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P. Kockaert OPERA photonique, Université Libre de Bruxelles, CP 194/5, 50 Avenue F. D. Roosevelt,
B-1050 Bruxelles, Belgium
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Using the spectral-interferometry method for the short pulse complete characterization, we demonstrate the nature and distinctive proper-
ties of the similariton generated in single-mode fiber without gain (passive fiber) due to the combined impacts of nonlinearity and disper-
sion. The nonlinear-spectronic character of such a similariton, with the key specificity of linear chirping, leads to its self-spectrotemporal
imaging, important for applications to the signal analysis - synthesis problems in ultrafast optics. [DOI: 10.2971/jeos.2009.09009]
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1 INTRODUCTION

In the last decade self-similarity in optics, parabolic pulses
and similaritons along with the soliton optics attract the at-
tention of many researchers due to the academic interest
and prospects of applications in ultrafast optics [1]. In the
beginning of the 90’s Anderson and co-authors predicted
a parabolic solution for the nonlinear Schrödinger equation
with dispersion and high nonlinearity, that is, the self-similar
propagation of a pulse with parabolic temporal, spectral and
phase profiles [2]. In practice the generation of such kind of
pulses is possible in active fibers such as rare-earth-doped
fiber amplifiers [3], Raman fiber amplifiers [4], and also in
fibers with distributed dispersion [5]. Such a similariton can
be generated in a laser resonator [6] as well, or in a tapered
fiber with decreasing normal dispersion, using either passive
dispersion-decreasing fiber or a hybrid configuration with Ra-
man amplification [7]. The temporal and spectral profiles of
the similariton generated in a fiber amplifier are indepen-
dent of the input pulse profile; they are determined only by
the input pulse energy and amplifier parameters [8]. The lin-
ear chirp of parabolic similariton is independent of the input
pulse energy and depends only on the gain and dispersion of
the amplifier [3]. Due to these unique properties, similaritons
have interesting applications for the signal analysis-synthesis
problems in ultrafast optics, particularly for the synthesis of
optical pulses [9], for the pulse temporal compression [10], etc.

All the abovementioned studies are related to the parabolic
pulse class of similaritons. Recently, a new type of similariton
was generated in a passive fiber (without gain) under the com-
bined effects of Kerr nonlinearity and dispersion [11, 12]. The
applications of this similariton for temporal lensing / spectral
compression, fine frequency tuning and femtosecond pulse
imaging were also demonstrated [13, 14].

In this work, we study the generation of nonlinear-dispersive
(NL-D) similariton of passive fiber, its distinctive properties,
especially, its origin, nature and relation with the spectron and
rectangular pulses, and the temporal, spectral and phase fea-
tures in view of potential applications.

The outline of our work is the following: first, we carry out
a rough analytical discussion and numerical studies to reveal
the features of NL-D similariton, and afterwards we carry out
experimentally the complete spectral interferometric charac-
terization of NL-D similariton to check the terms of theory.
Then we measure the similariton chirp by the use of spec-
trometer and autocorrelator, and finally, we study the band-
width / duration rule of NL-D similariton.
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2 ROUGH ANALYTICAL DISCUSSION

First, we consider the pulse propagation through a pure D
medium. In the far field of dispersion, we have a spectron
pulse [15], which repeats its spectral profile, in the tempo-
ral analogy of the Fraunhofer zone diffraction, and therefore
propagates self-similarly. Mathematically, the solution of the
second order dispersion equation in the temporal Fraunhofer
zone (z� LD) obtains the form:

A(z, t) ≈ (−iγ)1/2 exp(iγt2/2)FT[A(0, t)]ω=γt . (1)

In Eq. (1), A(z, t) is the slowly varying complex temporal
amplitude at the propagation distance z, FT – the operator
of Fourier transformation with ω = γt and scaling coeffi-
cient equal to the chirp slope γ ≡ dω/dt ≈ −[φ”(ω0)]−1 =
(β2z)−1; φ”(ω0) – second derivative of the D-induced spec-
tral phase φ(ω) at the central frequency ω0, β2 – second or-
der dispersion coefficient, LD ≡ (β2∆ω2

0)
−1 – D length, and

∆ω0 – input bandwidth [15, 16]. The condition of tempo-
ral Fraunhofer zone, meaning enough large pulse stretching
s ≡ ∆t/∆to ≈ ∆ω2

o /γ� 1, determines the 1/s ≈ γ/∆ω2
o pre-

cision of the spectron’s spectrotemporal similarity |A(z, t)| ∝
|FT[A(0, t)]ω=γt| = |FT[A(z, t)]ω=γt|. For a 100 fs-pulse at the
wavelength λ = 800 nm with the bandwidth ∆λ0 ∼ 10 nm,
the D length for standard single-mode fibers is LD ∼ 10 cm,
and at the output of 1 m-fiber we will have pulse stretching
s ≈ z/LD ∼ 10, and spectrotemporal similarity of spectron of
the 1/s ∼ 10% precision.

