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Functional near-infrared spectroscopy (fNIRS) is a sensitive technique that has the potential to detect haemodynamic changes during the
performance of specific activation tasks. However, in real situations, fNIRS recordings are often corrupted by physiological phenomena,
especially by cardiac contraction, breathing and blood pressure fluctuations, and these forms of interference can severely limit the utility
of fNIRS. We present a novel fNIRS enhancement based on the multidistance fNIRS method with short-distance and long-distance optode
pairs. With this method empirical mode decomposition (EMD) is applied to decompose the short-distance fNIRS measurement into a
series of intrinsic mode functions (IMFs). By utilizing the weighting coefficients for the IMFs, we derive an estimate for global interference
in the long-distance fNIRS measurements. We recover the evoked brain activity by minimizing least squares between the long-distance
measurements and the estimated global interference. To accelerate the computation we adopt the recursive least squares (RLS) to decrease
the computation complexity due to the matrix inversion. Monte Carlo simulations of photon propagation through a five-layered slab model
of a human adult head were implemented to evaluate our methodology. The results demonstrate that the EMD-RLS method can effectively
remove contamination from the evoked brain activity. [DOI: 10.2971/jeos.2011.11033]

Keywords: functional near-infrared spectroscopy, interference, multidistance measurement, empirical mode decomposition, recursive least
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1 INTRODUCTION

Near-infrared spectroscopy (NIRS) has been developed to
allow noninvasive measurement of optically absorbing and
scattering molecules in medicine and biology [1]. Although
NIRS may be useful in a variety of tissues and organs there
has been a major interest in its use for studies of the brain and
it has been applied in adults [2], the fetus [3] and the new-
born [4]. Of particular importance has been the ability of the
method to monitor changes in cerebral oxyhaemoglobin and
deoxyhaemoglobin (HbO2, HHb), total haemoglobin (Hbtot)
and the redox state of the respiratory enzyme cytochrome ox-
idase (cytaa3) [5, 6]. The quantitative measurement of the tar-
get chromophores in terms of absolute concentrations has al-
ways been a challenge and this has directed NIRS research,
over several decades, particularly with respect to instrumen-
tation and in the underlying theoretical considerations. This
has led to the use of continuous wave, time-resolved, inten-
sity modulated, and spatially-resolved instruments [7] based
on theories of photon propagation through tissue described
by the Radiative Transport Equation, the diffusion approxi-
mation and diffuse reflectance [8].

The use of stimuli to evoke physiological responses has been
one particular area of relevance to NIRS, leading to what
has become the well-recognised method of functional near-
infrared spectroscopy (fNIRS). This has been demonstrated to

be able to determine cerebral concentration changes of HbO2
and HHb during functional activation of the cerebral cortex
[9]. fNIRS may be compared with other techniques, such as
functional magnetic resonance imaging (fMRI), magnetoen-
cephalography (MEG), positron emission tomography (PET),
and electroencephalography (EEG) [10, 11]. It does appear to
have several advantages over these other methods, such as
portability, fewer physical restrictions and greater practical-
ity, good temporal resolution, safety, and inexpensive instru-
mentation. In fNIRS studies, measurement of the concentra-
tion changes of HbO2 and HHb, the two primary absorbing
chromophores in the brain tissue that vary dynamically with
a functional task, is achieved. This then provides a useful de-
scription of the cerebral haemodynamics. However, there are
problems in using fNIRS due to the presence of physiologi-
cal interference, which is mainly from perturbations caused
by cardiac events, such as changes in blood flow, blood pres-
sure and blood volume following cardiac contractions, as well
as from breathing [5]. All of these forms of interference are
located both in the vasculature of the superficial layer of the
brain and inside the brain, and are generally termed “global
interference” or “systemic physiological interference”. Severe
contamination of global interference remains a serious prob-
lem for fNIRS interpretation and analysis. This has meant that
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without appropriate global interference reduction the full po-
tential of fNIRS has not yet been realised.

