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1 INTRODUCTION

For communications and processing of signals at very high
data rates of > 1 Tb/s per individual channel, one is inter-
ested in all-optical implementations since this exceeds the
bandwidth of current electronic devices [1]. In particular, spe-
cific operations like signal distribution in its various uses
(as fanout, clock distribution, for filter operations, etc.) can
be implemented at optical frequencies without the need for
impedance matching or specific considerations to the signal
bandwidth. Already at lower data rates (in the range of 10-
100 Gb/s), optics is of interest in order to alleviate system-
related bottlenecks in the interconnection of computing sys-
tems [2].

Optics can be implemented using free-space or waveguide
propagation. Both offer different implementations (discrete or
integrated, for example) and specific features that may be fa-
vorable depending on the purpose. Free-space optics uses the
third dimension which is suitable for a large degree of par-
allelism and for realizing specific interconnection tasks like
beam-splitting and coupling, for example [3]. Waveguide op-
tics, on the other hand, allows for compact devices that also
include active functionality. Recent advances in the field of
nano-optics, in particular, photonic crystals, for example, may
even lead to ultra-compact waveguide structures [4].

A particular waveguide-optical component is the so-called
“"multimode interference device” or, briefly, MMI. This is es-
sentially a planar dielectric multimode waveguide. Due to the
multimode operation and the inherent periodicity of waveg-
uides in transverse direction, self-imaging of the wavefield oc-
curs. This can be used to implement image transmission [5, 6]
and beam-splitting [7], for example. The MMI is at the be-
ginning of the work to be presented here. However, we go
beyond the structure of a conventional MMI to investigate
multimode waveguides with additional longitudinal period-

Received February 23, 2009; published June 19, 2009

icity [8]. In other words, the wavefield has to obey two differ-
ent conditions (lateral and longitudinal periodicity) and we
want to find out how such wavefields propagate. Two ques-
tions arise: a) how do such devices work? and b) what can
they be used for? Here, we look at a) and hope to answer b)
later.

For this investigation, multimode waveguides with added
longitudinal periodicity are simulated. We are assuming de-
vices where the cross-section is essentially one-dimensional so
that a 2D model can be used restricted to TE-polarization. The
periodic disturbances in this case consisted of simple dents.
As a simulation method we used the method of lines (MoL)
which is well suited to yield very good results for such struc-
tures [9]-[11]. The MoL is an eigenmode algorithm, where the
eigenmodes are determined after a discretization with finite
differences. This means, the field is determined at discrete po-
sitions in space. After determination of the eigenmodes, all
further analysis can be done analytically. This permits to take
into account the essential physical features. The ones that are
important for the problem to be treated here are reflections
and radiation. It should be noted, that the model used is not
restricted to the paraxial case but can be used at arbitrary an-
gles.

The paper is organized as follows: in Section 2, we briefly dis-
cuss self-imaging phenomenon since this is exploited in our
device structure. In particular, we present a comparison be-
tween a free-space and waveguide-optical implementation.
Furthermore, we consider the influence of given lateral and
longitudinal periodicity on the wavefield. Section 3 is the
main part of the article and deals with propagation in peri-
odically disturbed multimode waveguides. Results of simula-
tions are presented and discussed. Section 4 summarizes the
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2 BRIEF REVIEW OF OPTICAL
SELF-IMAGING

Self-imaging means that a wavefield u(x,z) is periodic in z-
direction, i.e. u(x,z) = u(x,z + pz). (Note: we restrict the
discussion to the the 2D case throughout the paper, for sim-
plitity.) A sufficient condition for periodicity in z-direction is
given if the wavefield is laterally periodic. This can be ex-
pressed as

u(x,z) =u(x+px,z) = ulxz)=ulxz+z7) Q)
This describes the widely known case of ”Talbot self-imaging”
[12]. The longitudinal period p; is usually called the "Talbot
distance” and denoted by zt:

p- =z =2p%/A )

Here, p, is the lateral period and A the wavelength. We should
mention that the Talbot effect is limited to paraxial wave-
fields. Using free-space optics, the Talbot—effect can be ob-
served for the situation of near-field diffraction behind a grat-
ing. In waveguide optics, Talbot self-imaging occurs in multi-
mode waveguides. In the following, we discuss both cases.

2.1 Self-imaging in free space optics

When a grating with period p, is illuminated with a plane
wave of wavelength A, the different diffraction orders form
an interference pattern in the near-field. For distances behind
the grating given as multiples of zt, the phases of the diffrac-
tion orders add up constructively and the resulting field is the
same as in the plane of the grating. This can be described
mathematically by using the following formalism with the
wave vectors.

