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We present a theoretical analysis of pulse propagation and self-focusing in a gain-guided (GG) fiber amplifier. A weak pulse is launched in
the GG fiber when the input pulse reaches a critical power the pulse begins to collapse in the transverse direction. By using different input
powers the transmission characteristics are changed. We add coupling to a single-mode fiber at the output end and study pulse dispersion
and energy. [DOI: 10.2971/jeos.2009.09051]
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1 INTRODUCTION

New fiber designs have enabled an increase in power ex-
tracted from fiber amplifiers and lasers. In particular Large
Mode Area (LMA) fibers suppress nonlinear effects in fibers,
thus allowing higher powers before nonlinear optical effects,
such as Stimulated Brillouin Scattering (SBS) or Stimulated
Raman Scattering (SRS), are an issue [1, 2]. For many appli-
cations, it is desired that the output signal is a single longi-
tudinal mode, but that requires effective means to suppress
other cavity modes. For instance, the use of a multicore fiber
has been recently proposed and experimentally examined to
produce a large area single mode fiber [3]. Exploiting index-
matched core-cladding fiber designs improved higher-order
mode suppression can be achieved in solid or microstructured
fibers [4]. This is a first step to help to narrow the optical spec-
trum and sustain high power. Finite-difference simulations
show that even gentle bends needed for a coiled-fiber config-
uration can lead to unintended resonant coupling and exces-
sive loss in the fundamental mode, ruining the selective mode
suppression.

Optical fibers are generally made with guiding in the core us-
ing total internal reflection to create the guided mode. How-
ever, Siegman has proposed a scheme for gain guiding in opti-
cal fibers [5, 6] and experimenters [7] have recently shown that
one can use an index, anti-guiding core with a highly doped
amplifying large region to create a stable, single mode output
by gain guiding the light in the fiber. The large mode area of
these fibers with gain in the core is reminiscent of unstable
cavity designs for high power lasers.

In this paper, we simulate propagation of spatio-temporal
pulses in gain-guided (GG) fibers. We examine the effect
of third-order nonlinearity, self-phase modulation on pulse
propagation in GG fibers. In a two-dimensional geometry the
third-order nonlinearity leads to the self-focusing and collapse
of the beam into a filament, unless the collapse is arrested
by other processes. At the same time, the nonlinear index in-
duced spatial dispersion leads to an additional temporal dis-
persion for the pulse. The numerical modeling of propagation
is performed with different GG fiber parameters and the de-
tailed results are examined.

2 NUMERICAL SIMULATIONS

In a standard step-index fiber with core radius a and core and
cladding indices nco and ncl , (∆n = nco − ncl), the number of
guided modes and the mode profile are determined by the V
parameter, whose square in a low index contrast limit is given
by:

V2 = ∆N = 2no

(
2πa

λ

)2
∆n, (1)

where n0 is the average index of the core-cladding materials,
and λ is the signal wavelength. However, the V parameter for
a GG fiber is defined by Siegman as a complex parameter [5, 6]

Ṽ2 = ∆N + iG (2)

The real part is the usual V parameter, which is defined in
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Eq. (1), and the imaginary part is the gain parameter which is
given by:

G =
noλ

2π

(
2πa

λ

)2
g, (3)

where g is the power gain coefficient in the core. For ∆n > 0
and g = 0, the fiber corresponds to the usual guided fiber ge-
ometry. For gain guided fibers, the solutions of propagating
modes can be written in terms of Bessel functions with com-
plex parameters which are related to index contrast and the
gain in the waveguide as given in Eqs. (1) and (2) [5, 6].

The GG fibers could have large core radii which could pro-
vided high power output while lasing still maintains a single
mode characteristic. Recent experiments have demonstrated
single mode and stable lasing in a gain-guided, index anti-
guided Nd3+ doping fiber with a highly doped amplifying
large core region. The fiber was initially pumped with a flash-
lamp, and recently laser diode pump was also realized [7, 8].

The pulse propagation in the GG fiber is governed by the Non-
linear Schrödinger Equation (NLSE). We assume a slowing
varying amplitude A(x, y, z, τ), so the NLSE under paraxial
approximation is written in the form below.