Previous attempts have been made to suppress global inter-
ference and thereby improve the brain activity measurements.
The use of low pass filtering techniques to remove the in-
terference caused by cardiac oscillations has been reported
[12]. However, low pass filtering is not effective at remov-
ing the specific physiological noise signals such as respiratory
and blood pressure variation since these fluctuations are dif-
ficult to be distinguished from the haemodynamic response
to brain activity by frequency characteristics alone. Saager
et al. [13] utilized a dual-detector system and least squares
method to remove top-layer-only fluctuations and validated
the effect of the methodology by performing Monte Carlo sim-
ulations based on a two-layer turbid media model. Zhang et
al. [11] proposed a spatial eigenfiltering algorithm to separate
an activity-evoked response from systemic physiological in-
terference in diffuse optical imaging data. They assumed that
the first several spatial eigenvectors of the baseline concentra-
tion correlation matrices were dominated by interference pat-
terns and hold most of the total energy. Morren et al. [14] and
Zhang et al. [15] adopted adaptive filtering to remove global
interference . The difference between the two approaches is
that the former used signals from a pulse oximeter as a ref-
erence and the latter used signals from short interoptode dis-
tance as a reference. A Kalman filtering model has also been
used to analyze interference components [16, 17]. Abdelnour
et al. proposed an adaptive general linear model based on a
Kalman filtering algorithm for real-time assessment of brain
function [18]. Despite the fact that the general linear model in
their papers exhibited the potential for removal of physiolog-
ical signals from cardiac, respiratory, and Mayer wave fluctu-
ations, the authors expressly indicated that prior distributions
must be assumed for both the process and observed noise in
the Kalman filtering model.

Empirical mode decomposition (EMD) and Hilbert spectral
analysis (HSA) have been shown to be able to separate, iden-
tify and remove interference arising from some cardiac events
and breathing [19]. This technique has the advantage of sim-
plicity in instrument design because it only needs one source
and one detector in the NIRS probe. However, the EMD-HSA
technique may not be appropriate for removing other physi-
ological fluctuations such as blood pressure and other lower
frequency variations, although these fluctuations in superfi-
cial layers are highly correlated with those in deep layers.

In our study presented here we adopt the spatially-resolved
or multidistance measurement method and a theoretical anal-
ysis of global interference reduction based on EMD and the
least squares criterion. The short-distance fNIRS measure-
ment is treated as the reference channel comprising of super-
ficial haemodynamic changes induced by physiological fluc-
tuations and the long-distance fNIRS measurement is treated
as the signal channel containing both the functional haemo-
dynamic response and global interference. We aim to remove
global interference that is correlated with superficial haemo-
dynamic fluctuations, evoked by cardiac contractions, breath-
ing, blood pressure, etc. By decomposing the short-distance
measurement with the EMD algorithm, we separated the in-

terference into different intrinsic mode functions (IMFs) pos-
sessing distinct frequency characteristics. The least squares
criterion was then used to adjust the corresponding weighting
coefficients to estimate global interference with the obtained
IMFs. To accelerate the computation we adopted the recursive
least squares (RLS) to decrease the computation complexity.
Monte Carlo simulations of a five-layer human model were
used to investigate the performance of the EMD-RLS for re-
moving global interference in brain activity measurement.

2 Theory

2.1 Empir ical Mode Decomposit ion

EMD is an adaptive signal processing technique, which aims
at extracting all the fundamental modes embedded in a sig-
nal without any requirement of stationarity or linearity of the
data [20]. EMD is based on an iterative algorithm in which
the highest frequency oscillation is removed from the data
with each repetition. Following each iteration a residue re-
mains containing lower frequency information. The process is
repeated until only a trend remains, leading to a local, adap-
tive decomposition, in which intrinsic oscillations within the
data may be identified.

EMD is derived from the simple assumption that any signal
consists of different coexisting modes of oscillation with a sep-
arated time-scale. Each of these oscillatory modes is repre-
sented by an intrinsic mode function (IMF) and the IMF must
satisfy two criteria. Firstly, the number of extrema and the
number of zero-crossings must either equal or differ at most
by one and, secondly, the mean value of the envelope defined
by the local maxima and the envelope defined by the local
minima must be zero. Thus, for a given signal x(k) the ap-
propriate EMD algorithm can be achieved according to these
criteria. The upper envelope is created by cubic spline interpo-
lation of the local maxima and the lower envelope is created
by interpolation of the local minima. The first component can
be obtained by subtracting the mean m1(k) calculated with the
upper and lower envelopes from the original series x(k).

c1(k) = x(k)−m1(k) (1)

The resulting component c1(k) is the first IMF if the mode ful-
fils the definition of an IMF. If c1(k) is not an IMF, the sift-
ing process has to be repeated as many times as is required to
reduce the extracted signal to an IMF. Once this condition is
reached, the first component c1(k) is separated from the orig-
inal series x(k) to leave the first residue r1(k):

r1(k) = x(k)− c1(k) (2)

The residue r1(k) now contains information about the com-
ponents for a longer period, and therefore it is treated as the
new data and is resifted to obtain additional components. The
procedure will be continued until finally it meets a stopping
criterion. By this procedure, lower order IMFs capture fast
oscillation modes while higher order IMFs typically disclose
slow oscillation modes. The original signal x(k) can thus be
expressed as follows:

x(k) =
N

∑
j=1

cj(k) + rN(k) (3)
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where N is the number of IMFs, and IMFs cj(k) (j = 1, . . . , N)
are nearly orthogonal to each other and all have zero means,
rN(k) is the final residue. The result of the EMD produces N
fundamental components and a residue signal. The residue
itself is a very low frequency component or a trend, and can
also be regarded as the last IMF.

