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Aberrational vignetting and eikonal theory
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If an aperture stop is located inside of a real optical system, then a variation of an entrance pupil depends on the inclination of the
incident beam of light rays. This effect called “aberrational vignetting” depends on aberration of the part of the optical system, which
is located between the aperture stop and the entrance pupil. A theory of aberrational vignetting has been developed using the eikonal
theory. [DOI: 10.2971/jeos.2009.09046]
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1 INTRODUCTION

It is well known that there is an unintended fall of the illu-
mination from the center to the edge of the image of the opti-
cal systems (such as camera objectives). This is the vignetting
phenomena [1, 2]. The reason of the phenomena is the change
of the sizes of homocentric beams of light rays emitting from
different points of the source-object. Let us consider the case
when the sizes of beams are limited by a single stop, so-called
aperture stop.

In the case when the aperture stop is located in object space we
deal with natural vignetting (also known as a natural illumi-
nation fall-off) [1]–[5] (see Figure 1). This aperture stop is an
entrance pupil which subtends a homocentric beam emitted
by an object point. By the natural vignetting the angular aper-
ture ∆ω of the off-axis homocentric beam is a monotonically
decreasing function of distance x between the object point and
the optical axis. If the source-object obeys the Lambertian law
and the diameter of the aperture stop D is small in comparison
with the distance z between an image plane and aperture stop,
the natural vignetting is described by the “cosine fourth” law
of illumination fall-off [3]–[5]. Natural vignetting is inherent
to each lens design and becomes more troublesome for wide
angle lenses.

The natural illumination fall-off is not a theoretical inevitabil-
ity. In 1938 M. M. Rusinov [6, 7] discovered the phenomenon
of aberrational vignetting, which made it possible to radically
improve the natural illumination fall-off over the field of view
of objectives. If the aperture stop were to take place inside of
an optical system between two lens groups, it would, with the
help of the pupil aberrations, be able to increase light entering
the pupil for oblique rays. The growth of the entrance pupil
compensates for the natural illumination fall-off.

In the present work we describe the phenomenon of aberra-
tional vignetting using mathematical tools of the eikonal the-

ory [8]–[10], as well as the method of energy calculation of op-
tical systems with a planar Lambertian object-source [11, 12].
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FIG. 1 Natural vignetting.

2 THEORY

It is known [4, 8]–[10, 13] that the application of the eikonal
theory to radiometric calculations is simplified by us-
ing the concept of phase radiance. The “phase radiance”
L(x, y; px, py) is defined as the distribution of radiation flux F
over the phase space (x, y; px, py) [10, 13],

d4F =
L
(

x, y; px, py
)

n2 dxdydpxdpy. (1)

Here (x, y) are the coordinates on the object plane,
(px, py) = (n · ex, n · ey) are the momenta, where (ex, ey)
= (sin θ · sin ϕ, sin θ · cos ϕ) are the directional cosines of the
ray in the object space. For Lambertian sources the phase
radiance is constant over all “coordinate-momentum” of
phase space: L(x, y; px, py) = L = const.
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Let us consider an axially-symmetrical optical system with
a round aperture stop placed inside of the optical system
in a plane (xo, yo). Let the optical system as the whole be
aberration-free. The part between the object plane (x, y) and
the plane of the aperture stop (xo, yo) can have aberrations
(so-called pupil aberrations), but the other part of this system
improves them. Note that in such systems the process of re-
striction of beams of light rays is convenient for describing in
space of subjects.

We now consider two special cases; the object is located at a
finite distance (see Figure 2(a)) and the object is located at in-
finity (see Figure 2(b)).
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FIG. 2 Aberrational vignetting; (a) the object is located at a finite distance, (b) the

object is located at infinity.

2.1 The object is located at a finite
distance

A homocentric beam of light rays leaves an infinite small sur-
face element dxdy containing the point (x, y) of the planar
source-object. After passing an entrance pupil of the optical
system it is collected at the optically conjugated infinite small
surface element dx′dy′ containing the point (x′, y′). In the case
of an axially-symmetrical optical system it is possible, without
loss of generality, to consider a simple case where this homo-
centric beam of light rays leaves the point (x, 0) and is col-
lected at the optically conjugated point (x′, 0).

The size of this homocentric beam is limited by a round aper-
ture stop of diameter D∗, but because of pupil aberrations, this
beam borrows in the momentum plane a non-round area. Ac-

cording to Rusinov [7] its form is approximately equal to an el-
lipse with the semi-major axis length ∆px and the semi-minor
axis length ∆py, so the area P is equal to

P = π∆px∆py. (2)

To define the semi-axes ∆px and ∆py of the ellipse in the mo-
menta plane, we shall use the point eikonal S(x, 0, xo, yo) [8]–
[10, 13, 14] provided that the aperture stop is reasonably small:
D∗ << z. In the meridional section the momenta of the light
rays connecting the point (x, 0) with the edges of an aperture
diaphragm we shall find from expressions

p+
x =

∂S (x, 0; D∗/2, 0)
∂x

p−x =
∂S (x, 0;−D∗/2, 0)

∂x
.

