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In this paper we report on the effects of two optical beams counterpropagating in a passive ring resonator that is the building block of
several devices in a lot of sensing applications. By using the transfer matrix method in combination with the coupled mode theory, the
analytical expressions of the power transfer functions for drop and through port configurations are derived in both cases of single beam
and double beams inside the ring. The implemented model has shown some improvements in the resonator performance, such as the
increase of the transmission power and the reduction of the linewidth, when the interaction between the two beams is considered, with
respect to the single beam ring resonator configuration. [DOI: 10.2971/jeos.2009.09034]
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1 INTRODUCTION

The ring resonator is an integrated optic structure with an op-
tical feedback allowing a variety of functions such as wave-
length filtering, optical switching or optical sensing. In [1]–
[4] the behaviour of the ring resonator as a filter with an
unidirectional power flow is described. In this work we re-
port on an analytical model used to examine the interaction
between the longitudinal modes of two counterpropagating
beams. The analysis has been focused on the interaction be-
tween two counterpropagating beams having the same fre-
quency. In this case the travelling wave (TW) beams, coun-
terpropagating in the ring, generate a resonant standing wave
(SW) that, in turn, couples with a pair of straight (bus) waveg-
uides [5], as depicted in Figure 1. Differently from the single
beam case, the coupler loses its spatial directionality and an
evanescent standing mode is created in the coupling region,
so generating two TWs in each bus waveguide.

FIG. 1 (a) DSBC and TSBC, (b) DDBC, (c) TDBC.

The need of the pointed-out model to evaluate the perfor-
mance of the ring resonator arises when the resonator is used,
as an example, as sensing building block in a gyroscope.

2 METHODOLOGY

The ring resonator consists of a waveguide in a closed loop
where only specific wavelengths can resonate. Two straight
waveguides allow to couple the light into and out of the ring.
The waveguide is a SiO2/SiO2:Ge/SiO2/Si structure with a
core size of few decades of µm2 and under-cladding and over-
cladding layers about 20 µm thick. The effective refractive in-
dex of the waveguide is 1.457, assuming an operating wave-
length equal to 1550 nm.

The structure has been analyzed as a set of two coupled
waveguides where Ei is the input field, Et is the field at the
through port, Ed is the field at the drop port and k and τ are,
respectively, the coupling coefficient and the transmission co-
efficient between the straight waveguide and the ring waveg-
uide, as it is shown in Figure 1(a). In particular, Figure 1 de-
fines the configurations that can be considered assuming dif-
ferent input and output ports: drop port single beam config-
uration (DSBC) and through port single beam configuration
(TSBC) (see Figure 1(a)); drop port double beams configura-
tion (DDBC) (see Figure 1(b)) and through port double beams
configuration (TDBC) (see Figure 1(c)).

The total ring length is LTOT = 0.144 m. The delay time for
a ring round trip is T∗ = LTOTn/c ≈ 0.7 ns where c is the
speed of light in vacuum, n is the waveguide effective refrac-
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tive index while the free spectral range is FSR∆ f = 1/T∗ ≈
1.43 GHz or FSR∆λ = FSR∆ f λ2

0/c ≈ 11.45 pm. Moreover, we
assume the power loss αi per unit length equal to 0.1 dB/cm
and the coupler insertion loss β = 0.2 dB. A curvature ra-
dius of 2.3 cm allows neglecting the bending losses. We also
assume a lossless coupling, i.e. τ =

√
1− k2.

By staggering the ring into a finite number of segments (see
Figures 2 and 3), we can derive the transfer function of each
segment for a co-propagating (progressive) wave, Eq. (1), and
for a counterpropagating (regressive) wave, Eq. (2). The ana-
lytical model for the DDBC (Drop port Double Beams Con-
figuration) is described in Section 2.1 by Eqs. (3)–(12), and
for TDBC (Through port Double Beams Configuration) is re-
ported in Section 2.2 (Eqs. (13)–(19)). Finally, in Section 3 we
report on the numerical results and comment on that.

FIG. 2 Optical segmentation for the DDBC.

FIG. 3 Optical segmentation for the TDBC.

2.1 Drop port Double Beams Configuration
(DDBC)

We used the transfer matrix method with boundary con-
ditions obtained by applying the coupled mode theory, for
achieving [6] the analytical expression of the power transfer
function at the drop port with two counterpropagating laser
beams, on the basis of the above assumptions.

