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A subwavelength-scale square lattice optical nanostructure is fabricated using an interference photolithography process on the surface of
a quartz microlens array. This nanostructuring of the quartz surface introduces an antireflective effect, reducing reflectivity between 10%
and 30% and enhancing the transmissivity 3% in the visible spectrum. This approach permits fast fabrication on a 4-inch wafer covered
with microlenses (non-flat surface) and produces monolithic devices which are robust to adverse environments such as temperature
variations. [DOI: 10.2971/jeos.2010.10006]
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1 INTRODUCTION

Fabrication of microlens arrays has been extensively ex-
plored [1]–[3] as they are widely used in a large range of
applications, often to link between macro and micro optical
components [4]. Antireflective (AR) coatings and surface
treatments on microlenses have been proposed for different
materials and wavelengths [5]–[7] and theoretical analyses
have been performed [8]. The principal solution proposed
in a number of papers consists of an antireflective coating
deposited on the structure. Although this method is quite
evolved, there are some applications where having a mono-
lithic material structure is advantageous, such as in extreme
temperature conditions or particularly aggressive environ-
ments, as presented in [9] for planar surfaces. Gratings on
microlenses in plastic materials have been demonstrated
using replication by hot embossing [10].

In this paper, we investigate an alternative approach. It con-
sists of nanostructuring the surface of the microlenses, pro-
ducing an AR layer having engineered effective refractive in-
dex properties which reduces the reflectivity and enhances the
light transmission through the lens. In this work we demon-
strate the feasibility of fabricating such nanostructures on a
large, non-flat surface. In the following, we will present ex-
perimental results on such nanostructured monolithic lenses,

which, although not ideal, exhibit significant AR characteris-
tics.

2 FABRICATION

To begin, we describe the fabrication of a subwavelength AR
layer on the surface of a quartz microlens array with inter-
ference photolithography and plasma etching. The challenge
is to obtain an homogenous structure on the entire surface of
each lens and on a large array of microlenses. The shape of
the nanostructures we produce with this method is not as rect-
angular as the structures often studied. However, these more
rounded, non-rectangular nanostructures still possess signif-
icant AR properties. Moreover, it allows the production of
nanostructures quickly, inexpensively, and on large areas.

First, an hexagonal array of 145 µm diameter microlenses is
structured by photolithography and a reflow process [11] on
a 4-inch quartz wafer. Then, the microlenses, which are 14 µm
high, are transferred into the quartz by Reactive Ion Etching
(RIE). The pressure is set at 2.7 mbar and the flow rate is set at
3 sccm (standard cubic centimeters per minute) of Ar, 20 sccm
of O2 and 34 sccm of C3F8 for an etching rate of approximately
300 nm per minute.
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FIG. 1 Side view of a microlens with nanostructured photoresist shows that photoresist

covers the entire surface of the microlenses, with varying thickness depending on the

position and on the local slope.
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FIG. 2 Illumination with interference fringes created by superposition of direct and

reflected light emanating from a single pinhole.
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c) d)

FIG. 3 (a) SEM picture of a 145 µm diameter microlens with the entire surface covered

by a square array of nanopillars. SEM pictures with higher magnification of different

part of the microlens: (b) top region, (c) maximum slope region, and (d) edge region.

For the AR nanostructured surface, a 400 nm diluted photore-
sist (PR) is spun at very low speed (400 rpm) for 25 seconds, in
order to cover fully the surface of the microlenses. The Scan-
ning Electron Microscope (SEM) picture shown in Figure 1

presents a side view of a microlens coated by the nanostruc-
tured PR. One can see that due to the slope induced by the mi-
crolens’ curvature, the height of the photoresist coating is not
uniform over the entire surface [12]. Indeed, the PR thickness
varies between the lower (∼ 1 µm) and the upper (∼ 450 nm)
parts of the microlenses with a minimum around 200 nm
where the slope is greatest. This requires that the exposure pa-
rameters for the photolithography be set for the thinnest part
of the resist in order to avoid overexposure.

After a prebake at 40◦C and 50◦C for thirty minutes each,
the nanostructure pattern is introduced by interference pho-
tolithography [13]. A UV laser beam (Kr2+) is expanded and
spatially filtered passing through a microscope objective (20×)
and a 10 µm pinhole to create a coherent spherical wavefront
(see Figure 2), which can be approximated in the far field as a
planar wavefront for a small area. The fringes are created by
placing a mirror at 90◦ with respect to the sample (Lloyd’s
mirror configuration). The grating period, Λ, is selected by
adjusting the angle, θ, between the two incident beams using
the x-y rotational stage following the equation Λ = λ/ sin θ,
where the laser wavelength, λ, is fixed at 413 nm [14]. Then
the wafer is rotated in the y-z plane by 90◦ and exposed again
to obtain a two dimensional square lattice.