∂A
∂z

=
i

2k
∇2
⊥A +

i
2k

(ω

c

)2
(n2

co − n2
cl)A

− i
β2

2
∂2 A
∂τ2 + iγ|A|2 A− α

2
A, (4)

where β2 is the group velocity dispersion parameter, which
is small for our numerical parameters; in silica glass it is
−26 fs2/mm and in single mode fiber it is −20 fs2/mm [9].
For 1 ps pulse widths and 10 cm GG fiber length the temporal
dispersion is negligible although we retained it in our simula-
tions. k is the wave number in the cladding of the fiber given
by (ω/c)ncl , where ω is the central frequency of the pulse,
c is the velocity of light, ncl is the cladding refractive index
which is 1.5689 in the GG fiber, as taken from [7], and nco is
a complex core index. The results are not sensitive to the real
part of the core and cladding indices. The fiber can be index
guiding or antiguiding with no noticeable change of the mode
profile. The complex core index consists of a refractive index
and the gain modified index, and it is written as nco = nr + ini,
where nr = 1.5734 is the real part of the index [7], and ni is the
imaginary part, and ni = −g/2k0, where g = 7× 10−5 µm−1

(0.7 cm−1 ) is the power gain coefficient. ncl is the cladding
index, k0 = 2π/λvac, is the wave number in vacuum and λvac
is the central wavelength of the pulse in vacuum, which is
1.55 µm. The nonlinearity coefficient γ = k0n2, where n2 is the
nonlinear index in silica, which is 3.0× 10−8 µm2/W [9, 10],
and α is an absorption coefficient, which is assumed to be neg-
ligible in our simulations.

Cylindrical symmetry is assumed, i.e. A(r, z, τ), and we ap-
ply the 1-D Hankel transform, instead of a 2-D Fourier trans-
form, to the transverse direction, making the numerical sim-
ulations run much faster and saving computational memory.
In the time domain, we apply 1-D Fourier transform. For nu-
merical simulations, Eq. (4) is written in terms of operators:

∂A
∂z

= Lr A + LD A + LI A +N (A) · A, (5)

where

Lr =
(

i
2k

)
∇2
⊥ (6)

is the diffraction operator,

LD = −i
(

β2

2

)
∂2

∂τ2 (7)

is the dispersion term,

LI =
(

i
2k

)(ω

c

)2
(n2

co − n2
cl) (8)

is the complex index term, which includes gain guiding in the
core, and N (A) = iγ|A|2 is the nonlinear self-phase modula-
tion term. The solution of Eq. (5) for a step size ∆z is written
in the form below:

A(z + ∆z) = Z
{

exp
[∫ ∆z

0
(Lr + LD +N (A) + LI)dz

]}
(9)

where Z{. . .} is the normal order of operators with respect to
z. Eq. (9) can be approximately written as:

A(z + ∆z) = e(Lr+LD) ∆z
2 · eLI ∆z · eN (A)∆z · e(Lr+LD) ∆z

2 A(z)

= eLr
∆z
2 · eLD

∆z
2 · eLI ∆z · eN (A)∆z · eLr

∆z
2 · eLD

∆z
2 A(z).

(10)

Eq. (10) is the split-step method for solving the propagation.
The action of each operator is described below. The pulse
propagation under temporal dispersion can be described as:

A
(

z +
∆z
2

)
= eLD

∆z
2 A(z). (11)

Eq. (11) can be solved by using a 1-D Fast Fourier Transform
(FFT) in time domain, and the field at z + ∆z/2 is:

A
(

z +
∆z
2

)
= FFT−1

{
exp

[
−i

β2ω2

4
∆z
]

FFT {A(z)}
}
(12)

where ω denotes the temporal angular frequency in the
Fourier space. For the diffractive propagation, we apply the
Fast Hankel Transform (FHT). The 2-D Laplacian operator of
the diffraction is written in cylindrical coordinate as:

∇2
⊥ =

∂2

∂r2 +
1
r

∂

∂r
, (13)

where r2 = x2 + y2. By using the FHT, then we have:

i
2k

(
∂2

∂r2 +
1
r

∂

∂r

)
A(r, t) FHT−→− i

2k
4π2ρ2 AH(ρ, t), (14)

where AH(ρ, t) is the Hankel transform of A(r, t) and ρ is the
spatial radial frequency, and the transform is defined as:

AH(ρ, t) = 2π
∫ ∞

0
A(r, t)J0(ρ · r)dr, (15)

where J0(. . .) denotes the zero-order of Bessel function of the
first kind. Also, note that the forward and inverse Hankel
transform take the same form as Eq. (15). A quasi-discrete
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(a) (b) (c)

FIG. 1 The spatio-temporal pulses propagation in the GG fiber. (a)-(c) are pulses propagation for 50 µm, 75 µm, and 100 µm core size respectively (size: 700 kB, format: avi, see

Fig1a.avi, Fig1b.avi, Fig1c.avi).