The incoming wave is given as

u(z) = exp(ik;z) 3)
X
-
A
Py
- Z
H
e

FIG. 1 llumination of grating with a plane wave; the periodic pattern of the field

repeats itself in the Talbot distance z7.

Behind the grating, the field is

u(x,z>0) =Y amexp{i(kix+kl'z)} )

Here, a,, is the amplitude of the m-th diffraction order k7’ and
k" are the components of the corresponding k-vector ky,. It is

K = m2r/ px ()

Due to the separation condition in 2D (i.e. for k, = 0):

W+ e = () ©

we obtain the following discrete values for k; (the longitudinal
component of the wave vector):

2 2
r-onf (- 2)
A Px
Strictly speaking, the Talbot—effect is only valid for paraxial
waves. In this case, the expression for kJ' can be approximated

as: » A
K Tﬂ <1 - m2—> ®)

with m=0,1,2,... (7)

2.2 Self-imaging in multimode waveguides

Next, we would like to compare the situation in free space
with that in multimode waveguides. We consider the sym-
metric waveguide structure shown in Figure 2. Due to the re-
flecting side walls, there is a "virtual” periodicity inside the
waveguide which leads to a set of discrete eigenmodes. The
field components of these eigenmodes in the core depend on
x according to:

cos(kyx)
EH~ { sin(kyx) ®
X n, cladding
LZ_ .. r1°°_ _____________ W _
core

FIG. 2 Basic multimode waveguide used for the studies, parameters, w = 20 um,

wavelength A = 1.5 um, np = 1.52, ng = 1.45.

The virtual periodicity is described by the properties of the
trigonometric functions. For paraxial waves, the vertical peri-
odicity is approximately: px ~ 2w. Hence, a first estimation
gives the values

m27m

m _
kx = Nco

with m=1,2,... (10)
Px

for the different modes, in analogy to the free space problem

[see Eq. (5)]. However, two important points should be ad-

dressed here: a) We start with m = 1 in multimode waveg-

uides. The structure shown in Figure 2 supports 12 guided

modes (TE—polarization) for the chosen wavelength (A =
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1.5 pm). Hence, the maximum value of m is 12. b) In contrast 0.35 ! : ! :
to free-space optical case, the period is not the same for dif-
ferent modes because the fields of the different modes extend 980 x  multimode waveguide
differently into the cladding. Therefore, one cannot speak of o025l L— homogeneous media x|
an exact transverse period for the waveguide. ' X

. Lo . o 0.20f o ]
Nonetheless, there is a similarity between self-imaging in a o X
multimode waveguide and the free-space optical situation. To % B8] = |
demonstrate this, we look at the z-components of the k-vectors ' *
for both cases. For free-space optics, the k,-components are 0.10k km ,
given by Eq. (7). For the waveguide, we determined the k- ﬂ
components by simulations with the MoL. Both sets of values 0.05" 4 ern ,
are shown in Figure 3. From k, we determine an angle of prop-
agation (cos@ = k,/ko = Ak,/2m see Figure 4). Obviously, 0.00 : : : ' .

0 2 4 6 8 10 12

there is a very good agreement between the two cases, at least,
for lower order modes. The differences increase with m. This
can be understood with the zig-zag model of wave propaga-
tion. (This model can be found in basic textbooks about optical
waveguides, so we do not go into details here.) As known,
the phase change at the film/substrate interface decreases
with increasing angle 0 (see Figure 3). For waves propagating
strictly in z—direction (6 = 0) we have a phase change of 7 at
the boundary. Therefore, the virtual periodicity of the waveg-
uide corresponds to twice the thickness of the film layer (= 2w
in Figure 3) and as mentioned previously, we introduced this
value for py in Eq. (7). Now, as also known, the phase change
decreases to zero at the limiting angle of total internal reflec-
tion. Hence, the virtual periodicity of the waveguide depends
not only on its width but also on the mode number.

1.50
o
X
~ 1.49 1
N
X
1.48 o
X multimode waveguide
1.47 | — homogeneous media
1.46f
1.45 l ‘ ; s ;
0 2 4 6 8 10 12

eigenmode number (m)

FIG. 3 Normalized longitudinal component of the wave vector, comparison of a homo-

geneous media (n = 1.52) with values of the multimode waveguide in Figure 2.