The power on the sample is set at 1 µW/cm2 and the total
exposure time is approximately one minute.

After a post baking process at 80◦C, the last step is to trans-
fer the nanostructures from the resist into the quartz. This is
achieved using a short plasma etch (30 sccm C3F8 + 1 sccm
Ar). The maximum thickness of quartz removed in this step
is 200 nm, so the shape of the microlenses is only minimally
affected. After removing the photoresist, we obtain a 4-inch
wafer covered with microlenses having a nanostructured AR
surface in quartz.

Figure 3 shows SEM pictures of a nanostructured microlens
(see Figure 3(a)) and close-up views of the shape of the nanos-
tructures on different areas of the lens (see Figures 3(b), 3(c)
and 3(d)).

The annular rings (Moiré effect) observed in the SEM picture
in Figure 3(a) show that the nanostructures completely cover
the non-flat surface consisting of microlenses. The periodicity
is 270 nm in both transverse directions, independent of the
position on the lens.

The nanostructures in the central region of the lens (see Fig-
ure 3(b)) are approximately 100 nm deep, and have a slightly
rounded shape as compared to the rectangle structures stud-
ied theoretically [5]. In addition, one can observe some links
between the pillars. In the maximum slope region (see Fig-
ure 3(c)), we can see that the links between the pillars have dis-
appeared, and the structures are approximately 40 nm deep.
In the edge region of the lens (see Figure 3(d)), the shape of
the nanostructures have the same profile as in the central re-
gion (see Figure 3(b)). The variations in the aspect ratio of the
nanostructures are due to the inhomogeneity of the PR thick-
ness as shown in Figure 1.
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FIG. 4 Measured phase image of a nanostructured microlens using an interference

microscope, working at 632 nm wavelength, to characterize the Strehl ratio.

Note that the non-rectangular nanostructure profile does not,
a priori, impact the desired properties of our device, as our
goal is not to obtain a wavelength filter but rather a broad-
band AR effect. An optimization of the PR deposition process
shall be envisaged to improve the homogeneity. Nevertheless,
as we will demonstrate, these nanostructures result in a sig-
nificant reduction in the reflectivity of the microlens surface.

The quality of the microlenses is measured using a Mach-
Zehnder interferometric microscope, using an iris to select a
single lens [15]. The phase and intensity of the interference
pattern are measured, then the Strehl ratio of the lenses is cal-
culated. The Strehl ratio is the ratio between the peak diffrac-
tion intensities of an aberrated versus a perfect wavefront.
Conventionally, the acceptable value for the Strehl ratio is
greater than 0.8, which corresponds to an rms wavefront error
of λ/14 (Marechal’s criterion [16]). For the quartz microlenses
without nanostructure, we obtain Strehl ratios between 0.92
and 0.99 depending on the specific lens selected. After the
plasma etching, due to the PR thickness variation, the shape
of the microlenses changes slightly and the Strehl ratio is mea-
sured to be around 0.9. The measurements are done on dif-
ferent areas of two wafers of each type. From the phase im-
age shown in Figure 4, we observe that the aberrations come
mostly from the outer part of the lens.

From these measurements, we demonstrate the feasibility of
producing a nanostructured AR surface on a quartz microlens
array without significantly reducing the quality of the lenses.
Indeed, the challenge here is to fabricate a combination of
micro- and nano-scale structures on a large surface in the same
material.

3 CHARACTERIZATION IN REFLECTION

In the previous section, we demonstrated the production of
a microlens array with its entire surface covered by a nanos-
tructured AR square grating. However, the fabricated nanos-
tructures were non-ideal in several respects, including vari-

Spectrometer

Objective

Sample

DiaphragmLamp

FIG. 5 Schematic drawing of the setup for reflectivity measurements of different sam-

ples. The light from a halogen lamp is focused onto the sample, and the reflected light

is then collected to be analyzed by a spectrometer.

ability in the nanostructure size depending on the position on
the lens, and deviation of the pillar shape from the rectangu-
lar profile of the original design [5]. In this section, we will
show through experimental characterization that these non-
ideal nanostructures still provide a significant attenuation of
the reflectivity of the microlens array.

The setup used for the reflection measurements is shown
schematically in Figure 5. It is based on a standard microscope
stand (Leica DMR) with a spectrometer (Ocean Optics 2000)
mounted at the end of the light path. Three objectives have
been used: 100× (NA = 0.9), 40× (NA = 0.6) and 20× (NA
= 0.4). An adjustable circular diaphragm is added in the light
path to be imaged onto the sample. It allows control of the spot
size to be measured. This setup will be used for all reflection
measurements of our samples.