For the NL-D propagating pulse, the NL self-interaction
broadens the spectrum and increases the impact of dis-
persion, leading to higher precision spectron-similariton
shaping. Quantitatively, for 100 fs-pulse radiation in a
single-mode fiber with average power p ∼ 100 mW
at a 76 MHz repetition rate, the NL interaction length
LNL ≡ (β0n2 I0)−1 is much shorter than the D one:
LNL ∼ 1 cm � LD ∼ 10 cm. This allows us roughly
splitting the impacts of NL self-interaction and D defor-
mation of the pulse, assuming that first we have pure NL
self-phase modulation of the pulse and spectral broadening,
and afterwards pure D stretching and D-spectronic propaga-
tion. For the phase of output pulse, we have ϕD(z, t) = γt2/2,
and an additional phase term ϕNL of FT[A(∼ LNL, t)]|ω=γt,
come from the pulse initial propagation step of NL self-
interaction (at the distances ∼ LNL). Assuming it parabolic
at the central energy-carrying part of the pulse at the
propagation distances of ∼ LNL, we have the phase

ϕNL(z, t) = γ−1
NLω2/2

∣∣∣
ω=γt

= γ−1
NL(γt)2/2 = (γ2/γNL)t2/2,

with γNL ≡ ϕNL”(∼ LNL, t). For the overall output phase
ϕΣ = ϕD + ϕNL, we have ϕΣ(z, t) = γt2(1 + γ/γNL)/2.
Considering the NL-spectral broadening and D-pulse
stretching factors (b ≡ ∆ω/∆ω0 and s ≡ ∆t/∆t0), we
have for the NL, D, and overall chirp slopes at the output:
γNL = ∆ω/∆t0 = ∆ω2

0b, γ = ∆ω0/∆t = ∆ω2
0/s, and

γΣ = γ(1 + γ/γNL) = γ[1 + (sb)−1]. Since γ/γNL = (sb)−1,
for spectral broadening of b ∼10 and pulse stretching of
s ∼ 10(∆t0 ∼ 100 fs, p ∼ 100 mW average power at a
76 MHz repetition rate, z ∼ 1 m of fiber), we will have
γΣ = γ(1 + γ/γNL) ≈ γ, with the accuracy of γ/γNL ∼ 1% .

Thus, for the femtosecond pulse NL-D self-interaction at z ∼

1 m of fiber, we have spectron of ∼ 1/sb = γ/∆ω2 ∼ 1% pre-
cision. Considering the key peculiarity of the NL-D spectron-
similariton, that only the fiber dispersion determines the chirp
slope, we can describe it following way:

A(z, t) ≈ (−iγ)1/2 exp(iγt2/2) |FT[A(z, t)]ω=γt| . (2)

Another interesting issue is the relation of NL-D similariton
with the rectangular pulses, shaped due to the pulse NL-D
self-interaction at the fiber lengths z ∼ 2

√
LD LNL [15, 16].

For such NL-D rectangular pulses the temporal stretching
and spectral broadening are up to ∆t ≈ 2∆t0 and ∆ω ≈
2∆ω0(LD/z), respectively, since the pulse optimal compres-
sion ratio is ∆t0/∆tc ≈

√
LD/LNL/2 = LD/z [15, 16], and

∆t0/∆tc ≈ 2∆ω/∆ω0. Thus, in this case the chirp slope
obtains the value γ = ∆ω/∆t ≈ (2∆ω0LD/z)/(2∆t0) =
(β2z)−1. Therefore, during the pulse NL-D self-interaction
in fiber, the chirp slope becomes equal to the one of pulse
D propagation γ ≈ (β2z)−1, starting from the fiber lengths
z ∼ 2

√
LD LNL, and NL-D rectangular pulses can be consid-

ered as an earlier step of NL-D similariton shaping.

