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Lippmann’s interference photography is an elegant process to record coloured images in the volume of a sensitive material. We propose to
use this technique for wavelength multiplexed data storage in a page-oriented approach. Using computer simulations, we demonstrate that
the capacities reached with this technique are similar to those reached by volume holographic data storage. [DOI: 10.2971/jeos.2008.08020]
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1 INTRODUCTION

Holographic data storage is considered as one of the most se-
rious candidates for the next generation of high capacity opti-
cal disks [1]. Holographic storage has indeed already proved
its ability to reach very large data capacities, and roadmaps to
achieve capacities beyond one TeraByte within a few years are
already well commented [2]. In addition to this advantage in
term of capacity, holography presents an inherent parallelism
of data, which follows the fact that, in most architectures, data
are aggregated in images for recording and readout. This par-
allelism is at the origin of the expected high recording and
readout data rates [3].

Besides all this interest aroused by the application of holog-
raphy to optical storage, we believe that simpler optical ar-
rangements based on Lippmann’s photography have not been
studied with enough attention. The goal of this paper is thus
to describe an optical data storage arrangement based on the
Lippmann’s architecture. Using numerical simulations, we in-
vestigate the storage capacity of these systems and show that
they can be as large as those achievable by holography.

2 FROM LIPPMANN’S COLOUR
INTERFERENCE PHOTOGRAPHY. . .

Lippmann’s colour photography, also known as interference
colour photography, is a more than one century old process.
Gabriel Lippmann published his first work in 1891 [4] and got
the Nobel price for this discovery in 1908. Lippmann’s pho-
tography is a very elegant technique based on the recording
of interferences [5]-[7]. The coloured objects or landscapes to
be recorded are imaged through the thick photographic emul-
sion onto a mirror set in contact with this emulsion (see Fig-

ure 1). For each pixel of the image, the incident beam thus
interferes with its reflection and records a small Bragg grating
inside the thickness of the sensitive layer. The mirror is then
removed and the recording plate is chemically processed. Illu-
minating the processed layer at normal incidence with white
light reproduces the image: for each pixel of the image, the
Bragg gratings retro-reflect the exact wavelengths previously
used for data recording. The observer experiences the true
colours by looking at the plate at normal incidence.

FIG. 1 Principle of Lippmann’s photography.

In spite of its elegance, shooting Lippmann’s photographs re-
quires very skilled experimentalists, which partly explains the
nearly complete dying out of this process at the beginning
of the twentieth century at the benefit of other colour pho-
tographic processes, such as the “Autochromes”. Neverthe-
less a lot of developments felt out of this technique, which is
thus at the origin of several other scientific breakdowns. Yuri
N. Denisyuk’s reflection holography is for instance a tremen-
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dous invention based on Lippmann’s photography [8, 9]. In-
deed, although Lippmann records interferences in the volume
of the material, the phase of the original object is not recorded
in a Lippmann plate. The recorded images only bear 2-D infor-
mation, there is no 3D information. In this process, the mirror
indeed acts as a phase locker, that is distinct from the object,
and the phase of the beam, which is reproduced during read-
out, is just the incident phase plus a constant depending on
the mirror properties (a π phase shift in case of the mercury
mirror used by Lippmann). In case of Denisyuk’s holography,
the phase of the diffracted beam bears the information on the
position of each point of the object: the relief of the original
object is reconstructed during readout.

It is worth noting that holography led to a large amount of sci-
entific works in the area of data storage because of its ability
to record data in the volume of the material, although in most
set-ups, the recording of the phase of the object is not the key
point [3, 10, 11]. Indeed the data to be recorded are usually
imprinted on the incident beam with an intensity spatial light
modulator, SLM, and are detected during readout by an ar-
ray of intensity detectors such as a CCD or a CMOS camera.
If the phase information is nevertheless sometimes shrewdly
used to simplify the architectures, such as in the phase con-
jugate architectures [3] or in phase multiplexing [12], it is not
essential to the storage process.

Considering this fact, it is interesting to reexamine Lipp-
mann’s photographic process in view of achieving a high ca-
pacity volume data storage system.

3 . . . TO HIGH CAPACITY DATA
STORAGE

Original Lippmann’s photographs are snapped with natural
light whose coherence length is at a maximum equal to a few
micrometers. This is the reason why Lippmann’s plates are
usually less than 10 µm thick and for which a mercury mirror
is used. This mercury mirror is a very convenient way to in-
sure an intimate contact with the emulsion and to be sure that
the zero order fringe is recorded inside the emulsion.

Today, the availability of light sources with longer coherence
lengths allows us to revisit this recording process and to use
much thicker recording layers.