As it is shown in Figure 2, we divided the full optical path
into 14 segments: 8 segments within the ring and 3 segments
for each bus waveguide. If Li is the length of each segment Di,
the total ring length is given by LRING = L4 + L5 + L6 + L7 +
L8 + L9 + L10 + L11 = 0.144 m.

Due to the large curvature radius each curvilinear segment
can be assumed to be linear. The transfer functions of the i-

th segment for a co-propagating (progressive) wave, Di (λ),
and for a counterpropagating (regressive) wave, D∗i (λ), are,
respectively, expressed by the following equations:

Di (λ) = e−
αi
2 e−j 2π

λ ni Li (1)

D∗i (λ) = e−
αi
2 ej 2π

λ ni Li (2)

where αi and ni are the losses and the effective refractive index
in each segment.

With reference to Figure 2, we are able to evaluate first the
electric fields Ea1 and Ea2 within the ring, and, then, Ed1 and
Ed2, and the transfer function for the two counterpropagating
beams configuration.

The field at the input of the segment D5, Ea1, is given by:

Ea1 =
−jkβ ∏2

i=1 Di (λ)
1− τ2β2 ∏11

i=4 Di (λ)
Ei1 (3)

while the input field of the segment D11, Ea2, is expressed by:

Ea2 =
−jkβ ∏3

i=2 D∗i (λ)
1− τ2β2 ∏11

i=4 D∗i (λ)
Ei2 (4)

In the DSBC the energy in the ring is supplied by an in-
cident wave having an amplitude equal to Ei1 (respectively
Ei2). The output is the detected wave E1

d1 (respectively, E1
d2).

The TW supported by this configuration has amplitude Ea1
(respectively, Ea2) which can be normalized with respect to
Ei1 (respectively, Ei2), so obtaining |Ea1/Ei1|2 (respectively,
|Ea2/Ei2|2) which represents the total normalized power flow-
ing through any cross section of the ring waveguide.

In the DDBC and TDBC the energy in the ring is supplied by
two counterpropagating incident waves of amplitude Ei1 and
Ei2. If we consider the same output port of the DSBC, the out-
put is represented by the detected wave E2

d1 whereas if we
consider the output port on the same waveguide in opposite
direction the output is E2

d2.

The DDBC and TDBC support two counterpropagating TWs
which, after a transient, generate a resonant SW with a ampli-
tude which is a linear combination of Ea1 and Ea2.

The expression of the drop transfer function for the single
beam configuration can be compared to those ones for the
double beams case.

By using Eqs. (3) and (4), we obtain the field expressions when
the two output ports are assumed on the same waveguide:

E1
d1 = −jkβ

[
D12 (λ)

8

∏
i=5

Di (λ) Ea1

]
(5)

E1
d2 = −jkβ

[
D∗14 (λ)

11

∏
i=8

D∗i (λ) Ea2

]
(6)

The complete expression of the field at both drop ports is de-
rived in the DDBC, using Eqs. (5) and (6), by taking into ac-
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count the interference occurring between the counterpropa-
gating fields, leading to a standing wave within the ring res-
onator:

E2
d1 = E2

d2

= −jkβ

[
D12 (λ)

8

∏
i=5

Di (λ) Ea1 + D∗14 (λ)
11

∏
i=8

D∗i (λ) Ea2

]
(7)

where the term into the square brackets represents the reso-
nant standing wave within the ring resonator as linear combi-
nation of Ea1 and Ea2.

Ea1 and Ea2 have the same starting points so, as it can be seen
from Figure 2, they start to interfere in S8, that is the coupling
region of lower evanescent coupler, after they have covered a
phase shift of π opposite in sign; this means a totally phase
shift between the two counterpropagating waves of 2π. So, in
the phase domain the resonant standing wave will reach the
maximum value when the phase shift is 2π + 2mπ and the
constructive interference will occur for any m, integer multi-
ple of π.