Summarizing the above analytical discussion, we can expect:

• a NL-D similariton of the spectron nature in the passive
fiber;

• spectrotemporal similarity and imaging of the accuracy
∼ 1/sb = γ/∆ω2;

• scaling coefficient of the chirp slope γ ≈ (β2z)−1 for
spectrotemporal imaging, determined only by the D pe-
culiarities of medium, and independent of the NL ones.

3 SIMULATION

In the mathematical description of the pulse NL-D self-
interaction in fiber, we use the standard nonlinear Schrödinger
equation (NLSE) with the terms of Kerr nonlinearity and sec-
ond order dispersion (group velocity dispersion), adequate to
the pulse durations of ≥ 50 fs [15, 16]. We use the split-step
Fourier method to solve NLSE. In simulations, the pulse prop-
agation distance is expressed in D lengths LD (LD ∼ 10 cm for
100 fs input pulses); the power of radiation in fiber is given by
the NL parameter R ≡ LD/LNL = (β2∆ω2

0)
−1β0n2 I0 ∼ I0 [15]

(p = 100 mW average power of a 100 fs-pulse radiation at
a 76 MHz repetition rate in a standard single-mode fiber
corresponds to R = 6; p ≤ 100 µW is adequate to the pulse
pure D propagation of R = 0). The dimensionless running
time t and centralized frequency Ω are normalized to the
input pulse duration ∆t0 and bandwidth ∆ω0 = 1/∆t0 ,
respectively.

Figures 1 and 2 show the dynamics of similariton shaping:
pulse (top row), chirp (middle row) and spectrum (bottom
row) are shown during the pulse propagation in fiber. Fig-
ure 1 illustrates the first step of NL-D self-interaction, when
typically, rectangular pulses are formed, and Figure 2 shows
the step of similariton shaping. The spectral broadening and
corresponding decrease of the pulse peak power lead to the
”activation” of dispersion, the pulse obtains a linear chirp
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FIG. 1 Shaping of rectangular pulses (R = 30). From left to right: dynamics of the

pulse propagation in fiber for z/LD = 0.1; 0.2; 0.3; and 0.4. From top to bottom:

pulse, chirp, and spectrum.

FIG. 2 Shaping and dynamics of NL-D similariton in fiber (R = 30). From left to right:

z/LD = 1; 2; 3; 4. From top to bottom: pulse, chirp, and spectrum.

(parabolic phase), and the self-spectrotemporal similarity of
NL-D similariton takes place (Figure 2).

Figure 3 shows the dynamics of the temporal and spectral pro-
files of NL-D similariton shaped from the initial pulses with
sub-structure. At the output of the fiber, the pulse and spec-
trum have practically the same forms due to the linear chirp
induced. Even in case of pulses with complex initial forms the
output pulse has nearly parabolic form at its central energy-
carrying part. The irregularities of the temporal / spectral
profiles are forced out to the edges during the pulse NL-D
self-interaction, and spectrum and intensity become more and
more parabolic. However, D stretching of the pulse decreases
its intensity which finally minimizes the impact of NL self-
phase modulation. The shape of spectrum does not change
any more and the further alteration of the pulse shape has a D
character only.

Figure 4, for the NL-D similariton at a given fiber length
(z = 4LD) and different power values, shows that the out-
put chirp slope is practically independent of the input pulse
intensity, and depends only on the fiber length. The temporal
(a) and spectral (c) profiles and chirp (b) of NL-D similariton
for different values of power (R = 0; 5; 10; 15) are shown. The
black curves are for pure D propagation of the pulse (R = 0).
The red curves correspond to R = 5, blue – to R = 10, and

FIG. 3 NL-D self-interaction of a pulse with sub-structure and similariton shaping: the

pulse (left) and spectrum (right) dynamics. Time and frequency are normalized to the

current values of the pulse duration and bandwidth, R = 40.
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FIG. 4 Pulse (a), chirp (b), and spectrum (c) of NL-D similariton with the different values

of power (R), at the given fiber length z = 4LD . R = 0; 5; 10; 15 for the black, red,

blue and green curves, respectively. The input pulse is Gaussian and transform limited

green – to R = 15. The increase of the input pulse power leads
to the spectral broadening and temporal stretching of pulse,
keeping the chirp coefficient unchanged: the chirp slope is the
same in all cases, even in case of pulse D-propagation (R = 0).
It allows extracting the full information on the NL-D similari-
ton having the spectrum and fiber length. Simulations are also
carried out for higher powers (up to R = 50), and the result is
the same: chirp slope is independent of the power.