We have mentioned earlier, that multimode waveguides have
been used as waveguide couplers in form of the so-called
MMI device [7]. We will use the conventional MMI here as a
reference for our later analysis. To check the validity of our
numerical tools and to reconfirm the results from the liter-
ature, we started with examining the self imaging—effect in
such multimode waveguides. We injected the fundamental
mode of a thin monomode waveguide and computed the elec-
tric field distribution.

Figure 5 shows the determined field distribution for a sym-
metric input field (i.e. in the center of the multimode waveg-

eigenmode number (m)

FIG. 4 Angle of propagation with respect to the optical axis, angle determined from k,

(see Figure 3).

uide). The field for an asymmetric excitation is presented in
Figure 6. Let us start with the latter results. We see a repetition
of the input field at zr ~ 3600 pm.

In [7]is described how the repetition length can be determined
from the propagation constants of the multimode waveguide.

25
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Ju 4 ! 5 \
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z[um

FIG. 5 Electric field distribution in a multimode waveguide, symmetric input field.
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FIG. 6 Electric field distribution in a multimode waveguide, asymmetric input field.
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If we introduce the values that we determined with the MoL,
we obtain zr = 3589 ym, which is in excellent agreement with
the one that we see in Figure 5.

Now, in case of a symmetric excitation the input field repeats
itself also in fractals of this length. (More theoretical details
can also be found in [7]). The shortest repetition length is
given as z7/8 = 448 um. Such a length can also be observed
in Figure 5.

2.3 Montgomery self-imaging

Talbot self-imaging describes the situation where a lateral pe-
riodicity is imposed upon a wavefield which leads to a lon-
gitudinal periodicity. A different point of view was presented
by Montgomery [13]: if a longitudinal periodicity is imposed
on the wavefield by a suitable structure, then the k-vectors of
the wavefield have to obey a certain condition. This can be
expressed in the following way:

u(x,z) = u(x,z+pz) = ug = ZAm exp{i(ki'x +kI'z)} (11)

with

1\?2 m\?
mi — — JE—
w=am(3) - (31)

The analogy of the Montgomery condition as expressed by
Eq. (12) with Eq. (7) is obvious. A graphical explanation of
this analogy using the concept of the Ewald sphere was given
in [14]. We would like to mention here that the Montgomery
condition is valid also for non-paraxial waves in contrast to
the Talbot—effect.

m=12,... (12

Here, we consider the situation where both, a lateral and a lon-
gitudinal periodicity is imposed upon the wavefield. As we
know from the discussion, the lateral periodicity py leads to a
longitudinal period of the wavefield, zr. On the other hand,
the longitudinal periodicity of the device, p, may be different
from the Talbot length, i.e., p, # zr. Itis of fundamental inter-
est to study the propagation of a wavefield under such con-
ditions. Again, the implementation may be free-space optical,
this case was analyzed in [15], or it may be waveguide-optical.
This is the content of this article. The general structure to be
considered is a multimode-waveguide with a periodic modu-
lation or disturbance in the longitudinal direction as shown in
Figure 7. Obviously, there exists a whole variety of possibili-
ties to implement such structures, a few of which are indicated
in the figure. We would just like to mention some of them; we
could vary depth and width of the dents, the period length,
the shape of the perturbation, the refractive index of the per-
turbated part etc.

i d f | LI LI LI L
w=2p,
W ' 1 T T M r
P, P,

FIG. 7 Examples of waveguide implementations with longitudinal disturbance. Left:

continuous, right: discrete.

3 MULTIMODE WAVEGUIDES WITH
PERIODIC PERTURBATION

For our studies we used the multimode waveguide shown in
Figure 2, in which we introduced periodic perturbations (see
Figure 8). In particular, we were interested in their influence
on the field distribution [8]. The monomode waveguide at the
input was used to obtain a suitable input field; i.e. we injected
its fundamental mode.

— <—pZ
g_ \I,t n=1.45
e TL n=1.52

N
20 um

periodic perturbation

FIG. 8 Multimode waveguide with periodic perturbations.

As mentioned before, even if we assume a periodic perturba-
tion there is a large parameter space that can be varied. Since
we had to start somehow, we began with those perturbations
that could be modeled most easily with our numerical algo-
rithm. Therefore, we introduced Dirac-like rectangular teeth
and examined the influence of the width t and the length zp
(see Figure 8) on the fields. For the period length p, we used
values around zt1/8 i.e. perturbations in the area where the
first repetition of the symmetric input field takes place.

