u) following from (36)-(43) with the sub-
stitutions

t→ cosh u ; kz0 → ik1

√
cosh2 u− k2

r ; kz1 → ik1 sinh u. (56)

The upper integration limit u±N in (52) is determined by the
requirement that

exp
{
−k1z0[

√
cosh2 u±N − k2

r + C± sinh u±N ]
}

= 10−N , (57)

where C+ = (z− z0)/z0 and C− = (d + z1− z)/z0. This gives

u±N = sinh−1 (Σ±N) = ln
(

Σ±N +
√
(Σ±N)

2 + 1
)

, (58)

where

Σ±N =


A±N−εN C±

1−(C±)2 for C± < 1, ε2
N > 1− k2

r

A±N+εN C±

(C±)2−1 for C± > 1, ε2
N < 1− k2

r

, (59)

with

A±N =
√
(εNC±)2 + |[1− (C±)2](ε2

N + k2
r − 1)|

εN =
N ln 10

k1z0
.

(60)

When C± = 1, we have ε2
N > 1− k2

r and

u+
N = u−N = sinh−1

[
ε2

N + k2
r − 1

εN

]

= ln
[

ε2
N + k2

r − 1 +
√
(ε2

N + k2
r − 1)2 + ε2

N

]
− ln εN .

(61)

8 Appendix C - Integration
Algorithms

In order to reduce the computing time for numerical eval-
uation of the integrals in (44) and (52), we use the Gauss-
Legendre method [36] to compute each integral for which the
integrand contains no rapidly oscillating exponential function
and the SSP (Stamnes-Spelkavik-Pedersen) method [32, 34] to
compute each integral for which the integrand is a product of
an amplitude function and an oscillating exponential function
that varies fast compared to the amplitude function.

As an example, consider the integral F±H1 in (44). When the ar-
gument β1 sin u of the cylindrical Bessel functions J0 and J1 in
(48) is small, i.e. when β1 sin u ≤ 10, the amplitude function
A±H1(u) in (48) oscillates so slowly compared with the expo-
nential function exp [ig±H1(u)] in (44) that we may use the SSP
method to compute the integrals in (44). When β1 sin u > 10,
we replace the Bessel functions in (48) with their asymptotic
series, and divide the integral in (44) with j = 1 in three parts,
i.e.

F±H1 = F±H1,1 + F±H1,+ + F±H1,−, (62)

where

F±H1,1 =
∫ u′

0
A±H1(u)e

ig±H1(u)du ; u′ = sin−1(5/β1). (63)

Here A±H1(u) and g±H1(u) are given by (48) and (46) with j = 1,
and F±H1,q (with q = +,−) is given by

F±H1,q =
∫ ur

u′
A±H1,q(u)e

ig±H1,q(u)du ; ur = sin−1(kr), (64)

where
g±H1,q(u) = g±H1,q(u) + qβ1 sin u, (65)

A±H1,q(u) = B±H1(u)G
q
0 [β1 sin u] + D±H1(u)

2Gq
1 [β1 sin u]
β1 sin u

. (66)
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The functions B±H1 and D±H1 are given in (36)–(43) and

G+
n (x) = Gn(x) ; G−n (x) = G∗n(x), (67)

where

Gn(x) =
exp[−i(π/4 + nπ/2)]√

2πx
[Pn(x) + iQn(x)] . (68)

The asymptotic series Pn(x) and Qn(x) are given in [36]. The
SSP method is used to compute the integrals in (64).
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