We studied the chirp of NL-D similariton versus the chirp of
input pulse: the chirp slope of NL-D similariton is practically
constant, when the pulse intensity is high enough. Figure 5
shows α ≡ −φ”(ω) ≈ γ−1 versus the initial α0 for the dif-
ferent values of radiation power (R). In contrast to pulse D
propagation with α(α0) = α0 + β2z (R = 0), we have a practi-
cally constant α(α0) ≈ β2z for powerful similariton (R � 1).
This is fulfilled enough good for pulses with positive initial
chirps (α0 > 0). In case of negative initial chirps (α0 < 0), self-
phase modulation results in spectral compression (in contrast
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FIG. 5 Chirp of NL-D similariton (γ) in case of different powers (R): α ≡ −φ”(ω) ≈
γ−1 vs input α0 ≈ γ−1

0 . Fiber length z = 15LD ; R = 0 (black), R = 10 (red),

R = 20 (green), R = 30 (blue), R = 40 (magenta).
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to spectral broadening for α0 > 0), and α decreases. Anyway,
in case of enough high intensities α becomes independent of
the power and initial chirp slope α0. Figure 5 clearly shows
the difference between the pulse pure D (black line) and NL-D
(colored curves) propagations in fiber. In case of the D propa-
gation the induced chirp simply imposes on the initial chirp.
In case of NL-D propagation the chirp ”forgets” about the ini-
tial chirp: it becomes independent of the input chirp.

4 EXPERIMENT

4.1 Spectral interferometric study

We carry out experimental studies to check-confirm the terms
of our rough discussion of Section 2 and numerical analysis of
Section 3. We use the spectral interferometric method of [17]
to completely characterize and study the generation process
and peculiarities of NL-D similariton of a passive fiber. Fig-
ure 6 schematically illustrates our experiment. Using a Mach-
Zender interferometer, we split the input radiation of a stan-
dard Coherent Verdi V10-Mira 900 F femtosecond laser sys-
tem into two parts. The low-power pulse serves as a reference.
For the high-power pulse, first we filter its spectrum of the
bandwidth ∆λ = 11 nm down to the value ∆λ = 2 nm.
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FIG. 6 Schematic of the experiment. M is mirror, BS – beam splitter, Sr(ω) – refer-

ence spectrum, S f (ω) – spectrum filtered, Sin(ω) – fiber input spectrum, Sout(ω) –

spectrum of NL-D similariton, OSA – optical spectrum analyser.

We use standard polarization-preserving fibers Newport F-
SPF @820 nm and ThorLabs HP @780 nm of different lengths:
1 m, 9 m, and 36 m. The spectra of the pulses at the output of
the fiber are broadened, however the spectrum of the refer-
ence pulse covers them completely. This allows us measuring
the spectral phase of similariton within the whole range of its
spectrum. We record the spectral interferometric fringe pat-
tern by an optical spectrum analyzer (OSA Ando 6315) and re-
trieve the spectral phase. Having the spectrum and retrieved
spectral phase, we simulate the temporal profile of the simi-
lariton by Fourier transformation.

The performance of our experiment is given schematically in
Figure 7 by means of the spectrograms of relevant steps. Fig-
ure 7(a) shows the spectrum of the laser pulse, (b) is the spec-
trum of spectrally filtered and shaped pulse, (c) is the spec-
trum of NL-D similariton and (d) is the spectral interfero-
metric fringe pattern. Figure 7(e) shows the measured spec-
tral phases of the similaritons generated from different input

FIG. 7 (a-d) Schematic of the experiment given by the spectrograms of the relevant

steps; (e) Spectral phases of NL-D similaritons generated from input single- (black),

double- (red ◦) and distant double-peak (blue ×) pulses in comparison with the one

for pure D propagated single-peak pulse (yellow).

pulses. The spectral phases are parabolic (φ = −αω2/2) and
their coefficients α have nearly the same values in all cases of
D and NL-D propagations: α = 0.32 ps2 for the pure D propa-
gation of single-peak pulse, and 0.33 ps2, 0.328 ps2, 0.35 ps2 for
the NL-D propagations of single-, double- and distant double-
peak pulses, respectively. The parabolic phase (linear chirp)
leads to the self-spectrotemporal imaging of similariton. The
accuracy of imaging increases with the decreasing of the chirp
slope, which is approximately equal to γ ≈ α−1. Figures 7
and 8 illustrate the typical behaviour of NL-D similariton in
case of z = 9 m.

