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Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately
be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also
include complex-valued parameters which allows us to analyze the dispersion properties also in presence of finite Q factors for the
coupled resonator states. Near the band-edge the group velocity saturates at a finite value vg/c ∝

√
1/Q while in the band center, the

group velocity is unaffected by a finite Q factor as compared to ideal resonators without any damping. However, the maximal group delay
that can be envisioned is a balance between having a low group velocity while not jeopardizing the propagation length. We find that the
maximal group delay remains roughly constant over the entire bandwidth, being given by the photon life time τp = Q/Ω of the individual
resonators. [DOI: 10.2971/jeos.2010.10009]
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1 INTRODUCTION

The coupled-resonator optical waveguide (CROW) was first
proposed and analyzed by Yariv et al. [1]. One particularly
interesting property is that CROWs in principle offer slow-
light propagation. In a simple picture, the group velocity is
low when the wave package will dwell for a long time in one
resonator before tunneling onto the next resonator and so on.
Of course, to take full advantage of the CROW concept, the
quality factor Q should be sufficiently high that the photon
life time τp of an isolated resonator much exceeds the tunnel-
ing time τt in which case the group velocity will be of the order
vg ∼ a/τt with a being the spacing of the resonators. The orig-
inal work emphasized the coupling of ideal and identical res-
onators [1] and more recently the influence of disorder on the
group velocity has been studied in detail [2]–[4]. CROWs have
been proposed and realized in a number of ways, utilizing for
example, high-Q microspheres [5], ring resonators [6, 7], or
defect cavities in photonic crystals [8]–[13]. There is a general
consensus that resonators with an intrinsic high Q are needed,
but according to our knowledge the influence of a finite Q has
not yet been analyzed in detail with respect to the interplay
of slow-light and damping. In this work we explicitly account
for a finite intrinsic quality factor of the resonators forming
the CROW. Broadening of van Hove singularities in photonic
crystal waveguides limits the slow down near band edges [14]
and for the CROWs we find a similar effect which can be

studied explicitly within the framework of coupled mode the-
ory. Most importantly we find that when treating slow light
and damping on an equal footing, damping is jeopardizing
some of the attractive features of the slow-light propagation.
In the following we first review the derivation of a general ex-
pression for the dispersion relation (see Section 2) and subse-
quently we derive analytical expressions for Q-factor depen-
dence of the group velocity near the band edges as well as in
the center of the band (see Section 3). Furthermore, we discuss
the maximal group delay that one may achieve with CROWs
(see Section 4) and as an example we apply the coupled-mode
formalism to a photonic crystal waveguide structure (see Sec-
tion 5). Finally, conclusions are given (see Section 6).

2 COUPLED-MODE THEORY

Consider a resonator with a resonant field

Ej(r, t) = Ej(r) exp
[
i(Ωj + iδΩj/2)t

]
(1)

so that the energy in the resonator
∣∣Ej(ω)

∣∣2 has a Lorentzian
frequency distribution corresponding to the density-of-states

ρj(ω) =
1
π

δΩj/2
(ω−Ωj)2 + (δΩj/2)2 (2)
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where Ωj is the resonance frequency, δΩj is the resonance line
width, and Qj = Ωj/δΩj is the quality factor of the jth res-
onator, corresponding to a photon life time τp = Q/Ω.

Next, imagine a chain of coupled resonators of the above kind.
We follow the work of Yariv and co-workers [1] and write
the electrical field as a linear combination of the isolated res-
onator fields Ej, while allowing for complex-valued parame-
ters, like the resonance frequency Ωj + iδΩj/2 and the cou-
pling elements γj+1,j. We further consider the case where the
resonators are all identical and arranged in a fully periodic
sequence with nearest-neighbor coupling only. For clarity we
may thus suppress all indices.

The electromagnetic states now form a continuous band with
a dispersion relation (see e.g. [3, 15])

ω(κ) = Ω
(

1 + i
1

2Q

)(
1− ∆γ

2
− γ cos(κa)

)
(3)

where κ = κ′ + iκ′′ is the complex valued Bloch wave vec-
tor and a is the lattice constant of the periodic arrangement of
resonators. On the right-hand side,

γ =
〈
Ej
∣∣∆ε
∣∣Ej+1

〉
(4)

is the coupling term of two neighboring resonators j and j + 1,
while

∆γ =
〈
Ej
∣∣∆ε
∣∣Ej
〉

(5)

is the small lowering of the isolated resonance frequency
caused by the presence of neighboring resonators. In the
framework of the tight-binding model, this is referred to as the
lowering of the ’on-site’ energy. Here, we have assumed that
the fields are normalized so that

〈
En
∣∣εn
∣∣En
〉

=
∫

εn(r)E∗n(r) ·
En(r) = 1, where εn(r) is the dielectric function of the isolated
resonator. Eq. (3) is a generalization of the theory by Yariv et
al. [1] to also include resonators with a finite Q-factor. Poten-
tially, γ and ∆γ may also be complex, for example in the pres-
ence of material absorption, but for simplicity we will treat γ

as a real parameter here.

