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The Legendre transformations are an important tool in theoretical physics. They play a critical role in mechanics, optics, and thermodynam-
ics. In Hamiltonian optics the Legendre transformations appear twice: as the connection between the Lagrangian and the Hamiltonian and
as relations among eikonals. In this article interconnections between these two types of Legendre transformations have been investigated.
Using the method of “transition to the centre and difference coordinates” it is shown that four Legendre transformations which connect
point, point-angle, angle-point, and angle eikonals of an optical system correspond to four Legendre transformations which connect four
systems of equations: Euler’s equations, Hamilton’s equations, and two unknown before pairs of equations. [DOI: 10.2971/jeos.2010.10022]
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1 INTRODUCTION

The best way to solve a problem is to look at it from the right
point of view. So it is very important for everybody to have
a possibility to see the problem from various points of view.
In physics this possibility is given by one-to-one correspon-
dences, for example the Fourier transformations in Fourier-
optics and the Legendre transformations in Hamiltonian op-
tics. Investigations of intrinsic one-to-one transformations are
very useful for understanding the structure of the theory and
very helpful for solving various practical problems.

Note that in Hamiltonian optics the Legendre transformations
appear twice: as a connection between the Lagrangian and the
Hamiltonian and as relations among eikonals. Traditionally
these types of the Legendre transformations are used inde-
pendently. In this article we show interconnections between
them.

2 FERMAT’S PRINCIPLE AS THE BASIS
OF HAMILTONIAN OPTICS

Let us consider a layer of an inhomogeneous optical medium
with the refractive index distribution n(x, y, z) which is re-
stricted by an input plane {(x, y)} = {(x, y, z) : z = 0} and
an output plane {(x′, y′) = {(x, y, z) : z = Z}. A collection
of virtual paths connecting an input point (x, y) with an out-
put point (x′, y′) can be labelled with a parameter u. Let all
these paths γu be projected onto the z-axis so that they can
be described by functions x(z) and y(z). Hence, the entire
set of paths running from the input point (x, y) to the out-
put point (x′, y′) is given by two functions of two parameters:
γu(z) = {x(z, u), y(z, u)} (see Figure 1). Following Luneb-
urg [1], we use the z-axis as the independent variable, similar
to the time axis in analytical mechanics.

The tangent to a path γu(z) at a given point P∗ (see Figure 1)

 

 

 

 

 

 

 

 

 

Figure 1. 
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FIG. 1 Illustration of Fermat’s principle applied to the layer of an inhomogeneous

medium. The Fermat’s principle contains three statements: 1) a collection of vir-

tual paths connecting an input point (x, y) with an output point (x′ , y′) can

be labelled with a parameter u: γ : (z, u) → (x, y; z) ∈ R3 i.e. γu(0) =

(x, y; 0) = (x, y) and γu(Z) = (x, y; Z) = (x′ , y′); 2) all virtual paths going

through the optical inhomogeneous medium n(x, y, z) have the optical length S:

u →
∫
γu

n (x, y, z)
√

1 + ẋ2 + ẏ2dz; and 3) light travels from the input point (x, y)

to the output point (x′ , y′) along a path for which the optical path is stationary with

respect to all possible neighbouring paths, i.e. ∂S
∂u

∣∣∣
u=u

= 0.

can be specified by angles (θ, ϕ) of a spherical coordinate sys-
tem (ϕ ∈ [0, 2π), θ ∈ (0, π/2]), but it is more convenient to
use “velocities” for this purpose (see Figure 2(a)):

ẋ =
dx
dz

= tan θ · sin ϕ , (1a)

ẏ =
dy
dz

= tan θ · cos ϕ . (1b)
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Figure 2. 
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FIG. 2 Direction of the tangent to a path γu(z) at a given point P∗ (γu(ζ), ζ) can

be characterized by angles (θ, ϕ) of the spherical coordinate system (ϕ ∈ (0, 2π),

θ ∈ (0, π/2)), by (a) “velocities” or by (b) momenta.