Having the spectral phase and spectral profile, we retrieve the
temporal profile of NL-D similariton. Figure 8 shows the spec-
tral and temporal profiles of the similaritons with the spectral
phases of Figure 7(e). The black curves are the spectra and
the gray-dotted curves are the pulses. They coincide with each
other, that is, takes place self-spectrotemporal imaging of NL-
D similariton. A good spectrotemporal similarity is seen in
case of input single-peak pulse (a). For input double- and dis-
tant double-peak pulses of (b) and (c) the matching between
the spectral and temporal profiles of similaritons is qualita-
tive only. To obtain a quantitative agreement, one must use
a longer fiber, increasing the α coefficient: the spectral and
temporal profiles of similaritons practically coincide for the
orange lines of (b) and (c), showing the similariton temporal
profiles for the increased α coefficients.
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FIG. 8 Self-imaging of NL-D similaritons generated from input single- (a), double- (b)

and distant double-peak (c) pulses. Black solid curves show the spectra of NL-D prop-

agated pulses (the black dotted one of (a) stands for pure D propagated pulse), gray

dotted lines show the retrieved temporal profiles. Orange curves of (b), (c) show the

temporal profiles of similaritons for 4α increased coefficient of spectral phase.

To show the relation between the NL-D similariton and the
rectangular pulse of fiber, we carry out spectral interferomet-
ric measurements using a short fiber (z = 1). Figure 9 illus-
trates the shaping of a rectangular pulse in NL-D fiber. Here
the black curves are the spectrum and spectral phase mea-
sured, the blue curve is a fitted high-order polynomial and
the pink is a fitted parabola. The measured spectral phase
has a parabolic shape only at the central energy-carrying part
of the spectrum. Deviation from parabola at the wings leads
to the shaping of a rectangular pulse shown in Figure 9(b)
with the blue curve. Even in this case the chirp slope in the
central energy-carrying part of the pulse/spectrum is also
determined only by the fiber length (α = 0.0465 ps2). The
pink curve in Figure 9(b) is the retrieved pulse by the fitted
parabolic spectral phase.

FIG. 9 (a) Spectrum of NL-D rectangular pulse with the relevant spectral phase (black

solid line) and fitted parabola (pink). Blue line is the fitted high-order polynomial. (b)

Temporal profile of the rectangular pulse (blue) in comparison with the pulse retrieved

by the fitted parabolic spectral phase (pink).

Then we carry out experiment with a long fiber. This is the
abovementioned regime of Figure 8 of high-value α coeffi-
cient, when accurate spectrotemporal similarity and imaging
occur. Figure 10 shows the results of the experiment with
z = 36 m fiber and the same input double-peak pulse as for
Figure 8(b). We simply show the spectra of NL-D similariton
as its temporal images. In this regime, we have more accu-
rate self-imaging of NL-D similariton, as compared with the
regime of z = 9 m fiber (Figure 8). For comparison, the rel-

 

 
 
 
 
 
 
 

FIG. 10 Spectrotemporal images of similariton formed in z = 36 m fiber (c-f) in com-

parison with the one for z = 9 m (b). The radiation power increases from (c) to (f). (a)

input spectrum with the autocorrelation track in the corner (autocorrelation duration

at FWHM is τ = 625 fs)

evant spectral profiles of NL-D similaritons at the outputs of
9 m and 36 m fibers are shown together (Figures 10(b) and (e)).

4.2 Chirp measurement for similar iton by
the use of spectrometer and
autocorrelator.

The precise spectral interferometric study of Section 4.1 con-
firmed the principal thesis of NL-D similariton description
by Eq. (2), leading to its self-spectrotemporal similarity and
imaging by the scaling coefficient of the chirp slope γ =
(β2z)−1. This allows us carrying out the similariton chirp
studies by a simpler way. We only measure the spectral pro-
file (Figure 11(a)) and autocorrelation track (black curve, Fig-
ure 11(b)) of the similariton. Afterwards, we calculate the au-
tocorrelation of the spectrum (blue curve, Figure 11(b)). The
comparison of the measured and calculated autocorrelations
extracts the chirp slope. We have good accordance between
the chirp slope values measured by this and the spectral inter-
ferometric methods of Section 4.1.