In matrix form we can rewrite E2
d1 and E2

d2 as functions of the
two counterpropagating incident waves of amplitude Ei1 and
Ei2: [

E2
d1

E2
d2

]
= (−jkβ)2

[
Naa
Daa

Nab
Dab

Nba
Dba

Nbb
Dbb

] [
Ei1
Ei2

]
(8)

where:

Naa

Daa
=

Nba
Dba

= D12 (λ)
8

∏
i=5

Di (λ) ∏2
i=1 Di (λ)

1− τ2β2 ∏11
i=4 Di (λ)

(9)

Nbb
Dbb

=
Nab
Dab

= D∗14 (λ)
11

∏
i=8

D∗i (λ)
∏3

i=2 D∗i (λ)
1− τ2β2 ∏11

i=4 D∗i (λ)
(10)

Eqs. (9) and (10) are the DSBC transfer functions, referred to
the inputs Ei1 and Ei2, respectively.

By imposing Ei1 = Ei2 = Ei, we obtain the power transfer
function at both drop ports expressed by the following equa-
tions: ∣∣E2

d1

∣∣2
|Ei|2

= (−jkβ)4 |NaaDab + NabDaa|2

|DaaDab|2
(11)

∣∣E2
d2

∣∣2
|Ei|2

= (−jkβ)4 |NbbDba + NbaDbb|2

|DbbDba|2
(12)

2.2 Through Drop Double Beams
Configuration (TDBC)

By following the same procedure as in Section 2.1, we found
the analytical expression of the power transfer function at the
through port for the configuration in Figure 1(c), again using
the same segmentation technique, as in Figure 3.

We obtain [
E2

t1
E2

t2

]
=

[
Ncc
Dcc

Ncd
Dcd

Ndc
Ddc

Ndd
Ddd

] [
Ei1
Ei2

]
(13)

where:

Ncc

Dcc
= τβ

3

∏
i=1

Di (λ) + (−jkβ)2 βτ
∏11

i=1 Di (λ)
1− τ2β2 ∏11

i=4 Di (λ)
(14)

Ncd
Dcd

= (−jkβ)2
7

∏
i=4

D∗i (λ)
∏3

i=2 Di (λ) ∏13
i=12 D∗i (λ)

1− τ2β2 ∏11
i=4 D∗i (λ)

(15)

Ndc
Ddc

= (−jkβ)2
2

∏
i=1

Di (λ)
∏14

i=13 D∗i (λ) ∏8
i=5 Di (λ)

1− τ2β2 ∏11
i=4 Di (λ)

(16)

Ndd
Ddd

= τβ
14

∏
i=12

Di (λ) + (−jkβ)2 βτ
∏14

i=4 D∗i (λ)
1− τ2β2 ∏11

i=4 D∗i (λ)
(17)

If we put Ei1 = Ei2 = Ei, we obtain the power transfer func-
tion at each through port:∣∣E2

t1
∣∣2

|Ei|2
=
|NccDcd + NcdDcc|2

|DccDcd|2
(18)

∣∣E2
t2
∣∣2

|Ei|2
=
|NddDdc + NdcDdd|2

|DddDdc|2
(19)

If we suppose an initial phase shift between the counterprop-
agating fields so that:

Ei1 = Ei Ei2 = EiejΦ (20)

we obtained the power transfer functions at both drop ports
as expressed by Eqs. (21) and (22):∣∣E2

d1

∣∣2
|Ei|2

= (−jkβ)4
∣∣NaaDab + NabDaaejΦ

∣∣2
|DaaDab|2

(21)

∣∣E2
d2

∣∣2
|Ei|2

= (jkβ)4
∣∣NbbDbaejΦ + NbaDbb

∣∣2
|DbbDba|2

(22)

and the power transfer functions at the through ports as:∣∣E1
t1
∣∣2

|Ei|2
=

∣∣NccDcd + NcdDccejΦ
∣∣2

|DccDcd|2
(23)

∣∣E2
t2
∣∣2

|Ei|2
=

∣∣NddDdcejΦ + NdcDdd
∣∣2

|DddDdc|2
(24)

3 NUMERICAL RESULTS

Figure 4 compares the shape of the power transfer function
for the DDBC (black), expressed by Eq. (7) with Φ = 0, to
that one of the DSBC (grey), expressed by Eq. (5). Propagation
loss is assumed equal to 0.1 dB/cm, the coupler insertion loss
is 0.2 dB and K = 0.03, where K = k2 is the power coupling
coefficient. Figure 4 clearly shows the improvement of the per-
formance for the DDBC in terms of reduction of the Full Width
at Half Maximum (FWHM) and of enhancement of the power
peak.
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FIG. 4 DDBC power transfer function (black) versus λ for K = 0.03 compared with DSBC

(grey).