2.2 Mult idistance Measurement and
EMD-RLS Algorithm to Remove Global
Interference

A five-layer model of the adult human head, consisting of
scalp, skull, cerebrospinal fluid (CSF) , gray matter, and white
matter was used here (see Figure 1). The use of particular
source-detector separation allows us to distinguish between
processes occurring at different tissue depths, as indicated by
the “banana-shaped” regions that encompass statistically de-
termined photon paths [21]. The true haemodynamic changes
related to the specific stimuli present in the gray matter layer.
Thus we use short interoptode distance with S-D1 to probe the
superficial tissue layer, and long interoptode distance with S-
D2 to probe the deep tissue layer. In this approach, the near
detector is positioned at 5 mm to 15 mm from the source and
the far detector is positioned at more than 30 mm from the
source [22]. In our study here, the short interoptode distance is
chosen at 10 mm and the far interoptode distance is chosen at
40 mm. To remove global interference in fNIRS measurement,
short-distance measurements were therefore used as the refer-
ence channel to estimate global interference present with the
long-distance measurement according to the following analy-
sis.

FIG. 1 Schematic illustration of five-layered slab human head model and multidistance

optode configuration. S is the photon source, and D1 and D2 are detectors.

The concentration changes of HbO2 and HHb in tissues can
be obtained with a two wavelength (λ1 and λ2) source. For
a fixed source-detector distance, the change of optical den-
sity, ∆A, and the concentration changes of HbO2 and HHb
(∆[HbO2] and ∆[HHb]) can be represented by the modified
Lambert-Beer law (MLBL).[

∆A(λ1)

∆A(λ2)

]
= L

[
εHbO2(λ1) εHHb(λ1)

εHbO2(λ2) εHHb(λ2)

] [
∆[HbO2]

∆[HHb]

]
(4)

where εHbO2(λ) and εHHb(λ) are the molar extinction coeffi-
cients of HbO2 and HHb, respectively. Hereinto, L is denoted
as:

L = diag[DPF(λ1)r, DPF(λ2)r] (5)

where DPF(λ) is the differential path length factor at a wave-
length λ, and r is the linear distance from the source to
the detector. The concentration changes of oxyhaemoglobin,
∆[HbO2], and deoxyhaemoglobin, ∆[HHb], can be derived
from Equation (4):[

∆[HbO2]

∆[HHb]

]
=

[
εHbO2(λ1) εHHb(λ1)

εHbO2(λ2) εHHb(λ2)

]−1

L−1
[

∆A(λ1)

∆A(λ2)

]
(6)

where L−1 denotes the inverse matrix of L. When we have
measured the change of optical density, the time series of
∆[HbO2] and ∆[HHb] obtained with S-D1 and S-D2 can be
calculated using Equation (6).

FIG. 2 Block diagram of global interference denoising using EMD-RLS algorithm in mul-

tidistance fNIRS measurement.

Figure 2 shows the block diagram of the reduction of global in-
terference for fNIRS brain activity measurement in our study.
The objective is to subtract the estimated global interference
from the long-distance measurement. EMD was used here to
decompose short-distance measurement into several IMFs ac-
cording to the frequency characteristic.

x(k) =
N

∑
i=1

ci(k) (7)

where x(k) is the ∆[HbO2] or ∆[HHb] acquired from the short-
distance measurement at instant k, N is the number of IMF.
Note that for convenience the residue term is absorbed in
the summation as the last term. Then we consider the matter
of mapping the IMFs of x(k) in a fashion that approximates
global interference i(k), that is related to x(k). The IMFs can
be combined utilizing various possible methodologies under
various objective functions designed to match i(k). Mathemat-
ically, the linear fit is adopted here, as given by Equation (8):

î(k) =
N

∑
i=1

wi(k)ci(k) (8)

where î(k) is the estimation of i(k) and the coefficient wi(k) is
the weighting assigned to the ith IMF at instant k.