The idea of applying this recording process to data storage is
in fact not new and was applied in the mid 60s by Fleisher
et al. to record binary data [13]. In this demonstration, a pho-
tographic plate with its sensitive emulsion in contact with a
mercury layer was used just as in the original arrangement
proposed by Gabriel Lippmann. Data were first imprinted on
transmission masks: each bit in the “1” state corresponding
to a transparent pixel of the mask, the “0” corresponding to
opaque pixels. Several data masks were successively recorded
in the sensitive layer by illuminating the Lippmann struc-
ture through the data masks with successive wavelengths se-
lected from an arc source filtered by a set of interference fil-
ters. Bragg microgratings are thus recorded at different wave-
lengths in the same location of the photographic emulsion,

thus achieving wavelength Bragg multiplexed micro-grating
data recording. Although this first demonstration was suc-
cessful, the storage capacity was greatly limited by the optical
sources and by the photographic plates available at that time.
Indeed the wet processing, inherent to photographic plates,
leads to an inhomogeneous swelling through the depth of the
emulsion and thus strongly reduces the wavelength Bragg se-
lectivity. This non-uniform swelling limits the material thick-
ness and thus the data capacity.

With the advent of the first laser diodes, a new compact archi-
tecture was proposed [14]. Nevertheless, this demonstration
was still performed with a photographic plate, with the inher-
ent limitations due to the wet processing.

More recently the development of new holographic materials,
such as photopolymers, eased the experimental demonstra-
tions of Lippmann data storage systems [15]-[19]. Although
quite interesting, all these previous demonstrations are bit-
oriented data architectures: during recording, the lights from
adjacent bits are prevented from interfering, for instance by
confining the light of each pixel in a micro-fibre [15].

In this paper, we investigate a completely different approach:
we are interested in page-oriented architectures (Figure 2(a)
and 2(b)).

Bits of data are first imprinted by a spatial light modulator
on the beam. This modulator is imaged onto the Lippmann’s
mirror set beneath the photosensitive layer. This beam, at nor-
mal incidence, interferes with its reflection and thus records a
complex Bragg grating in the sensitive layer. In this geometry,
the material thickness can be larger than the depth of focus of
the image so that lights from the various pixels are allowed
to interfere. This point is important as this is the key to ob-
tain large diffraction efficiencies, and as we will demonstrate,
to get wavelength selective gratings. Several images can be
successively recorded at the same location using wavelength
multiplexing, i.e. each image is recorded at a specific wave-
length.

Each image should be reconstructed with a plane wave read-
out beam set at the wavelength used for recording this very
same image. We expect that the cross-talk between images can
be made negligible by correctly selecting the spacing between
the successive wavelengths as we will describe in the simula-
tions. We also expect that the images are reconstructed with
low distortion. This last point is not trivial. We speak about
distortion and not noise, as this distortion is deterministic. It
is inherent to the Lippmann’s process and results from the
differences between the reference beam used during record-
ing (reflected image beam) and the plane wave used for read-
ing out. The origin of this noise can be clearly identified by
comparing the basic equations for Lippmann’s storage and for
Denisyuk’s holography. For the selected optical arrangement,
using complex notations, the electric field Edata(x, y, z) of the
image beam incident onto the mirror, and the readout beam
electric field ERe f (x, y, z) can be written as:

Edata(x, y, z) = A(x, y, z) exp[−i k0 z]

ERe f (x, y, z) = R(x, y, z) exp[−i k1 z] (1)
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(a)

(b)

FIG. 2 Example of a data storage system based on Lippmann’s architecture; (a) record-

ing operation, for sake of simplicity only two pixels of the SLM are shown open; (b)

readout operation, the SLM is either fully opened or removed, for clarity and although

being at the same wavelengths, the readout wave is shown in red while the diffracted

beam for the two pixels is coloured in blue.

with k0 and k1 the wave numbers during recording and read-
out. z is the coordinate along the normal of the mirror; z = 0
corresponds to the image plane onto the mirror.

