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We propose to study the Gaussian transition of an optical speckle field using the Minimal Spanning Tree method. We perform an analysis
of the spatial intensity distribution and show that the maxima of intensity evolve from a cluster distribution in the strongly non Gaussian
regime, to a gradient distribution around the transition and then approach the random distribution area when we tend to the Gaussian
regime. In the generated minimal spanning trees, we observe that the standard deviation of the edges length exhibits a maximum around
the Gaussian transition when about 4 correlation cells of the surface roughness are illuminated. [DOI: 10.2971/jeos.2010.10052]
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1 INTRODUCTION

An optical speckle field [1] generated by the scattering from a
rough surface can contain useful informations about the sur-
face properties especially in the case the incident beam illu-
minates only a few correlation cells of the surface roughness
[2, 3]. However, working with a unique illuminating spot size
in such a non Gaussian regime doesn’t allow a full characteri-
zation of the surface roughness properties. Nevertheless, as it
seems to be general in Physics, following a parameter along
a transition brings much more information that an observa-
tion of the same parameter at a unique point of this transi-
tion. Thus, we have recently proposed the idea of studying
the transition from the non Gaussian to the Gaussian regime
of the speckle field in order to increase the amount of acces-
sible information concerning the surface roughness [4]. Us-
ing a Gaussian correlated dephasing screen to modelize the
surface roughness, we have shown that, by following such
transition generated by a varying illuminating spot size, the
speckle contrast was sufficient to discriminate between rough-
ness values in the full range [0; λ], λ being the wavelength of
the monochromatic illuminating laser. On a practical point of
view, such method based on the Gaussian transition study is
expected to improve absolute surface roughness and correla-
tion length measurements by speckle analysis [5]–[7].

The probability density function of intensity is helpful to char-
acterize an optical speckle field, however it doesn’t contain
any information about the spatial distribution of the field. In
this paper, we use a new sensitive criterion to characterize this
spatial intensity distribution. Our approach is based on a spe-
cific graph constructed from the set of points of the local max-
ima of the intensity distributions in an observation plane. This
graph, called Minimal Spanning Tree (MST) [8], allows us to
deduce two parameters - the mean and the standard deviation

of the edges length - that characterize the distributions of the
points (ordered, random, cluster...). We present here the first
results of speckle fields characterization obtained by the MST
method and we apply it to the study of a Gaussian transition.

2 GENERATION OF NON GAUSSIAN
SPECKLE FIELDS

The model consists first in the generation of a random rough
surface modelized by a random correlated Gaussian phase
screen that exhibits a Gaussian heights distribution. Then, in
the case of a Gaussian beam illumination, we calculate the
corresponding scattered field at a given distance using the
Fresnel diffraction integral [9]. This model has been previ-
ously used for the study of the circular Gaussian transition
of speckle fields in the near field region [4]. We just propose in
this section a brief restatement of the main points.

The discretized and correlated profiles of the surfaces rough-
ness are calculated by the following equation [10] :

S(ξ, η) = FT−1
[√

FT[A(ξ, η)].FT[X(ξ, η)]
]

, (1)

where :

A(ξ, η) = H2
RMS exp

[
− ξ2 + η2

L2
c

]
, (2)

with :

• HRMS the standard deviation of the surface heights dis-
tribution that will be simply referred as ”roughness” in
the forthcoming sections
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• Lc the correlation length of the surface heights distribu-
tion

• X(ξ, η) an uncorrelated Gaussian random function with
zero mean and standard deviation of unity.

FT denotes here a discrete bidimensional Fourier Transform.

The incident field characterized by a Gaussian amplitude dis-
tribution and a wavelength λ = 632 nm impacts the surface
parallel to its normal. Its waist ω0 is chosen to be located on
the mean level of the surface. The scalar field undergoes the
dephasing associated to the random correlated Gaussian sur-
face and the scattered field at the distance z in the transverse
plane (x,y) is then calculated using the Fresnel diffraction in-
tegral :

Ẽsc(x, y, z) =
∫∫
S

Ẽ(ξ, η).G̃(x− ξ, y− η, z)dξdη, (3)

with G̃ the propagator in the paraxial approximation :

G̃(x− ξ, y− η, z) =
eikz

iλz
exp

[
ik
2z

(
(x− ξ)2 + (y− η)2

)]
, (4)

and Ẽ(ξ, η) the initial Gaussian beam of maximum amplitude
unity that has been dephased according to the correlated sur-
face profile S(ξ, η) :

Ẽ(ξ, η) = exp
[
− ξ2 + η2

ω2
o

]
. exp [ikS(ξ, η)] . (5)

The paraxial propagation of the scattered field is performed
using the following Fourier Transforms :

Ẽsc(x, y, z) = FT−1 [FT[Ẽ(ξ, η)].FT[G̃(x− ξ, y− η, z)]
]

. (6)

This calculation allows the determination of the complex scat-
tered speckle field and its statistics even in the non Gaussian
regime where the central limit theorem can’t be applied [4].