The first step is to characterize the performance of the nanos-
tructured AR surface on a flat substrate. A flat quartz wafer
without nanostructures is measured to obtain a reference sig-
nal (Rref) with the image of the diaphragm is set at 140 µm
diameter. Then, the reflection of the nanostructured sample is
measured (R) with the same parameters of illumination and
detection. The graph shown in Figure 6 shows the ratio be-
tween the spectral response of the nanostructured surface and
the reference signal. The red curve is the result using a 100×
objective with a numerical aperture of 0.9 and the black curve
using a 40×objective with a numerical aperture of 0.6. The re-
flectivity is decreased between 10 and 35% with the 100×ob-
jective and between 5 and 10% with the 40× objective. This
means that the nanostructure layer has an antireflective ef-
fect over the entire visible wavelength range, as was predicted
theoretically and already demonstrated experimentally with
other materials [5].

Furthermore, using a higher numerical aperture (i.e. a larger
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FIG. 6 Reflectivity spectra of the AR nanostructures on a flat substrate normalized by

the reflectivity of a flat non-structured wafer, using a 100× objective, NA = 0.9 (red)

and a 40×objective, NA = 0.6 (black).
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FIG. 7 Normalized reflectivity spectrum for an area containing several nanostructured

microlenses.

illumination angle) reduces the reflectivity, which qualita-
tively agrees with the theoretical predictions presented in Ta-
ble 2 of [5].

The reflectivity varies as a function of the wavelength, as
demonstrated in [17]. In the results shown in Figure 6, the
largest attenuation is obtained for smaller wavelengths. Theo-
retically, the minimum of reflection should be centered around
550 nm. However, since the height of the nanopillars is lower
than in the design, it is to be expected that this minimum is
shifted to lower wavelengths.

Moreover, measurements are made on different areas of the
sample with essentially identical results (less than 5% vari-
ation). This shows that the nanostructures are relatively ho-
mogenous over the entire 4-inch wafer.

From these results, we have demonstrated that we are able
to fabricate a square lattice of nanopillars with a periodicity
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FIG. 8 Reflectivity ratio between lenses with and without AR nanostructures for aper-

ture diameters of 47 µm (blue), 93 µm (red), 117 µm (green) and 140 µm (black). The

reflectivity is decreased between 5% and 14% over the visible spectrum.

of 270 nm on a 4-inch wafer. A non-negligible attenuation of
the reflectivity has been observed and could be improved by
producing taller nanostructures.

The objective is then to determine whether the nanostructures
maintain the same AR behavior on a microlens array instead
of on a flat surface. The setup shown in Figure 5 is used to
characterize these samples. In this case the reference is defined
by measuring the reflectivity of an array of quartz microlenses
without AR nanostructures, and all the results are normalized
by this reference.

Two different studies have been performed. The first consists
of the measurement of the reflectivity of a surface containing
several nanostructured microlenses (∼ 7). In this case, a 20×
objective with a numerical aperture of 0.4 is needed to image
a large enough area (450 µm in diameter). For both the sample
and the reference, the center of one microlens is positioned in
the middle of the light path. The results are shown in Figure 7.

The attenuation of the reflectivity is between 30% and 15%
over the visible spectrum. The curve shown is an average of
two measurements acquired on two different areas of the sam-
ple.

The second experiment measures the behavior of a single mi-
crolens. In this case, a 100×objective is aligned with the cen-
ter of one microlens. Diaphragms with different aperture di-
ameters are used to observe the effect of the curvature of the
microlens on the AR properties. The normalized reflectivity
measurements are plotted in Figure 8 for image diameters of
47 µm, 93 µm, 117 µm and 140 µm. The largest aperture cor-
responds to nearly an entire microlens. Each curve is the av-
erage of three measurements performed on different areas of
the wafer. Note that the reference is always measured with the
same diaphragm size as the sample.

The curves in Figure 8 show that better attenuation, between

10006- 4



Journal of the European Optical Society - Rapid Publications 5, 10006 (2010) P.-Y. Baroni et al.

Spectrometer

Objective

Microlenses

Diaphragm

Lamp

FIG. 9 Setup for transmission measurements of microlenses with and without AR

nanostructures.

20% and 11%, is obtained when nearly the entire microlens is
considered.

Comparing Figures 6 and 8, one can see that the attenuation
of the reflectivity is better (by roughly a factor of two) for the
flat nanostructures than for the microlenses. This can be ex-
plained by the variation of the nanopillar’s height as a func-
tion of their position on the microlens, as shown in Figure 3.
An improvement of the fabrication process is necessary in or-
der to produce a more homogeneous layer of photoresist [12].