Results for zp = 0.8z1/8 are shown in Figure 9. Here we used
different values for the depth of the teeth. The number of pe-
riods (teeth) was 10. The non—disturbed field shows the peri-
odic repetition of the fields as we had seen before. Now, for
t = 8 um (field 4) we have nearly the same field distribu-
tion, with a repetition of the focus in the distance z7/8. The
focus position, however, is shifted to the right. For smaller
teeth (t = 4 ym (field 2), t = 6 ym (field 3) we recognize a
clear disturbance of the field distribution; instead of one focus
we obtain two foci in a short distance from each other. Simi-
lar qualitative results were also found for other values of zp.
These results show that such perturbations permit the modifi-
cation of the field distribution.

Besides the qualitative results, we would also like to have
quantitative descriptions of the influence of the perturbations.
Since the self-imaging effect can be described with the inter-
ference of modes (also in our numerical model), we examined
the influence on these eigenmodes.

We computed the phases of the eigenmodes 1000 ym behind
the last perturbation. It should be mentioned here that the ab-
solute values of the individual phases are not important, (we
could e.g. always normalize the eigenmodes at the input in
such a way that their phase is a multiple of 277 at a certain posi-
tion). Rather, we are interested in the change of these phases as
function of the depth t. Due to the symmetric input field, only
the even modes were excited in this problem. We gave the fun-
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FIG. 9 Electric field distribution in the multimode waveguide Figure 2, parameters
wy = 1 pum various depths Ax were introduced: o um, (field 1), 4 um (field 2), 6 ym
(field 3) and 8 um (field 4).

damental mode the number ”1”, in accordance with Figures 3
and 4. The determined phases of the excited (guided) eigen-
modes are shown in Figure 10 as histograms. We recognize
e.g. a monotonic change (with f) of the lower modes, whereas
e.g. the phase of the 11" is relatively constant. Since the lower
order modes are the main responsible ones for the behavior
of the device, we took a closer look at them in Figure 11. As
mentioned before, we are not interested in the absolute val-
ues of the phases (because an arbitrary value can be added),
but merely in the change. Therefore, we chose the value for
t = 4 ym as reference and show the difference to that cor-
responding value here. We can clearly see that the variation
of the phase for the first and fifth mode is greater than that
for the third. Therefore, a specific influencing of the various
modes appears possible.

undisturbed waveguide (t=0) t=4pm

3 3

2| 2]
8 1 8 1
B B
c Y =l
3 1 L 4 ‘
2 2
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-3 -3

1 3 5 7 9 M 1 3 5 7 9 M1
Mode number Mode number
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3| 3

2| 2|
81 & 1]
B g
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S| S 2|

3| 3|

1 3 5 7 9 11 1 3 5 7 9 1"

Mode number Mode number

FIG. 10 Phases of the even eigenmodes 1000 pm behind the periodic perturbation,

shown for various values of ¢.
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FIG. 11 Change of the phase of the lower order eigenmodes with depth ¢ of the teeth;

the value for = 4 um was taken as reference.

4 SUMMARY

In this work we studied the self-imaging effect in multimode
waveguides. There are various aspects within in this problem
that can be examined. Here, we concentrated on the behav-
ior of the fields if additional periodic perturbations are intro-
duced. The results show that the phases of the eigenmodes
(and with them the field distribution) change differently. Next,
we want to modify various other parameters (that we men-
tioned earlier) as well, and examine their influence on the
fields. A goal is to find well defined rules on how the param-
eters modify e.g. the eigenmodes. This might be used for the
design of circuits.

Another interesting problem arises, when we compare mul-
timode waveguides to free space structures. As we saw, the
k, values for these cases are similar yet different. Therefore,
a question is how well the repetition of the input field (also
for different injected field-distributions) really is. This should
also change with increasing longitudinal distance. A measure
for the agreement can be obtained e.g. by a correlation with
the input field.

From the dimensions of the structures one could see that
we were not dealing with the bandgap effect here, though
we have a longitudinal and a (virtual) transverse periodic-
ity. However, the self-imaging effect occurs also in such pho-
tonic crystal waveguide structures [16] with the “self-imaging
length” being much longer than the period of the crystal. Be-
sides, also in metallic structures self-imaging has been ob-
served [17]. Particularly, these PhC- and metallic- waveg-
uides are potential candidates for miniaturizing optical struc-
tures, which makes them interesting for future investigations.
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