The haemodynamic changes acquired with S-D2 is modelled
as a sum of the true brain activity response y(k) and global
interference i(k). The true brain activity response can then be
estimated as e(k):

e(k) = s(k)− î(k) = y(k) + [i(k)− î(k)] (9)

where s(k) is the ∆[HbO2] or ∆[HHb] acquired from the long-
distance measurement at instant k. To produce an estimation
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of global interference in the brain activity analysis, the follow-
ing cost function of weighted least squares is chosen for the
optimization criterion:

Jk =
k

∑
n=1

χk−ne2(k) (10)

The parameter 0 < χ ≤ 1 is the forgetting factor that con-
trols the memory span of the algorithm. Using Equation (8)
and Equation (9), the following equation can be obtained from
Equation (10):

Jk =
k

∑
n=1

χk−n[s(n)−
N

∑
i=1

wi(k)ci(n)]2 (11)

Here, the weight wi(k) was used to adjust the proportion of
each specific IMF in global interference. The optimal coeffi-
cient wi(k) for minimizing Jk can be obtained by differentiat-
ing Equation (11) with respect to wi(k) and setting the deriva-
tives to zero. This yields the following equation:

∂Jk
∂wi(k)

=− 2
k

∑
n=1

{
χk−n[s(n)

−
N

∑
i=1

wi(k)ci(n)]cj(n)
}

= 0

(12)

then we can obtain

k

∑
n=1

χk−ns(n)cj(n) =
N

∑
i=1

wi(k)
k

∑
n=1

χk−nci(n)cj(n) (13)

by defining

pj(k) =
k

∑
n=1

χk−ns(n)cj(n) (14)

Rij(k) =
k

∑
n=1

χk−nci(n)cj(n) (15)

Then Equation (13) can be rewritten as

N

∑
i=1

Rij(k)wi(k) = pj(k), j = 1, 2, . . . , N (16)

Considering all the values of the index i and j, we can obtain
the following equation with the matrix form.

R11(k) R12(k) · · · R1N(k)
R21(k) R22(k) · · · R2N(k)

...
...

. . .
...

RN1(k) RN2(k) · · · RNN(k)




w1(k)
w2(k)

...
wN(k)

 =


p1(k)
p2(k)

...
pN(k)

 (17)

This can be briefly denoted as

R(k)w(k) = p(k) (18)

The optimal coefficients can be acquired by the following
equation.

w(k) = R−1(k)p(k) (19)

Since the straightforward computation of the inverse of
R−1(k) results in an algorithm with computational complex-
ity of O[N3], we implement the computation of the inverse

matrix by means of the Matrix Inversion Lemma [23].

Q(k) = R−1(k) =
1
χ

[
Q(k− 1)

− Q(k− 1)c(k)cT(k)Q(k− 1)
χ + cT(k)Q(k− 1)c(k)

] (20)

where

c(k) = [c1(k), c2(k), . . . , cN(k)]T (21)

We define the a prior error as

e′(k) = s(k)− c(k)w(k− 1) (22)

By expressing s(k) as a function of the a prior error [23] and
the weight vector w(k) can be expressed as

w(k) = w(k− 1)− e′(k)Q(k)c(k) (23)

From the above analysis, e(k) is the estimated value of the true
brain activity response y(k). The critical aspect of using EMD-
RLS here is to optimize the estimation of global interference
utilizing linear mapping between the decomposed IMFs and
the long-distance measurement.

3 Method

In the present study we use one light source (S) and two light
detectors (D1 and D2) shown in Figure 1. One light source
with two wavelengths, 750 and 830 nm, and two detectors
were positioned on the surface of the medium to collect dif-
fuse reflectance data. The light source and the detectors are
all positioned perpendicular to the surface of the medium.
A five-layer slab model consisting of scalp (sc), skull (sk),
cerebrospinal fluid (CSF), gray matter (gm), and white mat-
ter (wm) was used to represent a human adult head.

3.1 Monte Carlo Simulations

To determine the effectiveness of our algorithm, Monte Carlo
simulations of the five-layered human head model were per-
formed. The simulations were carried out using the typical
fNIRS probe arrangement illustrated in Figure 1.

The Monte Carlo code used here is an extension of the general
multi-layer, three dimensional, weighted photon Monte Carlo
codes developed by Wang et al [24]. Scattering anisotropies
were assumed to be 0.9 and Fresnel reflection at the tissue-
air boundary was also considered. We assumed the same re-
fractive index of n = 1.4 for all layers [25]. The standard pa-
rameters used in the simulation are given in Table 1. Thick-
ness, transport scattering coefficient µ′s, HbO2 and HHb base-
line concentrations were taken from published data [26–28].
The baseline concentration of HbO2 and HHb assumed that
the oxygen saturation in the head was 70%. Absorption coeffi-
cients were calculated with the HbO2 and HHb baseline con-
centrations and the molar extinction coefficients. The molar
extinction coefficients at 750 and 830 nm were obtained from
the literature [29].
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Baseline Concentration
Absorption

coefficient µa

Transport scattering
coefficient µ′s

Thickness

Tissue type HbO2 (µM) HHb (µM) 750/830 nm (mm−1) 750/830 nm (mm−1) (mm)
Scalp 64 27 0.0177/0.0203 2.11/1.84 3
Skull 57 24 0.0158/0.0181 1.79/1.47 7
CSF 14 6 0.0039/0.0045 0.27/0.22 2

Gray matter 128 55 0.0358/0.0409 2.39/2.10 4
White matter 50 21 0.0138/0.0158 9.62/8.82 30

TABLE 1 Haemodynamic parameters, thickness, and optical properties for each layer of an adult head model.