3 DISPERSION, GROUP VELOCITY, AND
DENSITY-OF-STATES

The group velocity may formally be calculated from the dis-
persion relation in Eq. (3). Keeping in mind that ω is real while
κ may be complex, we have that the group velocity is given by

vg =
1

Re {∂κ/∂ω} . (6)

Isolating κ in Eq. (3) we get κ = (1/a) arccos[ f (ω)] which
may formally be differentiated to give ∂κ/∂ω = −(1/a)[1−
f 2(ω)]−1/2∂ f /∂ω, with

f (ω) ≡ 1
γ

(
1− ∆γ

2
− 2Qω

Ω(2Q + i)

)
. (7)

Taking the inverse of the real part we then arrive at an analyt-
ical expression for the group velocity. Though the calculation
is straightforward, the final result is lengthy and it is not re-
produced here. Along the same lines, we may also calculate
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FIG. 1 Complex dispersion relation for a CROW. Dashed lines are for Q = ∞ while

solid lines correspond to Q = 102. The left panel shows the frequency ω versus

the real part of the Bloch wave vector κ′, the middle panel shows the frequency ω

versus the imaginary part of the Bloch wave vector κ′′ , and the right panel shows the

density-of-states ρ(ω).

density-of-states from the dispersion relation in Eq. (3). For
the particular case of a one-dimensional chain, the density-of-
states is inversely proportional to the group velocity, giving
rise to the following density-of-states

ρ(ω) =
a
π

Re
{

∂κ

∂ω

}
. (8)

Figure 1 illustrates the dispersion properties of the CROW.
The left panel illustrates the relation between the frequency
ω and the real part κ′ of the complex-valued Bloch wave vec-
tor κ = κ′ + iκ′′. Likewise, the middle panel illustrates the
relation between frequency ω and the imaginary part κ′′ of
the Bloch wave vector. Finally, the right panel shows the cor-
responding density-of-states. The difference between the ideal
structure (Q→ ∞) and one employing resonators of finite Q is
contrasted by the dashed and solid lines, respectively. Notice
how the finite Q factor serves to smear out van Hove singu-
larities in the density-of-states. In the dispersion relation this
has its counterpart in the group velocity not going to zero near
the high-symmetry points corresponding to the band edges of
the ideal structure. Also, quite steep bands appear outside the
traditional band of extended states, though of course with a
significant attenuation as evident from the middle plot illus-
trating the κ′′ dependence.

In the following we analyze the result at the band-center and
the band-edges in more detail. For simplicity we assume γ�
1, which is also the relevant regime for slow-light applications.
Furthermore, we neglect the small shift ∆γ so that the band is
centered around ω = Ω with band-edges at ω = (1± γ)Ω. At
the band center we get

vg

v0
= 1 +

1
8

1
γ2Q2 +O(Q−4), (band center) (9)

where v0 = γaΩ is the group velocity at the band center for
infinite-Q resonators. Likewise, at the band-edges we get

vg

v0
=

√
2
|γ|Q +O(Q−3/2). (band edges) (10)

The first result illustrates that in the center of the band, the
group velocity is rather insensitive to the quality factor, and
given by v0 provided that Q � 1/γ. On the other hand, at
the band edges the group velocity scales quite unfavorably
with the Q factor, making the slow-light regime challenging
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FIG. 2 Density-of-states for a CROWs with varying coupling, Eq. (8). The dashed line

illustrates the Lorentzian density-of-states for the uncoupled resonator, Eq. (2).
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FIG. 3 Plot of the minimum group velocity versus γQ calculated numerically from

Eq. (6) for the three different cases of γ = 0.001, 0.01, and 0.1. The dashed line

shows the asymptotic expression for the group velocity at the band edge, Eq. (10).

to explore. In the case of absorption, the quality factor Qabs is
inversely proportional to the imaginary part ε′′ of the dielec-
tric function [16, 17] so that vg ∝

√
ε′′ in full agreement with

the perturbative results derived from band-structure consid-
erations in [14]. At the band center, the group velocity of the
ideal CROW is finite and given by v0. Furthermore, the group
velocity is hardly dispersive (the second-order derivative is
small), thus making the group velocity itself quite insensitive
to dissipation [18]. Results similar to Eqs. (9) and (10) were
reported recently in [3].

The interplay of the coupling strength γ and the quality fac-
tor Q is also illustrated in Figure 2, depicting how the initial
Lorentzian line-shape broadens with increasing γ into a band
with van Hove singularities at the two band edges. Notice
how the area below the curves is conserved. Obviously, the
most pronounced slow down occurs at the van Hove singu-
larities associated with band edges. The smearing by the finite
Q serves to shift the minimum in the group velocity slightly
away from the band edge. Figure 3 shows the minimum group
velocity versus γQ calculated numerically from Eq. (6) for the
three different cases of γ = 0.001, 0.01, and 0.1. As seen, the
full results are in excellent agreement with the predictions of
Eq. (10) shown by the dashed line.