It takes time t(u) for the light to travel along the path γu(z)
from (x, y) to (x′, y′). This value is given by

t(u) =
∫
γu

√
1 + ẋ2 + ẏ2

v (x, y, z)
dz

=
1
c

∫
γu

n (x, y, z)
√

1 + ẋ2 + ẏ2dz

=
1
c

S
(

x, y; x′y′; u
)

. (2)

The integral of the product of the refractive index and the ge-
ometrical path length S (x, y; x′y′; u) =

∫
γu

L (x, y; ẋ, ẏ; z) dz
is called the optical length of the path γu(z) from (x, y) to
(x′, y′). The integrand

L (x, y; ẋ, ẏ; z) = n (x, y, z)
√

1 + ẋ2 + ẏ2 (3)

is the Lagrangian.

Hamiltonian optics is based on the concept that light travels
along the path, which satisfies Fermat’s principle. It states that
the light travels from one point (x, y) to another (x, y) along
the path γu(z) for which the travel time is stationary with re-
spect to all possible neighbouring paths. Because the speed
of light in vacuum is constant, according to Eq. (2), Fermat’s
principle can be expressed in terms of the optical path as well
as the transit time [1]– [3]:

∂S (x, y; x′, y′; u)
∂u

∣∣∣∣
u=u

= 0 (4)

for any arbitrary collections of paths (see Figure 1).

The variation of the path length S(x, y; x′y′; u) with respect to
u is described by [2]

∂S (x, y; x′, y′; u)
∂u

=
∂

∂u

∫
γu

L (x, y; ẋ, ẏ; z) dz

=
∫
γu

(
∂L
∂x

∂x
∂u

+
∂L
∂ẋ

∂ẋ
∂u

)
dz+(y)

=
∫
γu

∂L
∂x

∂x
∂u

dz+
∫
γu

∂L
∂ẋ

d
dz

(
∂x
∂u

)
dz+(y)

=
∂L
∂ẋ

∂x
∂u

∣∣∣∣Z
0
+
∫
γu

[
∂L
∂x
− d

dz

(
∂L
∂ẋ

)]
∂x
∂u

dz+(y)

(5)

The formulas are written for x-terms only. They can be com-
pleted by similar terms in y as indicated.

3 THE LEGENDRE TRANSFORMATIONS
BETWEEN LAGRANGIAN AND
HAMILTONIAN

We choose varied paths between two points (x, y) and (x′, y′).
Eq. (5) shows that to satisfy Fermat’s principle, Eq. (4), we
must have

∂L
∂x
− d

dz

(
∂L
∂ẋ

)
= 0 and

∂L
∂y
− d

dz

(
∂L
∂ẏ

)
= 0 (6)

for the ray in the inhomogeneous medium. They are the Eu-
ler’s equations [2] that determine the path of a ray in an inho-
mogeneous medium.

We can rewrite Eq. (6) in the form

ṗ =
∂L
∂x

, p ≡ ∂L
∂ẋ

and q̇ =
∂L
∂y

, q ≡ ∂L
∂ẏ

(7)

Thus, we have two pairs of differential equations. The vari-
ables p ≡ ∂L

∂ẋ and q ≡ ∂L
∂ẏ are called “momenta”. The momenta

as well as “velocities” specify the direction of a ray in space.
In the case of the optical Lagrangian, Eq. (3), the momenta are

p ≡ ∂L
∂ẋ

= n (x, y, z)
ẋ√

1 + ẋ2 + ẏ2
= n · sin θ · sin ϕ (8a)

q ≡ ∂L
∂ẏ

= n (x, y, z)
ẏ√

1 + ẋ2 + ẏ2
= n · sin θ · cos ϕ (8b)

where (ϕ ∈ [0, 2π), θ ∈ (0, π/2]) (see Figure 2(b)). The
quantities p and q can be interpreted as “optical direction
cosines” [1]. They are two independent components of the
“ray vector” ~n ≡ (p, q,

√
n2 − p2 − q2) [3], which is parallel

to the tangent to the path at the point Pa∗ (see Figure 1).