3.2 Generation of Time Series of
Haemodynamic Changes and
Physiological Interference

The haemodynamic changes were simulated as a combination
of the functional haemodynamic responses and the physiolog-
ical interference. The functional haemodynamic responses in
gray matter were defined as the convolution of the stimula-
tion s(t), [s(t) = 0 for rest period, and 1 for stimulation] and a
prototypical haemodynamic impulse h(t) [15, 26, 30].

s(t) =

{
0 t ∈ rest

1 t ∈ simulation
(24)

h(t) = tb exp
(
− t

d

)
(25)

The parameters b and d in the gamma variate function were
set at 8.6 and 0.56 respectively, which corresponds to recent
findings [26, 30].

The evoked haemodynamic response u(t) was the convolu-
tion of s(t) and h(t):

u(t) = K[h(t) ∗ s(t)] (26)

where K is a simple scaling factor in our model. In order
to make the simulation as realistic as possible we generated
physiological interference by a combination of cardiac fluc-
tuation c(t),respiratory fluctuations r(t), low frequency oscil-
lation m(t), very low frequency oscillation v(t),and indepen-
dent fluctuation τ(t) induced by the temperature changes and
the sweat on the skin. The haemodynamic changes in each
layer are denoted as follows:

C1
HbO2

(t) = HbO1
2base + τ(t)[α1

HbO2
c(t) + β1

HbO2
r(t)

+ γ1
HbO2

m(t) + ζ1
HbO2

v(t) + ι1HbO2
u(t)]

(27)

C1
HHb(t) = HHb1

base + τ(t)[α1
HHbc(t) + β1

HHbr(t)

+ γ1
HHbm(t) + ζ1

HHbv(t) + ι1HHbu(t)]
(28)

C2,3,4,5
HbO2

(t) = HbO2,3,4,5
2base + α2,3,4,5

HbO2
c(t) + β2,3,4,5

HbO2
r(t)

+ γ2,3,4,5
HbO2

m(t) + ζ2,3,4,5
HbO2

v(t) + ι2,3,4,5
HbO2

u(t)
(29)

C2,3,4,5
HHb (t) = HHb2,3,4,5

base + α2,3,4,5
HHb c(t) + β2,3,4,5

HHb r(t)

+ γ2,3,4,5
HHb m(t) + ζ2,3,4,5

HHb v(t) + ι2,3,4,5
HHb u(t)

(30)

where C1
HbO2

(t), C1
HHb(t), C2,3,4,5

HbO2
(t), and C2,3,4,5

HHb (t) represent
the concentration of HbO2 and HHb in each layer as a func-
tion of time, with the superscripts 1 to 5 indicating the layer
index for scalp, skull, CSF, gray and white matters, respec-
tively. HbO2base and HHbbase represent average or baseline
concentrations. The cardiac fluctuation c(t), respiratory fluc-
tuation r(t), low frequency oscillation m(t), and the very
low frequency oscillation v(t) were all simulated as the sum-
mation of sinusoidal wave and white Gaussian noise. The
form of c(t), r(t), m(t), and v(t) is defined
as c(t) = sin(2π fct) + σc(t), r(t) = sin(2π frt) + σr(t),
m(t) = sin(2π fmt) + σm(t), v(t) = sin(2π fvt) + σv(t), respec-
tively. The frequency values of each sine wave were defined
according to the mean frequencies of real signals ( fc = 1 Hz,
fr = 0.25 Hz, fm = 0.1 Hz, fv = 0.04 Hz) [5, 31–33]. The coeffi-
cients α, β, γ, ζ and ι with layer index as superscript and HHb
or HbO2 as subscript are the haemodynamic variation ampli-
tude control parameters, which can be found in Table 2. The
independent interference τ(t) is generated by biased and low
pass filtered Gaussian white noise. The independent interfer-
ence τ(t) in the scalp layer and the different weight on cardiac,
respiratory, and low-frequency and very low frequency fluc-
tuations in each layer were to simulate a certain amount of
uncorrelated changes in the superficial layers compared with
deep layers. The parameters used are based on Scholkmann et
al. [33] and Zhang et al [15].