Antireflective properties have been observed on nanostruc-
tured flat surfaces (see Figure 6) as well as on single mi-
crolenses (see Figure 8) and an area composed of several mi-
crolenses (see Figure 7). In this last case the attenuation of the
reflectivity is greater than for the single lens, which shows that
the flat area between the microlenses also contributes to this
effect.

4 TRANSMISSION CHARACTERIZATION

In most cases, microlenses are used in transmission to focus
light (e.g. onto a sensor array). To complete the study of our
device, transmission measurements are performed.

The experimental setup used for transmission measurements
is shown in Figure 9. Due to technical issues, the sample must
be illuminated from backside. In order to focus light on the
side of the wafer with the structure, a condenser with a nu-
merical aperture of NA = 0.6 is used. Light is collected by a
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FIG. 10 The red curve shows the ratio between the transmitted light through quartz

microlens with and without AR nanostructures while the black curve shows the maxi-

mum potential transmittance.

microscope objective (100×) and analyzed using a spectrome-
ter.

Once again, the reference for the experimental measurements
is a microlens without nanostructures. The normalized trans-
missivity curve shown in Figure 10 is the smoothed mean of
three measurements taken on different areas of the wafer. The
enhancement of the transmission over the visible range is 3%
on average. For comparison, the maximum expected trans-
missivity of this device has been calculated using ray tracing
simulation software FRED from Photon Engineering, (apply-
ing the Fresnel equations at the interfaces). By evaluating a
microlens without nanostructures with the same illumination
and collection microscope objectives (numerical apertures are
taken into account) as in the experiment, we estimate the max-
imum transmission enhancement to be 5% according to this
model.

As in the reflectivity measurements, the fabricated non-ideal
nanostructures still show significant AR properties, increas-
ing the transmissivity of the microlenses by an average of 3%
across the visible spectrum. This improvement is also an ap-
preciable fraction of the theoretical maximum enhancement of
5%.

5 TEMPERATURE STABILITY

One of the major challenges with other approaches for AR
coatings, such as multilayer thin films, is robustness to ad-
verse conditions such as high temperatures.

In order to test the temperature stability of our AR nanostruc-
tures, transmission measurements are performed before and
after heating the sample in an oven at 250◦C for one hour
and then cooling to room temperature. A 300 µm area is il-
luminated and the transmitted light is collected by a 100×mi-
croscope objective (NA = 0.9) using the setup shown in Fig-
ure 9. The results in Figure 11 show that the enhancement
of the transmissivity stays essentially constant, which indi-
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cates that the AR nanostructure is not materially damaged by
this temperature cycling. The black and red curves represent
the measurements performed before and after heating respec-
tively normalized by a reference (microlenses without nanos-
tructures). Each curve is the average of two measurements
performed on different areas of the wafer.
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FIG. 11 Normalized transmission spectra of the nanostructured microlenses before and

after baking at 250˚C for one hour.

The durability of the AR nanostructure with respect to tem-
perature cycling is not surprising, as the only material in the
device is quartz. Moreover, as these structures are composed
of a monolithic, homogenous material, they may better tol-
erate adverse environments, including extreme temperatures,
variable humidity, immersion in liquids, or caustic surround-
ings. This suggests an important potential class of applica-
tions for single-material microlenses with an AR surface.

6 CONCLUSION

In this paper, the feasibility of fabricating an anti-reflective
layer by nanostructuring large microlens arrays (4-inch wafer)
has been demonstrated. The reduced reflectivity of the mi-
crolens surface is based on the engineered effective refractive
index properties of a nanostructure, in this case an array of
pillars that covers the entire surface of the microlenses. Al-
though the structures on quartz microlens arrays are not per-
fect, the reflectivity measurements show a 15% improvement
compared to unstructured microlenses. Transmission mea-
surements, obtained with a different setup, show an enhance-
ment of approximately 3% of the transmission. Incremental
improvements in the fabrication process can further improve
the performance of the antireflective surface, facilitating their
incorporation into more complex micro-optical systems. An
antireflective treatment of the backside of the wafer, either
through nanostructuring or other methods, could also be en-
visaged.

In addition, we have demonstrated the interference lithogra-
phy technique as a suitable method for the delicate fabrica-
tion of a nanostructure on a large, non-flat surface. This work
has shown promising results consistent with theoretical pre-
dictions.

Finally, we have shown that a single-material device is stable
and robust, for example to variations in temperature, which

suggests that these devices may be suitable for applications
involving extreme environmental conditions.
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