In the Lippmann’s arrangement, because the image beam is
set at normal incidence and because the wavefront is pla-
nar at the mirror level, the reflected beam is just its phase
conjugate. This is this amplitude A∗ that we want to recon-
struct by diffraction. In Denisyuk’s holography, this wave
A∗ originates from the scattering of the plane wave onto
the object and directly interferes with this plane wave inside
the medium. The interference pattern of these two counter-
propagating beams during recording is thus proportional
to A(x, y, z)∗B(x, y, z)∗ exp[2 i k0 z]. For Lippmann’s approach
B = A while in Denisyuk’s holography B = R. Taking into ac-
count the low diffraction efficiencies common in holographic
memories, thus applying the first Born’s approximation, the
amplitude in each layer z0 of the medium and observed at
z = z0 can be expressed by:

Ez0
di f f (x, y, z = z0) ∝ δε(x, y, z0)R(x, y, z0) exp[−ik1z0] (2)

Taking the simplest case in which the permittivity δε is pro-
portional to the interference pattern, one gets the basic equa-
tion describing the diffracted electric field by each layer of the

thick medium:

Ez0
di f f (x, y, z = z0) ∝ A(x, y, z0)∗B(x, y, z0)∗

× R(x, y, z0) exp[i(2k0 − k1)z0] (3)

In case of Denisyuk’s holography, plane wave R is used for
recording, R = B. The intensity R∗R is just a constant, in-
dependent of coordinates x and y. This intensity is a propor-
tionality constant in Eq. (3) so that the diffracted amplitude is
proportional to A(x, y, z0)∗ and the image is perfectly recon-
structed. In case of Lippmann’s process, the recording wave
B being different from the one used for reconstruction, R, the
proportionality is lost and the retrieved image is distorted.

In order to minimize this distortion, the readout wave
should be as similar as possible to the data beam. Typically,
R(x, y, z = 0) is selected to have the same phase wavefront
thanA(x, y, z = 0). For instance, if the wavefront of the image
beam is planar at the mirror level, then the reference beam is
a plane wave; because all pixels in the “ON” state have the
same intensity, the intensity of the reference beam is uniform.
In the following modelling, we assume that this image
wavefront is planar at the mirror level. The readout beam is
thus also a plane wave at normal incidence. This is important
as the Lippmann’s process does not record the phase of the
incident beam, it cannot reproduce the phase of the diffracted
beam. The phase of the readout beam should thus match the
phase of the image beam. Nevertheless, other arrangements
are possible taking into account the requirement of the phase
matching.

4 MODELLING

To model our system, we assume low diffraction efficiencies,
that is the first Born’s approximation, and rely on a plane
wave decomposition of the amplitudes of the beams to prop-
agate these amplitudes using Fast Fourier Transform algo-
rithms, FFT [20, 21].

At the initial stage of the modelling, we first determine the
image amplitude A(x, y, z = 0) and the reference beam am-
plitude R(x, y, z = 0) in plane z = 0. For doing this, we
assume the image beam to be pixellated with square pixels
whose sides are denoted a. They are arranged in N×N square
matrix with a pitch denoted s.

Although, this does not correspond to any optimization, we
selected the data by a random draw with equiprobality be-
tween 1 and 0. As in the real system, this original page of data
is then filtered: we decompose the amplitude in plane waves
and we apply a filter in the Fourier plane. In all the following
modelling, this Fourier filter corresponds to an optical system
with a NA = 0.6 numerical aperture.

As explained above the reference beam is a plane wave. In
order to minimize the distortion, this plane wave is limited
to a square whose side is the same as the pixel matrix side.
This amplitude is then filtered by the NA = 0.6 in order to get
R(x, y, z = 0).

In a second step, for each coordinate z0, we propagate, us-
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ing FFT, amplitude A(x, y, z = 0) to get A(x, y, z0) and the
dielectric permittivity δε(x, y, z0). To compute this permittiv-
ity, we have to assume the response of the material. We made
simulations with both a linear response (i.e. proportional to
A(x, y, z0)∗A(x, y, z0)∗ exp[2ik0z0]) or with a response propor-
tional to the modulation ratio of the interference pattern:

δε(x, y, z0) ∝
A(x, y, z0)∗A(x, y, z0)∗

‖A(x, y, z0)‖2 + ‖A(x, y, z0)‖2 exp[2ik0z0] (4)

The results obtained with the two responses do not signifi-
cantly differ from each other, and the conclusions that can be
drawn from these simulations are consequently the same. In
the following examples, we have taken the response given by
Eq. (4). The reference beam amplitude is similarly propagated
from coordinate z = 0 to z0.

Using Eq. (3), with B = A, the amplitudeEz0
di f f (x, y, z = z0)

diffracted by the corresponding layer is then calculated. It is
then back propagated until the image plane, at z = 0, to get
Ez0

di f f (x, y, z = 0). All the amplitudes Ez0
di f f (x, y, z = 0) are

then summed over z0. The total amplitude is then filtered by
the NA = 0.6 numerical aperture. The resulting amplitude
thus corresponds to the one detected by a detector set on the
diffracted beam path and imaged onto the plane z = 0.