The simulated haemodynamic changes were used to calculate
the optical measurement by Monte Carlo method. The sam-
pling rate was set to 10 Hz and the whole time series for the
changes of optical density were acquired under the assump-
tion that the scattering properties of the head do not vary with
time. The experiment is designed as a 5-epoch block and each
individual epoch consisted of a series of 400 points, 200 points
of rest and 200 points of stimulation.

4 Results

4.1 Intr insic Mode Functions of
Haemodynamic Changes with Short
Interoptode Distance

Partial pathlength (PPL) is the mean path length of the pho-
tons travelling in a specified region, which could reflect the
effective transmitting path for the photons in each layer. Ac-
cording to the MLBL, the partial pathlength is the key factor
that determines the light attenuation under the assumption of
constant absorption and scattering coefficients. In our simula-

11033- 5



Journal of the European Optical Society - Rapid Publications 6, 11033 (2011) Y. Zhang et al.

Blood α (µM) β (µM)
γ (µM)

low frequency
ζ (µM)

very low frequency
ι (µM)

evoked
Head layers contents respiration cardiac oscillation oscillation response

Scalp
HbO2
HHb

0.2
0.013

0.6
0.04

0.9
0.058

1.0
0.06

0
0

Skull
HbO2
HHb

0.2
0.012

0.63
0.045

0.96
0.06

1.1
0.07

0
0

CSF
HbO2
HHb

0.02
0.001

0.06
0.004

0.08
0.005

0.11
0.007

0
0

Gray matter
HbO2
HHb

0.2
0.014

0.65
0.043

0.92
0.07

1.1
0.072

15
-4

White matter
HbO2
HHb

0.2
0.012

0.6
0.04

0.9
0.06

0.9
0.06

0
0

TABLE 2 Simulation parameters for amplitude and frequency of interference oscillations and haemodynamic changes.

tions for the short interoptode distance, the partial pathlength
in the gray matter (PPLgm) is very small, the value of PPLgm

being about 10−2.6× that in the superficial layer. Thus, the op-
tical measurement made at a short interoptode distance could
be very appropriate to be used to estimate global interference,
where the superficial variation or non-activation signals dom-
inate the measurement.

The simulated optical measurements at 750 and 830 nm were
acquired with Monte Carlo simulations. The changes of opti-
cal density for the 10 mm source-detector distance are shown
in Figure 3. The shaded regions in the figure indicate the pe-
riods of evoked stimulation. The changes of optical density
should be zero under ideal conditions if no interference is
present. As shown in Figure 3, the fluctuations are evident in
the changes of optical density for both 750 and 830 nm.

The concentration changes of HbO2 and HHb (∆[HbO2] and
∆[HHb]) were calculated with the MLBL, which has been de-
scribed in Equation (6). The calculated ∆[HbO2] and ∆[HHb]
contain several components of interference, including those
induced by events related to the cardiac cycle and to breath-
ing, as well as by spontaneous physiological low-frequency
oscillations, and very low frequency oscillations. The EMD
method was utilized to produce the IMF components for
∆[HbO2] and ∆[HHb]. As shown in Figure 4 and Figure 5, five
IMF components and a residue were generated with EMD for
∆[HbO2], and five IMF components and a residue were gen-
erated with EMD for ∆[HHb].

It is clearly demonstrated in Figure 4 and Figure 5 that EMD
can successfully decompose the signals of interest into com-
ponents whose frequency relationship is fully consistent with
the known sources of interference. The cardiac pulse is clearly
evident in the first IMF, breathing is found in the second IMF,
the low frequency oscillation is found in the third IMF, and the
very low frequency oscillation is found in the fourth IMF. The
additional IMF components presented in the decomposition
process are mainly due to the introduction of a slowly vary-
ing random signal as the independent interference, which was
simulated as the uncorrected superficial response compared
with the intracerebral response.
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FIG. 3 Simulated measurements of optical density for the 10 mm source-detector dis-

tance: (a) change of optical density for 750 nm, and (b) change of optical density for

830 nm.

4.2 Applicat ion of EMD-RLS for Global
Interference Reduction

After the IMFs are acquired, the data analysis described in
Section 2.2 is applied. From the results as shown in Figure 4
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and Figure 5, the number of IMFs N = 6. The forgetting fac-
tor χ in our study was set to 0.99999, which is relatively stable
in our tests. The total signal length is 3000 samples and the
first 1000 samples are used to train the signal and obtain the
weighting coefficients assigned to the specified component
(see Table 3). After the optimal coefficients are determined,
the IMFs are applied to approximate global interference. The
remaining 2000 samples are then applied for interference can-
cellation by subtracting the estimated global interference. As
seen in Table 3, the coefficients for each component are differ-
ent. It can be seen that the magnitudes of the first four coef-
ficients are larger than those of the last two coefficients. This
can be interpreted that the first four IMFs are the interference
components corresponding to heartbeat, breathing, low fre-
quency oscillation and very low frequency oscillation, which
are correlated with global interference.