So in linear approximation we have

2∆px = p+
x − p−x

=
∂S (x, 0; D∗/2, 0)

∂x
− ∂S (x, 0;−D∗/2, 0)

∂x

≈ ∂2S (0, 0; 0, 0)
∂x∂xo

D∗. (3)

In the sagittal section we use expressions

p+
y =

∂S (x, 0; 0, D∗/2)
∂y

p−y =
∂S (x, 0; 0,−D∗/2)

∂y
.

So in linear approximation we have

2∆py = p+
y − p−y

=
∂S (x, 0; 0, D∗/2)

∂y
− ∂S (x, 0; 0,−D∗/2)

∂y

≈ ∂2S (0, 0; 0, 0)
∂y∂yo

D∗. (4)

Thus the substitution of Eqs. (3) and (4) into Eq. (2) yields

P ≡ π∆px∆py

≈ π

4
∂2S (x, 0; 0, 0)

∂x∂xo

∂2S (x, 0; 0, 0)
∂y∂yo

D∗2. (5)

In the case of a planar Lambertian source according to Eq. (1)
the flux d2F emitted by a surface element dxdy containing the
point (x, 0) and restricted by the aperture stop P is equal to

d2F =
L
n2 dxdy · P. (6)

This flux d2F is collected without losses at the optically conju-
gate surface element dx′dy′ of the image of the perfect optical
system: dx′dy′ = m2dxdy, where m is its lineal magnification.
Thus, the required illumination distribution fall-off from the
centre to the edge of the image plane E(x′, 0) can be found
from

E
(

x′, 0
)
≡ d2F

dx′dy′
=

L

(nm)2 · P. (7)

Substitution of Eq. (5) into Eq. (7) yields

E
(

x′, 0
)

=
πL

4 (nm)2
∂2S (x′/m, 0; 0, 0)

∂x∂xo

∂2S (x′/m, 0; 0, 0)
∂y∂yo

D∗2.

(8)
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In the particular case of the “natural vignetting”, when a rea-
sonably small aperture stop (or its perfect image) is located in
the object space (and carries out the function of an entrance
pupil), the point eikonal is a point eikonal of the layer of op-
tically homogeneous media with refraction index n and thick-
ness z (see Figure 1),

S (x, y; xo, yo) = n
√

z2 + (xo − x)2 + (yo − y)2
∣∣∣∣
y=0

.

Thus Eq. (8) becomes:

Eo (x′, 0
)

=
πL
4

(
D
mz

)2 1

[1 + (x′/mz)2]2
(9)

where D is the diameter of the entrance pupil.

According to Maxwell’s formula [11] m · mo · z = (n/n′)z′,
where n and n′ are indices of refraction in the object and image
spaces respectively, z′ is the distance between the exit pupil
and image plane, mo is a linear magnification in the pupil
planes. So, Eq. (9) can be rewritten in the following way:

Eo (x′, 0
)

=
πL
4

(
n′mo

nz′
D
)2 1

[1 + (n′mox′/nz′)2]2
. (10)

In the typical case of n = n′ = 1 and mo = 1 the Eq. (10) takes
the form of the famous “cosine fourth” law:

Eo (x′, 0
)

=
πL
4

(
D
z′

)2
cos4 θ′

(
x′

z′

)
. (11)

Here cos θ′(x′/z′) = 1/
√

1 + (x′/z′)2 and θ′ is the angle in
an image space counted from the back nodal point N′ (see
Figure 1). Note that the ”natural vignetting” Eq. (10) enables
us to rewrite Eq. (8) in the form of the product

E(x′, 0) = Eo(x′, 0)µ(x′, 0)

where

µ
(

x′, 0
)

=
(

z′

mon′

)2
[

1 +
(

n′mo

nz′
x′
)2
]2

× ∂2S(x′/m, 0; 0, 0)
∂x∂xo

∂2S(x′/m, 0; 0, 0)
∂y∂yo

(12)

is a factor describing aberrational vignetting of the optical sys-
tem. In the first approximation the factor does not depend on
the diameter of the aperture stop [7]. Thus, in the case when
the object-source is located at a finite distance, aberrational vi-
gnetting depends on the product of mixed derivatives of the
point eikonal S in meridional and sagittal planes.

2.2 The object is located at infinity

If the planar object-source is moved to infinity: z → ∞, then
m→ 0 and the image plane transforms in the back focal plane:
(x′, y′)→ (x f , y f ), where f is the focal length, i.e. the distance
between the back focal point and the back nodal point N′ (see
Figure 2(b)).