Figure 12 illustrates the results of this experiment for 2 dif-
ferent fiber lengths z = 33 cm (a) and z = 95 cm (b): simi-

b 
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FIG. 11 Determination of the chirp slope of NL-D similariton. (a) spectrum of NL-D

similariton, (b) measured autocorrelation track (black) and calculated autocorrelation

of spectrotemporal image (blue).
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FIG. 12 Similariton’s autocorrelation duration τ vs. bandwidth ∆λ for the fiber lengths

z = 33 cm (a) and z = 95 cm (b).
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FIG. 13 Measured second derivative of spectral phase α of spectral phase of NL-D

similariton vs. the one of the input pulse for the fiber length z = 14.4LD . Red circles

are the measured points, and the black line stands for α = β2z.

lariton’s autocorrelation duration τ versus bandwidth ∆λ is
shown. Actually, this curve gives the chirp of NL-D similari-
ton. The chirp slope γ = α−1 extracted from the comparison
of the measured and calculated autocorrelations is constant
and it is independent of the bandwidth ∆λ (∼input power).
In case of the fiber length z = 33 cm αλ = 44.22 fs/nm which
corresponds to α = 0.015 ps2. For z = 95 cm αλ = 112 fs/nm
which corresponds to α = 0.038 ps2, in good agreement with
the spectral interferometric measurements of Section 4.1

This simple method permits checking easily the results on
similariton chirp numerical study of Figure 5. Figure 13 shows
the experimental results for the second derivative α of spectral
phase of NL-D similariton versus the one of the input pulse
for the fiber length z = 14.4LD. One can see good agreement
between the experiment (Figure 13) and simulation (Figure 5).
Both curves show that the chirp slope of NL-D similariton is
practically independent of the input pulse phase modulation
in a wide range of α0∆ω2

0 from -3 to +3.

4.3 Bandwidth / duration of NL-D
similar iton

Taking into account the relation between NL-D similariton
and rectangular pulse revealed in Sections 2 and 4.1, it seems
reasonable to expect that the bandwidth of similariton is equal
to one for rectangular pulse. To determine the bandwidth
(and afterwards the duration) of NL-D similariton, we can
use the relation for the pulse optimal compression [15, 16].
This gives the following relation for the spectral broadening
of NL-D similariton: b ≡ ∆ω/∆ωo ≈

√
R ≡

√
LD/LNL =

C
√

W/∆tin/∆ω0 = C
√

P/∆ω0, where P is the input pulse
power, ∆tin - input pulse duration, W = p/v– pulse energy, p
- average power of pulse radiation at a repetition rate v, and
C ≡

√
n2β0(β2S)−1 is a constant given by the fiber parame-

ters (n2 – coefficient of the Kerr nonlinearity, β0 = 2π/λ0 –
wave number, β2 – group-velocity dispersion coefficient, S –
fiber mode area). We check this thesis (Figure 14) numerically
(a) and experimentally (b).
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stretched in +D medium, and cyan, black, and yellow - to pulses stretched in −D

medium.

The numerical and experimental results of Figure 14 substan-
tiate on the truthfulness of the brief discussion above. Thus,
our studies give the following rule for the ∆ω bandwidth and
∆t duration of NL-D similariton:

∆ω = C
√

P, ∆t = ∆ω/γ = Cβ2z
√

P. (3)

For comparison, the bandwidth of the similari-
ton generated in a fiber amplifier is ∆ω(z) =
[(gβ0n2PW)/(2β2

2S)]1/3 exp(gz/3), where W and P are
the input pulse energy and power, and g is the gain coeffi-
cient [3].

This revealed property of NL-D similariton of Eq. (3) can be
used for the measurement of femtosecond pulse duration al-
ternatively to the autocorrelation technique.

5 CONCLUSION

By the use of spectral interferometry, we have demonstrated
the following properties of NL-D similariton generated in a
passive fiber:

09009- 6



Journal of the European Optical Society - Rapid Publications 4, 09009 (2009) A. Zeytunyan, et. al.

• the linear chirp, with a slope given only by the fiber
dispersion and independent of the amplitude, chirp and
power of the input pulse;

• the relation with the rectangular pulse of NL-D fiber;

• the property of spectrotemporal similarity / self-
spectrotemporal imaging, with the accuracy determined
by spectral broadening and pulse stretching together;

• only initial pulse power determines the bandwidth of
similariton.
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