It is known that the Legendre transformation creates a new
function which contains the same information as the old, but
it appears to be the function of different variables. There are
a few different definitions of the Legendre transformation [5].
Let us consider the direct and inverse Legendre transforma-
tions with signs that are used in the theory of eikonals [1]–
[3, 6]– [8] (see below).
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The direct Legendre transformation Lx→p, y→q{...} of a real-
valued differentiable function f (x, y) is the real-valued differ-
entiable function g(p, q) of a new variable p ≡ ∂ f

∂x , q ≡ ∂ f
∂y ,

which is defined as [3, 5]– [7]

g (p, q) = Lx→p, y→q { f (x, y)} ≡ f (x, y)− xp− yq . (9a)

The inverse Legendre transformation Lx→p, y→q {...} of a real-
valued differentiable function g(p, q) is the real-valued differ-
entiable function f (x, y) of a new variable x ≡ ∂g

∂p , y ≡ ∂g
∂q ,

which is defined as [3, 5]– [7]

f (x, y) = L−1
p→x, q→y {g (p, q)} ≡ g (p, q) + xp + yq . (9b)

If f (x, y) is a real-valued differentiable and regular func-

tion [4, 5] (det

(
f q
xx f q

xy
f q
yx f q

yy

)
6= 0) then the composition of

the direct Legendre transformation and the inverse Legendre
transformation (or the composition of the inverse Legendre
transformation and the direct Legendre transformation) is the
identity operator.

Note that the Lagrangian, Eq. (3), is a real-valued continu-
ously differentiable and regular function of variables ẋ and
ẏ. Thus, we can apply to it the direct Legendre transforma-
tion on these variables. The direct Legendre transformation of
the Lagrangian L (x, y; ẋ, ẏ; z) with a minus sign is called the
Hamiltonian H(p, q; x, y; z):

H (p, q; x, y; z) = −Lẋ→p, ẏ→q {L (x, y; ẋ, ẏ; z)} . (10)

Substituting definitions Eq. (3) and Eqs. (8) into Eq. (10), we
can see that the Hamiltonian, Eq. (10), takes the form [8]:

H(p, q; x, y; z)=− [L (x, y; ẋ, ẏ; z)−ẋp−ẏq]

=−n(x, y; z)

(√
1+ẋ2+ vẏ2− ẋ2√

1+ẋ2+ẏ2
− ẏ2√

1+ẋ2+ẏ2

)

=−
√

n2(x, y; z)−p2−q2

=−n(x, y; z) cos θ (x, y; z) (11)

since
n2

1 + ẋ2 + ẏ2 = n2 − p2 − q2 . (12)

The geometrical interpretation of the Legendre trans-
formations [4, 7, 9, 10], which connects the Lagrangian,
L (x; ẋ; z) = n (x, z)

√
1 + ẋ2, and the Hamiltonian,

H(p; x; z) = −
√

n2(x; z)− p2, in the meridional plane is
shown in Figure 3.

The total differential of the Hamiltonian

dH (p, q; x, y; z) =
∂H
∂p

dp +
∂H
∂q

dq +
∂H
∂x

dx +
∂H
∂y

dy +
∂H
∂z

dz

(13)
is equal to the total differential of H = ẋp + ẏq − L for p ≡
∂L
∂ẋ , q ≡ ∂L

∂ẏ ,

dH (p, q; x, y; z) = ẋdp + ẏdq− ∂L
∂x

dx− ∂L
∂y

dy− ∂L
∂z

dz . (14)

Both expressions for dH must be the same. Therefore

ẋ =
∂H
∂p

, ẏ =
∂H
∂q

,
∂H
∂x

= − ∂L
∂x

,
∂H
∂y

= − ∂L
∂y

,
∂H
∂z

= − ∂L
∂z
(15)