4 THE MAXIMAL GROUP DELAY

The group delay is given by τ = L/vg with L being the length
of the waveguide. To estimate the maximal realistic group
delay we use that for any practical purpose L . 1/α with
α = 2κ′′ being the damping parameter. This gives an upper
bound

τmax ∼
1

vgα
=

1
2κ′′

∂κ′

∂ω
. (11)

Combining the full results for vg and α and expanding in 1/Q
we get

τmax ∼
Q
Ω

+O(Q−1) = τp +O(Q−1). (12)

Quite intuitively, the maximal group delay is limited by the
photon life time τp = Q/Ω of the individual resonators inde-
pendently on the actual frequency. Despite the reduced group
velocity near the band edges, the advantage of a slowly ad-
vancing wave package is balanced by a reduced propagation
length, see the middle panel of Figure 1. According to our
knowledge, this is an overlooked issue which is important for
the potential application of CROW concepts in optical buffers
and delay-line architectures. We emphasize that compared to
a single resonator, the CROW of course offers the advantage
of an increased bandwidth.

5 PHOTONIC CRYSTAL EXAMPLE

Finally, we consider a CROW realized by coupled defects
in a photonic crystal. For simplicity, we consider a two-
dimensional photonic crystal with triangular lattice of air-
holes of diameter d and pitch Λ. By removing every third
air hole on a line we form a CROW with a lattice constant
a = 3Λ. In order to compare the predictions of Eq. (3) to
full-vector simulations we employ a plane-wave method [19].
We consider air holes of diameter d = 0.6Λ in a dielectric
material with ε = 7.0225, and using a super-cell approxi-
mation the plane-wave method gives ΩΛ/2πc = 0.3079 for
the resonance frequency of an isolated defect cavity. For the
corresponding CROW we obtain the dispersion relation in-
dicated by data points in Figure 4. The dashed line shows
a least-square error fit to Eq. (3) with ΩΛ/2πc = 0.3074,
∆γ = 3.705× 10−5, and γ = −0.0066, while Q → ∞. Note
how the fitted value of Ω agrees excellently with the value ob-
tained independently for the isolated defect cavity. Further-
more, the parameters indeed satisfy ∆γ� γ� 1 as assumed
in our analysis leading to Eqs. (9) and (10). Consequences
of a finite Q factor can now immediately be predicted and
the solid line shows how the dispersion changes in the pres-
ence of a finite quality factor, Q = 103. At the band edges,
Eq. (10) in this particular case leads to a maximal group index
of ng ∼ (3/2)

√
Q, so that Q = 104 would allow a group index

up to ng ∼ 150, while Q = 103 would limit the group index
to ng ∼ 50. However, as discussed above the high group in-
dices do not come for free as they will be associated with an
increased damping.

6 CONCLUSION

In conclusion, we have derived an explicit relation for the dis-
persion relation of CROWs made from resonators with a finite
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FIG. 4 Dispersion relation for a CROW in a two-dimensional photonic crystal with ε =

7.0225 and with air-hole diameter d = 0.6Λ and waveguide pitch a = 3Λ, with Λ

being the pitch of the air-hole lattice. Data points are obtained with a plane-wave

method [19] while the dashed line shows Eq. (3) with ΩΛ/2πc = 0.3074, ∆γ =

3.705× 10−5, and γ = −0.0066, and Q → ∞. The solid line shows corresponding

results for the case of Q = 103.

Q factor. A finite Q profoundly influences the van Hove sin-
gularities near the band edges with a resulting limitation of
the group index while at the center of the band the dispersion
properties are less affected. Simple analytical expressions are
supported by calculations of the group velocity, demonstrat-
ing how the Q enters on an equal footing with the coupling
γ corresponding to the competing time scales associated with
photon decay and tunneling. In the context of practical appli-
cations involving the group delay, we note that the maximal
attainable group delay appears as a balance between the re-
duced group velocity and the the decay length. Explicit calcu-
lations show that irrespectively of the underlying bandstruc-
ture, the maximal group delay is limited by the photon life
time of the resonators. This illustrates the importance of ad-
dressing propagation loss and slow-light on an equal footing.
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[18] J. Grgić, J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Group-
index limitations in slow-light photonic crystals” article in press
at Photonics Nanostruct. (2009)

[19] S. G. Johnson, and J. D. Joannopoulos, “Block-iterative frequency-
domain methods for Maxwell’s equations in a planewave basis”
Opt. Express 8, 173–190 (2001).

10009- 4


	INTRODUCTION
	COUPLED-MODE THEORY
	DISPERSION, GROUP VELOCITY, AND DENSITY-OF-STATES
	THE MAXIMAL GROUP DELAY
	PHOTONIC CRYSTAL EXAMPLE
	CONCLUSION