Concentration changes of HbO2 during the simulated mea-
surement are shown in Figure 6. Thereinto, Figure 6a shows
the ∆[HbO2] time series results from a 10 mm source-detector
distance that were calculated with the MLBL and Figure 6b
shows the block average result. Similarly, Figure 6c and 6d
show the ∆[HbO2] time series and block average results from
a 40 mm source-detector distance, again calculated with the
MLBL. However, neither the results from Figure 6c nor 6d can
clearly reveal the true activation signal, since it is obvious that
the raw time series has been contaminated by global interfer-
ence. After signal processing with the EMD-RLS, as seen in
Figure 6e and 6f, the evoked haemodynamic changes are clear
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FIG. 6 EMD-RLS to remove global interference. (a) The time series of concentration

changes of HbO2 calculated from S-D1 with 10 mm source-detector separation, and

(b) its block averaged result. (c) and (d) The time series of concentration changes

of HbO2 calculated from S-D2 with 40 mm source-detector separation. (e) and (f)

EMD-RLS result for the target measurement. (g) and (h) EMD-RLS result with PVE com-

pensation (solid line), together with the true evoked brain activity (dashed line) used

for quantitative comparison and evaluation of the performance of EMD-RLS algorithm.

and most of global interference has been removed. However,
the magnitude of ∆[HbO2] is underestimated when calculat-
ing with the MLBL because the partial path length in the gray
matter is always smaller than the differential path length. This
is generally referred to as the partial volume effect (PVE) [34].
By means of Monte Carlo simulations, the ratio of the differ-
ential path length to the partial path length in the gray matter
can be achieved to compensate for the PVE effect. After we
have compensated for the PVE effect in the recovered results
we can compare the recovered results with the real evoked
haemodynamic changes in the gray matter. This comparison
can be seen in Figure 6g and 6h. In these two figures, the
solid line denotes the recovered results with PVE compensa-
tion and the dashed line denotes the true evoked haemody-
namic changes used in the simulation. Although some fluctu-
ations still remain, the recovered ∆[HbO2] processed with the
EMD-RLS algorithm provide an obvious evoked response. By
calculating ensemble average for the whole time series, the
results demonstrate that the proposed methodology could re-
move approximately 90% of global interference.

Figure 7 shows the equivalent results of Figure 6 but for
∆[HHb]. Comparing Figure 6a and 6b with Figure 7a and 7b,
respectively, we can observe that the interference in the super-
ficial layer that was introduced into the ∆[HHb] is relatively
smaller than that in ∆[HbO2]. Thus, the trend of ∆[HHb]
shown in Figure 7c and 7d was visible before EMD-RLS pro-
cessing. The recovered results for ∆[HHb] and its block aver-
age results are shown in Figure 7e and 7f. Although the in-
terference in ∆[HHb] is very small, the calculations shown
in Figure 7e and 7f demonstrated that processed results are
still somewhat better than the unprocessed results. The quan-
titative comparison [Figure 7g and 7h] was conducted with
the PVE compensation and approximately 91% of the ∆[HHb]
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IMF order i 1 2 3 4 5 6
wi for HbO2 0.5437 0.8034 0.8130 0.8384 0.0541 0.0685
wi for HHb 0.1756 0.7280 0.8723 1.1101 0.0394 0.0511

TABLE 3 Optimal weighting coefficients assigned to the interference components.
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FIG. 7 EMD-RLS to remove global interference. (a) The time series of concentration

changes of HHb calculated from S-D1 with 10 mm source-detector separation, and (b)
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tion (solid line), together with the true evoked brain activity (dashed line) used for

quantitative comparison and evaluation of the performance of EMD-RLS algorithm.

was recovered. We have also run the simulations for 5 mm and
45 mm short and long spacing respectively and the results are
just as clear.

5 Discussion

Global interference can greatly degrade the performance of
fNIRS measurement of evoked brain activity response. An
approach to help identify and separate the interference com-
ponents in fNIRS is to include auxiliary physiological mea-
surements and to analyze the signal with an adaptive filter-
ing algorithm [14, 17]. Many instruments such as the pulse
oximeter, electrocardiogram (ECG), chest band respirometer,
spirometer and capnograph can be used to achieve auxiliary
physiological measurements. This method is effective in re-
ducing global interference, but the indispensability of addi-
tional equipments is the limitation of its application. Prince
et al. [16] and Adbelnour et al. [18] utilized sine/cosine terms
and Kalman filtering to model the specific physiological noise.
However, this method needs to assume a prior frequencies
(e.g. the cardiac, ∼1 Hz; respiratory, ∼0.25 Hz; and Mayer
wave frequency, ∼0.1 Hz) for the sine/cosine terms. In our
previous work, the methodology based on EMD-HSA has
also been presented good performance in removing cardiac
and respiratory interference [19]. However, this methodology
is not appropriate for the interference induced by low fre-

quency oscillations, very low frequency oscillations, etc. Thus,
a novel method based on EMD-RLS algorithm and multidis-
tance probe configuration was proposed in this paper.