 
 
 
 
 
 
 
 
 
 
Figure 3.  
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FIG. 3 The geometrical interpretation of the Legendre transformations between the

Lagrangian, L(x; ẋ; z) = (nx, z)
√

1 + ẋ2, and the Hamiltonian, H(p; x; z) =

−
√

n2(x; z)− p2, in the meridional plane. The direct Legendre transformation of

the function, L (ẋ) into the function −Hi(pi). Let ẋi be a given number. We draw

the tangent line to the graph of L (ẋ) at the point ẋi . The tangent line has the slope

pi ≡ ∂L
∂ẋ

∣∣∣
ẋ=ẋi

and intersects the L-axis at the point (0,−Hi). The inverse Legen-

dre transformation of the function −Hi(pi) into the function L (ẋ). Let pi be a given

number. We draw the tangent line to the graph of −H(p) at the point pi . The tangent

line has the slope ẋi ≡ − ∂H
∂p

∣∣∣
p=pi

and intersects the H-axis at the point (0, Li). The

vertical distance between the horizontal lines is the product ẋi pi . By subtracting this

product from pi we obtain xi or by subtracting the product from xi we obtain pi .

Applying Euler’s equations, Eqs. (8), we find that light rays
are the solutions of Hamilton’s equations [4]

ṗ = − ∂H
∂x

, ẋ =
∂H
∂p

and q̇ = − ∂H
∂y

, ẏ =
∂H
∂q

. (16)

4 LEGENDRE TRANSFORMATIONS IN THE
EIKONAL THEORY

Let us assume that the chosen path satisfies the Euler-
Lagrange equations. Then this path is the legitimate light ray,
i.e. it satisfies Fermat’s principle, Eq. (6). Substituting Eq. (7)
and Eqs. (8) into Eq. (5), we obtain

∂S
∂u

= p
∂x
∂u

∣∣∣∣Z
0

+ q
∂y
∂u

∣∣∣∣Z
0

. (17)

The optical length S of the ray between the points P(x, y) and
P′(x′, y′) (see Figure 4), considered as a function of their four
coordinates (x, y; x′, y′), is called the “point eikonal”.

Therefore we can rewrite Eq. (14) as

dS = p′dx′ + q′dx′ − pdx− qdx . (18)

Variables with primes refer to the output plane.

Instead of the point eikonal, S, we can also use the point-angle
eikonal, V, angle-point eikonal, V′, or angle eikonal, T [1]–
[3, 6]– [8], which are related to the point eikonal S by the Leg-
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FIG. 4 Geometrical interpretation of the eikonals when the initial and the final media

are homogeneous (in meridional plane): the point eikonal S is the optical length of

the ray from P to P′; the point-angle eikonal V is the optical length of the ray from

P to Q′; the angle-point eikonal V′ is the optical length of the ray from Q to P′; and

the angle eikonal T is the optical length of the ray from Q to Q′ .

endre transformations

V(x, y; p′, q′) = Lx′→p′ , y′→q′{S(x, y; x′, y′)}

≡ S(x, y; x′, y′)− x′p′ − y′q′ , (19a)

V′(p, q; x′, y′) = L−1
x→p, y→q{S(x, y; x′, y′)}

≡ S(x, y; x′, y′) + xp + yq , (19b)

T(p, q; p′, q′) = Lx′→p′ , y′→q′L−1
x→p, y→q{S(x, y; x′y′)}

≡ S(x, y; x′, y′)− x′p′ − y′q′ + xp + yq . (19c)

The eikonals, Eqs. (19), possess important properties

p′ =
∂S
∂x′

, q′ =
∂S
∂y′

, p = − ∂S
∂x

, q = − ∂S
∂y

(20a)

x′ = − ∂V
∂p′

, y′ = − ∂V
∂q′

, p = − ∂V
∂x

, q = − ∂V
∂y

(20b)

p′ =
∂V′

∂x′
, q =

∂V′

∂y′
, x =

∂V′

∂p
, y =

∂V′

∂q
(20c)

x′ = − ∂T
∂p′

, y′ = − ∂T
∂q′

, x =
∂T
∂p

, y =
∂T
∂q

(20d)

which make it possible to compute the missing coordinates or
momenta needed for complete description of the light ray.