5 RESULTS OF SIMULATION

5.1 Example of retr ieved image and
distort ion

Unless expressed otherwise, in all simulations presented in
this paper, we have selected the following set of parameters:
average refractive index n = 1.6; recording wavelength in vac-
uum λ = 500 nm. The absorption of the material is assumed
to be negligible. As already detailed, the optical system is as-
sumed to have a pupil corresponding to a numerical aperture
of NA = 0.6. The pixel side, a = 0.7 µm, is thus close to the
optical resolution of the system. The pitch between centres of
pixels is slightly larger than the pixel side: s = 0.76 µm. It
corresponds to a spatial light modulator with a filling factor
of 0.85. We assume that the filling factor of the detector ar-
ray is the same as the one of the spatial light modulator. The
thick recording material is sampled every tenth of micrometer
(distance between z0 planes) along the z direction. We have
checked that a denser sampling does not modify the results
within the accuracy of the reported results. In order to get rea-
sonable computing times, we made simulations on a limited
volume of the thick recording material. The number of pixels
of the SLM is equal to 412 = 1681 pixels. As described below,
this limited number of pixels enhances the edge effects: a sig-
nificant number of pixels are not surrounded by other ones.
The observation window along the x × y coordinates is taken
larger than the image size so that, given the 0.6 numerical
aperture and the material thickness, the beams are not trun-
cated by the borders of this window. It is equal to 50× 50 µm2.
Along these x × y coordinates, the distances are sampled by
780× 780 samples to perform the FFT, that is 11× 11 samples
per SLM pixel.

The simulations reported in Figure 3 are for a material whose
thickness is e = 30 µm. This thickness is much larger than the

depth of field of the image (≈ 2 µm) so that lights correspond-
ing to adjacent pixels interfere in the volume of the material.
Figure 3 corresponds to the original image to be recorded, dis-
played on the SLM, but before being filtered by the numerical
aperture of the optical system projecting this image onto the
mirror. The retrieved diffracted intensity image filtered by the
optical system is shown in Figure 4.

FIG. 3 Density plot of the image before recording.

FIG. 4 Density plot of the image retrieved from the diffraction and corresponding to

the recorded image shown in Figure 3.

These results demonstrate that the image is retrieved in spite
of the small size of the pixel, which is only slightly larger
than the optical system resolution, and in spite of the thick-
ness of the material, which is much larger than the depth
of focus of this image. One also remarks that all pixels in
the retrieved image do not have the same brightness. As dis-
cussed above, this brightness depends on the surrounding of
the pixel. Typically, pixels on the edges have lower intensities.
This non-uniformity of the retrieved pixels is inherent to the
Lippmann’s architecture. To highlight this feature, we have
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reported, in Figures 5 and 6, 3D plots of the centres of the im-
ages shown in Figures 3 and 4. In Figure 6, we notice small
bumps at the positions of the “OFF” pixels. They originate
from diffraction due to the limited numerical aperture. They
are also present on the original image filtered by this aper-
ture, although their height is more limited. They disappear if
the pixel size is increased. We also remark that the intensity
of the “ON” pixels varies from pixel to pixel. This variation
corresponds to the distortion as discussed above.

FIG. 5 3D plot of the centre of the image shown in Figure 3.

FIG. 6 3D plots of the centre of the diffracted image shown in Figure 4.

From these data, we compute the intensity received by each
pixel of the detector array (corresponding to each pixel of
the SLM, as discussed above). This intensity can either cor-
responds to a pixel which was set at the “1” value, ON pixel,
during recording or to the “0” value, OFF pixel, during record-
ing. These intensities are denoted by ION and IOFF. The his-
togram corresponding to these data is plotted in Figure 7.

We then compute the mean values µON/OFF and the standard
deviations σON/OFF of ION and IOFF in order to calculate the
signal to noise ratio of the retrieved data.

SNR =
µON − µOFF√

σ2
ON + σ2

OFF

(5)

We found SNR = 4.0 from these data. If we do not take into
account the rows of pixels on the edges, whose intensities are
on the average lower, this value increases to SNR = 4.4. This
signal to noise ratio is also increased by increasing the pixel
size. For instance, with a pixel side of 0.8 µm we find SNR =

FIG. 7 Histogram of the “OFF" (red continuous line) and “ON" (green dashed line) pixels

of the images plotted in Figures 3 and 4.

4.1 with all pixels, and SNR = 4.5 with the rows on the edges
dropped.

A simulation with the same set of parameters, but with a di-
electric permittivity proportional to the interference pattern
(linear response) gives a lower SNR, SNR = 2.8, which in-
creases to SNR = 3.1 by not taking into account the pixels on
the edges.