In this paper, EMD algorithm adaptively decomposes the
superficial haemodynamic changes into several interference
components and RLS algorithm dynamically adjusts the
weighting of the corresponding interference to estimate
global interference. Although EMD has been widely used
to decompose complex signals and the RLS method has
been broadly adopted for denoising in many domains, the
approach of combination of EMD and RLS has not been
applied for denoising in fNIRS brain activity measurement.

We have used Monte Carlo simulations of a five-layered
model of the human adult head to assess the effectiveness
of EMD-RLS in global interference removal from fNIRS brain
activity data. Our results have shown that the method can
reduce global interference within measurements of ∆[HbO2]
and ∆[HHb]. It should be noted that the EMD-RLS method
is more effective for global interference removal in ∆[HbO2]
than in ∆[HHb] in our study. The reason could be interpreted
that the interference magnitude of ∆[HbO2] is very large and
the improvement of denoising for ∆[HbO2] is obvious.

An important matter that should be considered here is the
traditional EMD algorithm adopts the cubic spline interpola-
tion as an effective tool processing non-stationary signal and
several issues may occur during the decomposition process.
One of the issues is the presence of overshoot and under-
shoot found during the decomposition of the second IMF in
∆[HHb]. In order to solve the problem, many researchers at-
tempted to overcome the overshoot [35], for example Qin et al.
[36] used a Segment Slide Theory and Fan et al. [37] presented
the piecewise linear fractal interpolation as the spline inter-
polating. Another issue is the modal distortion and mixture
[38, 39] that often influence the performance of the EMD. Al-
though this issue is not observed in our simulation study, the
resolution of this issue may be useful in our future study for
the EMD-RLS algorithm. The effective EMD methods based
on independent component analysis [38] and the masking sig-
nal [39] were proposed to overcome this problem. Thus, some
deeper investigations of EMD should be able to improve the
performance of the EMD-RLS further.

One of the additional issues in fNIRS is that there can be a fur-
ther source of interference, which is observed synchronously
with a heart rate increase during the specific task (e.g. fin-
ger opposition task) [40, 41]. This kind of interference is not
independent of the functional response itself and thus us-
ing short-distance measurement as the reference channel may
over-correct the target measurements. For these cases, meth-
ods considering the spatial locality difference between the
brain functional response and global interference have been
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proposed based on principle component analysis [11,41] or in-
dependent component analysis [10]. The EMD-RLS algorithm
could still be applicable for these cases if we put the target
channel on the activated area and the reference channel on the
unactivated area.

A truly rigorous evaluation of this method in vivo requires an
uncontaminated evoked brain activity response signal, which,
unfortunately, is unavailable. Meanwhile, the PVE effect in
vivo can not be exactly compensated and the quantitative com-
parison of the recovery response and the true response of
brain activity is difficult. Thus, Monte Carlo simulation is im-
plemented for quantitative analysis here as the preliminary
study. As for the test of this method in vivo with practical NIRS
measurement, other signal processing methods such as power
spectrum density will be utilized as auxiliary evaluation tool.
This is the subject of our on-going research and will be pub-
lished in due course.

6 Conclusions

The empirical mode decomposition is a promising tool for an-
alyzing fNIRS signals through the frequency characteristic of
specified IMFs. However, the optimality for the reconstruction
of the given signal for IMFs is not considered. Thus, EMD-RLS
algorithm based on multidistance probe configuration is used
to study global interference reduction in fNIRS brain activ-
ity measurement. The evaluation of this method is carried out
through simulating the evoked haemodynamic response and
physiological interference. The method is effective to remove
global interference induced not only by heartbeat and respi-
ration but also by low frequency oscillation and very low fre-
quency oscillation, and other correlated interference between
superficial and deep layer. The advantage of EMD-RLS in
multidistance fNIRS measurement compared with other pos-
sible methods also arises from its convenient implementation;
it neither requires an auxiliary measurement instrument nor
the dependence on a prior knowledge of the global interfer-
ence frequency. Thus, the methodology has clear potential for
use in fNIRS brain activity measurement.
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