If the input plane is situated in a homogeneous medium with
the refractive index n, called “object space”, and the output
plane is situated in a homogeneous medium with the refrac-
tive index n′, called “image space”, then we can consider the
layer of an inhomogeneous optical medium as an optical sys-
tem (see Figure 4). In the meridional plane x-z of this system
the terms xp and x′p′ have a simple geometrical interpreta-
tion xp = nd and x′p′ = n′d′ where d is the distance along
the ray from the point P(x, 0) to the foot Q of the perpendic-
ular drawn from the origin 0 to the ray at P and d′ is the dis-
tance along the ray from the point P′(x′, 0) to the foot Q′ of
the perpendicular drawn from the point Z to the ray at P′ (see
Figure 4) [3, 6, 7].

The Legendre transformations are important. There are many
different kinds of optical systems, and one kind of eikonal is
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FIG. 5 The point eikonal of a thin layer of an optically inhomogeneous medium re-

stricted by the input {(x− , y−)} ≡ {(x, y; z) : z = ζ − ε/2} and the output

{(x+y+)} ≡ {(x, y; z) : z = ζ + ε/2} planes (in meridional cross section).

not sufficient to describe all of them. Here are some exam-
ples [11]. A point characteristic cannot be used when the sec-
ond plane is the image plane. A mixed characteristic cannot
be used when one plane is coincident with the focal plane. An
angle characteristic cannot be used when dealing with afocal
systems.

5 THE CONNECTION BETWEEN TWO
TYPES OF LEGENDRE
TRANSFORMATIONS

We show that the differential equations describing the be-
haviour of the light ray at each point of the optical inhomoge-
neous medium can be derived from the differential properties
of eikonals.

In [7] it is noted that the relationships that connect the eikon-
als of an optical system are valid for any position of the in-
put {(x−, y−)} ≡ {(x, y; z) : z = ζ − ε/2} and output
{(x+, y+)} ≡ {(x, y; z) : z = ζ + ε/2} planes (see Figure 5).
Then it is possible to transform the four eikonals to four sys-
tems of differential equations of a light ray.

Let the input (x−, y−) and output (x+, y+) planes be sepa-
rated by a layer of a medium of thickness ε that is less than
the characteristic size of the optical inhomogeneity. Therefore
in this case it is convenient to express Eq. (19c) in terms of the
centre and difference coordinates [7, 12]– [14]:

x ≡ x+ + x−
2

, y ≡ y+ + y−
2

, ẋ ≡ x+ − x−
ε

, ẏ ≡ y+ − y−
ε

,

(21a)

p ≡ p+ + p−
2

, q ≡ q+ + q−
2

, ṗ ≡ p+ − p−
ε

, q̇ ≡ q+ − q−
ε

.

(21b)
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Using these coordinates, we obtain

T
(

p−ε
ṗ
2

, q−ε
q̇
2

; p+ε
ṗ
2

, q+ε
q̇
2

)
≡S
(

x−ε
ẋ
2

, y−ε
ẏ
2

; x+ε
ẋ
2

, y+ε
ẏ
2

)
−
(

p+ε
ṗ
2

)(
x+ε

ẋ
2

)
−
(

q+ε
q̇
2

)(
y+ε

ẏ
2

)
+
(

p−ε
ṗ
2

)(
x−ε

ẋ
2

)
+
(

q−ε
q̇
2

)(
y−ε

ẏ
2

)
=S
(

x−ε
ẋ
2

, y−ε
ẏ
2

; x+ε
ẋ
2

, y+ε
ẏ
2

)
−ε
(

ṗx+q̇y+pẋ+qẏ
)

.