Hankel transform is used to evaluate the zero-order transform
[11, 12]. The field after propagation of ∆z/2 is [13]:

A
(

z +
∆z
2

)
= FHT

{
exp

[
−i

π2

k
ρ2∆z

]
AH(ρ, t)

}
. (16)

There are many other numerical methods for solving the
NLSE. For example, the finite difference method, such as the
Crank-Nicolson algorithm, with transparent boundary condi-
tion can be applied to solve the pulse propagation [14, 15]. We
have also applied the 2D FFT method assuming no cylindri-
cal symmetry to the propagation equations without temporal
effects and found identical results as a check of the FHT algo-
rithm.

The complex index parameter includes gain-guiding effects,
the field for the index term is:

A (z + ∆z) = exp
[

i
2k

(ω

c

)2
(n2

co − n2
cl)∆z

]
· A(z) (17)

and for nonlinear terms, the field at z + ∆z is be obtained
through:

A(z + ∆z) = exp(iγ · |A(z)|2 · ∆z) · A(z). (18)

After solving for each material process, the pulse propagates
under the action of dispersion and diffraction for another
∆z/2 step, as depicted in Eq. (10), and the pulse at z + ∆z
is used for the next step. Without self-phase modulation the
mode profile takes the form given by Siegman [6],

Ẽ01(r) =
{

J0(ũr/a) r ≤ a
K0(w̃r/a)[J0(ũ)/K0(w̃)] r ≥ a

, (19)

where w̃ = wr + iwi, wr ∼= −(j201/∆N) × [G/Gth − 1] and
wi ∼=

√
−∆N, where ∆N is given in Eq. (1), and Gth

∼=√
−133.8/∆N, j01 ∼= 2.405 and ũ ∼= j01(w̃− 1)/w̃. With a com-

plete propagation algorithm, the self-focusing effects from the
self-phase modulation term in the NLSE are investigated in
the next section.

3 RESULTS

Gain-guided fibers are studied with three different core radii
which are 50 µm, 75 µm, and 100 µm respectively. For each

case, we simulated the self-focusing and the self-phase mod-
ulation effect in the GG fiber. At the end of the GG fiber the
pulses are coupled into single mode fiber which has a core ra-
dius of 4.5 µm. The transmission and the phase characteristics
of the pulse are looked at in the single mode fiber. The input
pulse to the GG fiber is defined as Gaussian function in space
and time:

A(r, t) = A0 exp

[
−(1 + j · Pcurve) ·

r2

2w2
0

]
· exp

[
− t2

2τ2

]
,

(20)

where A0 is the initial field amplitude of 2.0 W1/2 · µm−1, w0
is the transverse pulse width which is taken as 50 µm, and
τ = 1 ps is the pulse width, and the initial temporal phase
curvature is Pcurve = 0, which means the initial pulse is not
chirped. The pulses with large enough initial field amplitude
will self-focus immediately before collapsing, the simulations
stop at that point since the beam collapse introduces high spa-
tial frequencies that are not captured by our numerical simu-
lations.

3.1 Pulse propagation in GG fiber with
self- focusing, and beam collapse

The spatio-temporal pulse propagation in the GG fiber is sim-
ulated, and the evolution of the field amplitude are shown
by the animations in Figures 1(a)–(c) with 50 µm, 75 µm, and
100 µm core radii respectively. Initially, the pulses oscillate in
the transverse direction. This is because the pulses are coupled
not only into the fundamental mode, but also to the higher or-
der modes in the fiber. However, after the pulses obtain suf-
ficient power, they have the shape of the fundamental mode
for the GG fiber, as described by Siegman. As a pulse with
sufficient launched energy propagates, it starts to focus, and
finally collapses into an on-axis filament. The difference be-
tween the chosen core radii is the position where the pulse col-
lapse occurs for a given input energy. The pulses start collaps-
ing after propagating around 11.2 cm, 9.2 cm, and 9.0 cm for
50 µm, 75 µm, and 100 µm core radii, respectively. For smaller
core radius, the distance is larger. The reason for this trend is
that the pulse has smaller gain in the transverse direction in
smaller cores compared with larger ones. The pulses need a
critical peak power to collapse. Thus, in order to obtain the
same power, the propagation distance in the smaller core size
fiber should be longer.
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FIG. 2 On axis self-phase modulation in GG fiber. (a)-(c) are the self-phase modulations for 50 µm, 75 µm, and 100 µm core size respectively (size: 400 kB, format: avi, see