3 DESCRIPTION OF THE MINIMAL
SPANNING TREE METHOD

An edge-weighted linear graph G = (X, E) is composed of
a set of points X = {x1, x2, . . .} called nodes and a set of
node pairs E =

{
(xi, xj)

}
called edges, with a number called

weight (the Euclidean distance in our case) assigned to each
edge. A tree is a connected graph without closed loops. A
Minimal Spanning Tree (MST) is a tree which contains all the
nodes with a minimal sum of the edge weights [8]. It can be
noticed that for a set of N points (corresponding to a num-
ber of edges of N − 1) which are randomly distributed with
uniform intensity in a 2-dimensional region with an area of
A, the total length of the MST is asymptotically given by
LG∞ = α2(AN)1/2 where α2 depends on the problem solved
[11]. So the mean length of an edge is given by:

MA = α2
(AN)1/2

N − 1
. (7)

The area A of the sampling window of a data set can be esti-
mated by a normalization of the area H of the convex hull of
the data by the following relation:

A =
H

1− ( f /N)
. (8)

FIG. 1 Points distributions in the (m, σ) plane. Random distributions are built by the

use of probability density functions of the continuous uniform distribution to generate

the coordinates of the points.

where f is the number of faces of the convex hull [12].

In our study, the convex hull is the smallest square contain-
ing all the points. Depending on the starting point there may
be more than one MST for a given set of points, but all of
the MST’s have the same length-edge histogram. The nor-
malized values of the mean m and the standard deviation σ

of the edges length can be used to characterize the distribu-
tion of points (ordered, random, cluster...) [13]. In the field of
topographical analysis, this method presents the advantages
of an high discrimination power and stability to characterize
spatial point patterns [14]. In the (m, σ) plane, all distribu-
tion of points can be plotted and easily compared with well-
characterized distributions (for example, perfectly ordered
with σ = 0 or random ones with m ≈ 0.65 and σ ≈ 0.30)
as shown in Figure 1.

4 STUDY OF THE GAUSSIAN TRANSITION
BY THE MINIMAL SPANNING TREE
METHODS

For a given set of roughness value HRMS and numbers nc of
correlation cells illuminated by a Gaussian beam, we generate,
as described in Section 2, 10 random surfaces and the corre-
sponding 10 intensity distributions of the field in the observa-
tion plane at the distance 0, 75zR from the surface, zR being the
Rayleigh distance. From each intensity distribution, we detect
the set of all the points representing a local maximum of the
intensity distribution above a threshold. The MST is built on
this set of points and provides the location of the spatial inten-
sity maxima distribution in the (m, σ) plane. Figure 2 presents
the process along the Gaussian transition of a completely de-
veloped speckle (HRMS = λ), for intensity distributions ob-
tained in the case of the following nc values : 0.5, 2 and 50.

The windows of analysis has been defined in 2 different ways.
When the same square sampling window is used to build the
MST’s of all the intensity images in the Gaussian transition,
the influence of the extension of the speckle in the observa-
tion plane is taken into account. When the area of the window
is estimated by the normalization of the convex hull of the
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FIG. 2 Process analysis of the spatial intensity distribution by the MST. (a) (b) and (c) correspond respectively to nc = 0.5, 2 and 50 illuminated correlation cells of the surface

roughness. The 3 columns display from left to right : the intensity distribution in the observation plane, the points of local maxima and the corresponding MST.

FIG. 3 Representation of the average m and standard deviation σ of MST’s edges built

on maxima intensity distributions in the Gaussian transition of a speckle field. nc

corresponds to the number of illuminated correlation cells of the surface roughness.

In case A, the same square windows of analysis is used whereas in case B, different

normalized square windows are used for an intrinsic analysis. We observe a maximum

of σ around the Gaussian transition.

data, we obtain an intrinsic analysis of the spatial distribu-
tion of points. The results obtained along the Gaussian tran-
sition in both cases are presented on Figure 3. All values of
nc > 0.5 give the same result in the (m, σ) plane regardless of
the definition of the window of analysis. For the case nc = 0.5,
when the sampling window is kept constant, the values of the
mean length and of the standard deviation obtained (Figure 3,
case A) are significantly lower than those calculated using the
sampling window estimated by the normalization of the con-
vex hull of the data (Figure 3, case B). This is due to the fact
that the set of points of maximum intensity does not reach
the border of the analysis window because of the highly non
Gaussian illumination conditions giving rise to a more local-
ized repartition of energy. Along the Gaussian transition, we
can observe the evolution of the location in the (m, σ) plane
due to the increased number of illuminated correlation cells.
In the strongly non Gaussian regime and according to the in-
trinsic quantitative analysis (Figure 3 for nc = 0.5, case B), we
observe that the spatial distribution of the maxima of intensity
corresponds to the cluster distribution area. When nc increases
(until few units) and reaches the Gaussian transition, the val-
ues of m and σ increase to the gradient distribution area. For
higher and increasing values of nc, the location slowly tends
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to the random distribution area (m ≈ 0.65 and σ ≈ 0.30). We
point out that the σ value exhibits a clear maximum (nc ≈ 4)
around the Gaussian transition.

5 CONCLUSION

We have proposed the first results of speckle fields charac-
terization obtained by the use of the Minimal Spanning Tree
method. The introduction of a criterion, namely the location
in the (m, σ) plane that corresponds to maximum intensity
regions, have been used to perform a spatial intensity dis-
tribution analysis along the Gaussian transition of an opti-
cal speckle field. When we evolve from a strongly non Gaus-
sian regime to the Gaussian one, this location evolves from
a cluster distribution to a gradient distribution and then ap-
proaches a random distribution. Moreover, the MST method
exhibits a maximum of the standard deviation of the edges
length around the Gaussian transition when about 4 correla-
tion cells of the surface roughness are illuminated. Both results
provide a new and robust way to characterize the correlation
length of a surface roughness and its illumination conditions.
This method can find further applications such as the study
of non circular speckle fields and the spatial distribution of
phase singularities in the Gaussian transition. In a more gen-
eral way, it can improve rough surface or multiple scattering
media characterization by speckle field analysis.
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