(22)

Note that the point eikonal S
(

x− ε ẋ
2 , y− ε

ẏ
2 ; x + ε ẋ

2 , y + ε
ẏ
2

)
and angle eikonal T

(
p− ε

ṗ
2 , q− ε

q̇
2 ; p + ε

ṗ
2 , q + ε

q̇
2

)
of an in-

finitely thin layer are proportional to its thickness ε. This
makes it possible to introduce the corresponding specific
eikonals

L (x, y; ẋ, ẏ; z) ≡ 1
ε

S
(

x− ε
ẋ
2

, y− ε
ẏ
2

; x + ε
ẋ
2

, y + ε
ẏ
2

)
(23a)

and

M ( ṗ, q̇; p, q; z) ≡ 1
ε

T
(

p− ε
ṗ
2

, q− ε
q̇
2

; p + ε
ṗ
2

, q + ε
q̇
2

)
.

(23b)
In this notation, the Legendre transformation of Eq. (22) can
be written more compactly as

M ( ṗ, q̇; p, q; z) = −Lẋ→p, ẏ→qLx→ ṗy→q̇ {L (x, y; ẋ, ẏ; z)}
= − [xṗ + yq̇ + pẋ + qẏ− L (x, y; ẋ, ẏ; z)] .

(24a)

Note that Eq. (19a) provides a basis for introducing two more
specific eikonals by means of Legendre transformations:

H (p, q; x, y; z) ≡ −Lẋ→p, ẏ→q {L (x, y; ẋ, ẏ; z)}
= pẋ + qẏ− L (x, y; ẋ, ẏ; z) (24b)

and

N ( ṗ, q̇; ẋ, ẏ; z) ≡ −Lx→ ṗ, y→q̇ {L (x, y; ẋ, ẏ; z)}
= xṗ + yq̇− L (x, y; ẋ, ẏ; z) . (24c)

The specific eikonals, Eqs. (24) possess important properties

p =
∂L
∂ẋ

, q =
∂L
∂ẏ

, ṗ =
∂L
∂x

, q̇ =
∂L
∂y

(25a)

ẋ =
∂H
∂p

, ẏ =
∂H
∂q

, ṗ = − ∂H
∂x

, q̇ = − ∂H
∂y

(25b)

p = − ∂N
∂ẋ

, q = − ∂N
∂ẏ

, x =
∂N
∂ ṗ

, y =
∂N
∂q̇

(25c)

ẋ = − ∂M
∂p

, ẏ = − ∂M
∂q

, x = − ∂M
∂ ṗ

, y = − ∂M
∂q̇

(25d)

The Lagrangian L (x, y; ẋ, ẏ; z) as a function of ẋ and ẏ is ra-
tional, so for the direct Legendre transformation, Eq. (24b),
there is an inverse Legendre transformation. If the Lagrangian
L (x, y; ẋ, ẏ; z) as a function of x and y is rational too, for
the direct Legendre transformation, Eq. (24c), there is an in-
verse Legendre transformation. Thus, according to the defini-
tion of the Lagrangian, Eq. (3), the Legendre transformations
Eqs. (24a) and (24c) can be useful for the gradient-index op-
tics [15].

It is natural to identify functions L (x, y; ẋ, ẏ; z) and
H(p, q; x, y; z) with the Lagrangian, Eq. (3), and the Hamilto-
nian, Eq. (10). The functions M ( ṗ, q̇; p, q; z) and N ( ṗ, q̇; ẋ, ẏ; z)
are new. Thus, the consequences of the theory of eikonals
are not only the well-known Euler’s equation, Eq. (25a)
and Hamilton’s equation, Eq. (25b), but also new equations
Eqs. (25c) and (25d) not used earlier in optics (and mechanics).

6 ANALOG OF EULER’S EQUATIONS IN
MOMENTUM REPRESENTATION

The fundamental symmetry of the theory of Hamilton is
the equivalence of coordinate and momentum representa-
tions [16]. We will show, how with the help of the function
M( ṗ, q̇; p, q; z) it is possible to deduce the analog of Euler’s
equation in momentum representation (compare with Eqs. (4)
and (7)).