A parallel beam of light rays with the momenta (px, py) and
a small divergence dpxdpy leaves the planar object-source and

falls to the entrance pupil of the optical system. After the beam
passes the entrance pupil, it is collected at an infinite small
surface element of the back focal plane

dx f dy f = f 2dpxdpy (13)

containing the point (x f , y f ) = ( f · px, f · py). In the case of
an axially-symmetrical optical system it is possible, without
loss of a generality, to consider a simpler case in which this
parallel beam of rays with the momenta (px, 0) is focused into
the point (x f , 0), where

px =
n · x f√
f 2 + x2

f

. (14)

The size of this beam is limited by a round aperture stop of
diameter D∗ but, because of pupil aberration, this beam bor-
rows in the coordinate plane a non-round area. According to
Rusinov [7] its form is approximately equal to an ellipse with
semi-major axis length ∆x and semi-minor axis length ∆y, so
the area P is equal to

Q = π∆x∆y. (15)

To define the semi-axes ∆x and ∆y of the ellipse in the coordi-
nate plane we use the angle-point eikonal V′(px, 0, xo, yo) [14].
In the meridional section the coordinates of the border of the
entrance pupil can be found from the expressions

x+ =
∂V′ (px, 0; D∗/2, 0)

∂px

x− =
∂V′ (px, 0;−D∗/2, 0)

∂px
.

So in linear approximation we have

2∆x = x+ − x−

=
∂V′ (px, 0; D∗/2, 0)

∂px
− ∂V′ (px, 0;−D∗/2, 0)

∂px

≈ ∂2V′ (px, 0; 0, 0)
∂px∂xo

D∗. (16)

In the sagittal section we use the expressions

y+ =
∂V′ (px, 0; 0, D∗/2)

∂py

y− =
∂V′ (px, 0; 0,−D∗/2)

∂py
.

So in linear approximation we have

2∆y = y+ − y−

=
∂V′ (px, 0; 0, D∗/2)

∂py
− ∂V′ (px, 0; 0,−D∗/2)

∂py

≈ ∂2V′ (px, 0; 0, 0)
∂py∂yo

D∗. (17)

Thus the substitution of Eqs. (16) and (17) into Eq. (15) yields

Q =
π

4
∂2V′ (px, 0; 0, 0)

∂px∂xo

∂2V′ (px, 0; 0, 0)
∂py∂yo

D∗2. (18)

Let us consider a parallel beam of light rays with the momenta
(px, 0) and a small divergence dpxdpy that is restricted by the
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entrance pupil Q. In the case of a planar Lambertian source
according to Eq. (1) the flux d2F carried by this parallel beam
is equal to

d2F =
L
n2 dpxdpy ·Q. (19)

This flux d2F is collected without losses at the surface element
dx f dy f of the back focal plane. The required illumination dis-
tribution fall-off from the centre to the edge of the back focal
plane E(x f , 0) is proportional to the area Q of the entrance
pupil and can be calculated by the formula [11, 12],

E(x f , 0) =
L
f 2 Q cos4 θ′(x f , 0). (20)

Here cos θ′(x f , 0) = 1
/√

1 + (x f / f )2 , where θ′ is an angle in

image space counted from the back nodal point N′ (see Fig-
ure 2(b)). Substitution of Eqs. (18) and (14) into Eq. (20) yields

E(x f , 0) =
π

4
L
f 2

∂2V′
(

nx f

/√
f 2 + x2

f , 0; 0, 0
)

∂px∂xo

×
∂2V′

(
nx f

/√
f 2 + x2

f , 0; 0, 0
)

∂py∂yo
D∗2

1[
1 + (x f / f )2

]2 . (21)

In the case of “natural vignetting”, when the aperture stop is
located in the object space (and carries out the functions of an
entrance pupil), the Eq. (21) becomes [11, 12],

E(x f , 0) =
π

4
L
f 2 D∗2

1[
1 + (x f / f )2

]2 . (22)

Note that the ”natural vignetting” Eq. (22) enables us to
rewrite Eq. (21) in the form of the product

E(x f , 0) = Eo(x f , 0)µ∞(x f , 0) (23)

where

µ∞(x f , 0) =
∂2V′

(
nx f

/√
f 2 + x2

f , 0; 0, 0
)

∂px∂xo

×
∂2V′

(
nx f

/√
f 2 + x2

f , 0; 0, 0
)

∂py∂yo
(24)

is a factor describing aberrational vignetting of the optical sys-
tem. In the first approximation the factor does not depend
on the diameter of the aperture stop [7]. Thus, in the case of
an object-source located at infinity, the aberrational vignetting
depends on a product of mixed derivatives of the angle-point
eikonal V’ in meridional and sagittal planes.

3 CONCLUSION

Aberrational vignetting is achieved by the introduction of
aberrations in the part of the optical system located between
the aperture stop and the object space.

If the object is located at a finite distance, the efficiency of the
aberrational vignetting depends on the mixed derivatives of
the point eikonal.

If the object is located at infinity, the efficiency of the aber-
rational vignetting depends on the mixed derivatives of the
angle-point eikonal.
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