When the two counterpropagating beams are shifted by Φ =
−2π · ∆λnL/λλ1 ≈ −2π · ∆λnL/λ2 with ∆λ = −∆ f λ2

0/c
and λ1 = λ + ∆λ the resulting wave within the ring is a quasi-
standing wave.

In Figure 5 the transfer function expressed by Eq. (11) has been
plotted for ∆ f = 0 and for different values of ∆ f . A shift even
small between the two counterpropagating beams induces a
splitting of the resonant peak, with the second peak appear-
ing at the same wavelength of the resonance for the case with
∆ f = 0. The distance between the two peaks increases propor-
tionally to ∆ f . Furthermore, the power value of the resonance
is strongly reduced with respect to the case without any phase
shift when ∆ f increases from 0 to 2 MHz, while it remains
quite constant when ∆ f is further increased.

The comparison between DDBC and DSBC also in terms of
FWHM, Finesse and Quality Factor is summarized in Table 1.

As in the drop configuration case, Figure 6 reports the com-
parison between the power transfer function for the through
port double counterpropagating beams (black) and the power
transfer function for the through port single beam configura-
tion (grey). The peculiar behaviour obtained in case of double
beams is caused by an effect similar to the Vernier one: the

FIG. 5 DDBC power transfer function (black) for different value of ∆f.

Parameter DDBC DSBC
FWHM [MHz] 75 110
Finesse 15.5 10
Quality factor 9× 105 2× 105

TABLE 1 Comparison of the resonator parameters ∆ f = 0, λ = 1.55 µm

Parameter TDBC TSBC
FWHM [MHz] 40 60
Finesse 29 18
Quality factor 1, 7× 106 3, 6× 105

TABLE 2 Comparison of the through port resonator parameters ∆ f = 0, λ = 1.55 µm

difference in optical path lengths, equal to a half ring length,
between the counterpropagating beams creates a phase-shift
that partially suppresses the odd resonant mode, obtaining a
free spectral range (FSR) enlarged by π. In particular, we have
demonstrated a partial suppression of the odd longitudinal
modes for this particular value of K.

In Figure 6, by plotting Eq. (23) for K = 0.03, the performance
improvement, with respect to the TSBC, appears only for the
even resonant modes.

Figure 7 illustrates the behaviour of the resonator with a TDB
configuration when ∆ f assumes different values, i.e.∆ f = 0,
2, 4 and 6 MHz. In this figure, it can be observed that the sig-
nificant improvement of the power transfer function for the
TDB configuration with respect to the single beam case, as in
Figure 6, is lost when ∆ f is non null, at either odd or even
resonant wavelengths.

In Table 2 a comparison of the calculated values of FWHM,
finesse and quality factor for the TDBC and TSBC is reported.
As it can be observed best values of those performance param-
eters are obtained in the TDBC.

For the drop geometry, in presence of two counterpropagating
beams, assuming the beams at same frequency, we have cal-
culated better performance, in terms of FWHM, finesse, and
Q-factor, with respect to the drop single beam configuration.

FIG. 6 TDBC power transfer function (black) versus λ for K = 0.03 compared with TSBC

(grey).
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FIG. 7 TDBC power transfer function for different values of ∆f.

Same situation has been observed also for the through port
configurations. For the TDB case, the transfer function does
not have the peaks corresponding to the odd resonant wave-
lengths, due to Vernier effects, while for TSB case a significant
reduction of the amplitude of the transfer function results.

By comparing the design parameter values for the TDBC with
those for DDBC, one can derive best design conditions for
the through port configuration using two counterpropagating
beams.

4 CONCLUSIONS

In this work we have studied the effect of coupling of two

counterpropagating beams in a waveguiding ring resonator.
The aim of this study was to search both best configuration
and best operating condition for a high performance sensitive
element to be used as building block of sensing devices, e.g.
angular velocity sensors. A better performance of drop double
beam configuration due to the reduction of the FWHM, to the
enhancement of the power peaks, to the increase of the quality
factor and finesse has been demonstrated with respect to the
drop single beam case.
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