It is important to remind, that, although we call this expres-
sion signal to noise ratio, this value is fully deterministic, and
depends on the chosen image. Because of this deterministic
nature, equalization techniques [22, 23] could probably be im-
plemented to greatly improved this signal to noise ratio. The
intensity detected on each pixel indeed depends on its sur-
rounding leading to “intersymbol interference”. For example,
ON pixels, which are on the border of the image, tend to
present a lower intensity than pixels in the middle of the im-
age.

It is interesting to note that it is not mandatory to set the sen-
sitive material in contact with the mirror: a gap can be let in
between the sensitive layer and the mirror. This gap can be
larger than the depth of focus of the image if required. For
instance by letting a 10 µm gap between the mirror and the
e = 25 µm thick sensitive layer, we found a SNR equal to
SNR = 3.2, while with a zero gap and a 25 µm thick material
the SNR equals SNR = 4.0. Such a gap can greatly ease the
implementation of the system:

• the mirror is not necessarily glued to the sensitive layer
and can be more easily removed;

• optical elements, such as wave plates, can be inserted in
this space allowing an easy implementation of elaborated
detection schemes using polarized light such as homo-
dyne detection schemes [16, 18].

The price to pay for allowing such a gap is a stronger require-
ment on the coherence length of the optical source.

For sake of comparison, all simulated results reported above
were conducted with the same set of data (corresponding to
Figure 3). We checked that these results do not significantly
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depend on the selected data set. For several data sets selected
at random, the average value of the signal to noise ratio is
〈SNR〉 ≈ 4.2 with the standard deviation σSNR ≈ 0.1.

5.2 Bragg select ivity

In Lippmann’s storage, data are recorded using wavelength
multiplexing. It is therefore of first importance to determine
the wavelength selectivity to get the minimum required spac-
ing between the two consecutive recording wavelengths. If the
images were uniform, and according to Kogelnik’s theory for
thick gratings [24], the wavelength Bragg selectivity, would be
given by:

∆λBragg ≈ λ2 /2ne (6)

with n the refractive index, λ the optical wavelength in the
vacuum and e the recording layer thickness. ∆λBragg corre-
sponds to the wavelength spacing between the Bragg wave-
length (recording wavelength) and the first null of the curve
“diffraction efficiency versus wavelength”.

We first tested our simulation software with such a plane
wave (i.e. uniform and not pixellated beam) for the image
amplitude. The readout amplitude is thus equal to this plane
wave. We still have n = 1.6, λ = 500 nm and e = 30 µm.
The diffracted intensity versus the wavelength is plotted as
crosses in Figure 8. The continuous thin line is just for guid-
ing the eyes. This curve reproduces the expected dependence
of the diffraction efficiency with the wavelength for a uniform
grating. The wavelength Bragg selectivity is conformed to Eq.
(6) and equals to ∆λBragg ≈ 2.6 nm.

We then ran the simulation software for a random pixellated
image. The corresponding curve is plotted as open squares
in Figure 8, the dashed thick line is once again only a guide
for the eyes. Although these points do not exactly overlap
with the curve for the uniform grating, the similarity is very
large. We conclude that even if Lippmann gratings are not uni-
form through the material thickness, Eq. (6) is a very good
approximation for the Bragg selectivity. Therefore the capac-

FIG. 8 Comparison of the Bragg selectivity for a plane wave grating (continuous red

line and crosses) and for a Lippmann’s structure (dashed blue line and open squares).

ity of Lippmann’s storage using wavelength multiplexing is
the same as for conventional holographic data storage using
wavelength multiplexing [25, 26].

6 CONCLUSION

The main objective of this communication was to demonstrate
the possibilities of the Lippmann’s approach for optical data
storage. We demonstrated that the spatial resolution is just
limited by the optical imaging set-up (numerical aperture),
that the wavelength selectivity is about the same as for plane
waves, and that the signal to noise ratios are reasonable. As
these signal to noise ratios result from a deterministic distor-
tion of the images, they can without any doubt be improved
using conventional techniques such as image equalizations
[22, 23] and modulation coding [27, 28].

Lippmann’s architecture should thus lead to the same capac-
ities as those of conventional holographic approaches. The
other inherent advantages of Lippmann’s architectures (very
stable and compact interferometric set-up, minimization of
the required coherence length) make this approach all the
more attractive.

Therefore, although Lippmann’s photographic process has
never attracted a large interest in the field of optical storage,
we hope to have contributed in this paper to demonstrate that
this technique presents a great richness and that it just awaits
to be fully exploited.
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