Let us consider a scalar monochromatic wave going through
the optical system. A single plane wave with direction ~n ≡
(p, q,

√
n2 − p2 − q2) entering the system creates a set of plane

waves in image space, traveling in all directions [12]. One of
these plane waves has direction~n′ ≡ (p′, q′,

√
n′2 − p′2 − q′2).

The relation between these plane waves can be discussed
more conveniently when we consider the particular wave-
front with momenta (p, q) passing through the origin 0 in ob-
ject space, “input wavefront”, and the particular wavefront
with momenta (p′, q′) passing through the point Z in image
space, “output wavefront” (see Figure 6).

The optical length T of the path between these wave-
fronts (p, q) and (p′, q′), can be calculated using function
M ( ṗ, q̇; p, q; z),

T (u) ≡
∫
γu

M ( ṗ, q̇; p, q; z) dz, (26)

its variation with respect to w is described by

∂T
∂w

=
∂

∂w

∫
γw

M ( ṗ, q̇; p, q; z) dz

=
∫

γw

(
∂M
∂p

∂p
∂w

+
∂M
∂ ṗ

∂ ṗ
∂w

)
dz + (q)

=
∫

γw

∂M
∂p

∂p
∂w

dz +
∫

γw

∂M
∂ ṗ

d
dz

(
∂ ṗ
∂w

)
dz + (q)

=
∂M
∂ ṗ

∂q
∂w

∣∣∣∣Z
0

+
∫

γw

[
∂M
∂p
− d

dz

(
∂M
∂ ṗ

)]
∂p
∂w

dz + (q) . (27)

The formulas are written for p-terms only. They can be com-
pleted by similar terms in q as indicated.

The phase difference between input and output wavefronts
is proportional to the optical path between these fronts mea-
sured along the ray γw (z) that satisfies Fermat’s principle in
momentum representation:

∂T
∂w

∣∣∣∣
w=w

= 0 . (28)

This path γw (z) is perpendicular to the input and output
wavefronts [12] (see Figure 6). The optical length T of this
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Figure captions 

Figure 1. Illustration of the Fermat’s principle applied to the layer of an inhomogeneous 

medium. 

0 Z z

x Angle eikonal T(p,q;p’q’) 

n(x,y;z) 

Input plane Output plane

x’ 

Q 

Q’ 

n n’ 

Output wavefront with (p’,q’) Input wavefront with (p,q) 

FIG. 6 The phase difference between the input wavefront with momenta (p, q) and the

output wavefront with momenta (p′ , q′) is proportional to the optical path between

these wavefronts, i.e. the angle eikonal T(p, q; p′ , q′).

ray between these wavefronts (p, q) and (p′, q′), considered
as a function of their four coordinates (p, q; p′, q′), is the angle
eikonal (compare Figure 6 with Figure 4).

Eq. (27) shows that to satisfy Fermat’s principle, Eq. (28), we
must have

∂M
∂p
− d

dz

(
∂M
∂ ṗ

)
= 0 and

∂M
∂q
− d

dz

(
∂M
∂q̇

)
= 0 . (29)

These equations can be interpreted as the analog of Euler’s
equations in momentum representation (compare Eqs. (29)
with Eqs. (5)) and can be rewritten in the form given by
Eq. (25d).

7 CONCLUSIONS

The method of “transition to the centre and difference coor-
dinates” allows to connect the eikonals of the optical system
with the system of equations for the light ray. Four Legen-
dre transformations which connect point, point-angle, angle-
point, and point eikonals of the optical system correspond to
four Legendre transformations which connect four systems
of equations: Euler’s equations, Hamilton’s equations, and
two unknown pairs of equations. One of these previously un-
known pairs of equations is interpreted as Euler’s equations
in momentum representation.
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