Fig2a.avi, Fig2b.avi, Fig2c.avi).
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FIG. 3 Pulse coupling into the single mode fiber. (a), (c), and (e) are the transmission curves for 50 µm, 75 µm, and 100 µm core size respectively, and the GG fiber lengths are

11.2 cm, 9.2 cm, and 9.0 cm accordingly. (b), (d), and (f) are the phase curves for 50 µm, 75 µm, and 100 µm core size respectively. The critical power for collapse agrees with

analytical results and input powers are useful only until the beam collapses.

3.2 Self-phase modulation effect in the GG
fiber

In this sub section, we study the on-axis phase (r = 0) of the
pulse propagating in the GG fiber. Figures 2(a)–(c) show the
on-axis phase evolution as the pulses propagating in the GG
fiber. As the pulses propagate through the GG fiber, the phase
is constant for the initial propagation distances, but the pulse
develops a time varying phase at the position where the pulse
starts to focus on axis, see Figure 1.

Before the pulse collapses, there is a large temporal phase
change across the pulse. The critical power for pulse collapse
on the axis is given by Pcr = Ncrλ2/4πnrn2 [16] and the
numerical parameter is Ncr ≈ 1.9, which is about 7.8 MW for
the parameters used in our simulations.

3.3 Pulse coupling into the single mode
fiber

We couple the output pulses from the GG fiber into a sin-
gle mode fiber with a Gaussian profile whose mode width is
w = 4.95 µm [9]. The characteristics of the transmission am-
plitude and phase are investigated. The results are shown in
Figures 3(a)–(f). Figures 3(a), (c), (e), are the transmitted power
for the single mode fiber as a function of the input to the
GG fiber. The transmitted power is obtained by integrating
the field intensities over the transverse direction at each time
point. At lower input powers, the slope efficiency is small,
which indicates the coupling efficiency from GG fiber to SM
fiber is small. This is because, at smaller input power, the GG
fiber mode beam width is large in transverse domain. As the
input power increase, the pulse will start to focus at the end
of the GG fiber. So the coupling efficiency is higher because it
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has better overlap with the single-mode fiber mode. This ac-
tion results in a much higher slope efficiency. However, when
the input power is too high and beam collapse occurs, the
coupling efficiency precipitously drops, because the beam ra-
dius no longer matches the numerical aperture of the SM fiber.
The coupling efficiency will become unstable after the point of
collapse and results are not followed beyond this point. Fig-
ures 3(b), (d), (f) are the phases in the single mode fiber versus
the input power. The phase curves show characteristics that
are similar to the transmission curves. We note that the phase
variation is bigger for the 50 µm GG fiber core radius than for
the other core radii.

These results can now be used to infer the spread of the pulse
in the single mode fiber. A chirp of about 12π radians across
a 1 ps wide pulse corresponds to a chirp parameter of around
6π. The fiber length for dispersion compensation for shorter
pulses is reduced and the compensation fiber could be in-
serted in a fiber laser cavity to balance the dispersion in each
round trip.

4 CONCLUSIONS

We have studied the self-phase modulation effect on the trans-
verse spatial collapse of a pulse in a GG fiber. The spatial col-
lapse of the beam has an effect on the temporal dispersion and
we quantify this effect in our simulations. Following the GG
fiber section, the pulse was coupled into a single mode fiber
to study the transmission power and temporal phase variation
with launch power into the GG fiber. The saturable absorber
action of the transmission can be exploited to create mode-
locking in a fiber cavity, i.e. Kerr lens mode-locking in fiber
lasers for generating short pulses. The temporal dispersion
length for our case is much longer than the GG fiber length. By
shortening the pulse width to tens of femtoseconds the mate-
rial dispersion length will be comparable or smaller than the
GG fiber length. This situation will be explored in the context
of a mode-locked fiber laser with a GG fiber section in the cav-
ity.
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