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1 INTRODUCTION

The electromagnetic theory of gratings [1] has undergone
many remarkable changes during the last decades. In particu-
lar, rapid development of computers has made possible to an-
alyze rigorously, not only simple linear gratings, but also two-
dimensionally periodic gratings, also called crossed gratings
(see, e.g. [2]-[6]). Since the main focus of the grating theory has
been in the development of numerical efficiency, the proper-
ties of the input and output fields, except for the diffraction
efficiencies, have not received much attention, even though
they are of course in the central role in practical applications.
For example, the state of polarization of the input field is al-
most exclusively assumed to be linear, although the theory in-
ternally assumes general, elliptically polarized input.

The situation becomes more complex if the input field is
not anymore fully polarized, but either unpolarized or par-
tially polarized, which is becoming more and more common
situation, since, for example, LED illumination is employed
in combination with grating theory, e.g., in display appli-
cations [7]-[9]. The unpolarized case is still quite manage-
able even without careful considerations, as one may very
well take the sum the intensities of the uncorrelated polariza-
tion components after solving the grating-diffraction problem.
However, the diffraction orders are, in general, not anymore
unpolarized, but more or less partially polarized. Thus, if the
diffraction orders are desired to be used as inputs to another
optical elements, their exact polarization properties are of in-
terest. An exemplar of such a system is the double-sided grat-
ing analyzed in [10].

In this article, we put forward a simple and intuitive way to
perform the grating analysis for input illumination with any
state of polarization. The method is based on the well-known
representation of polarization in terms of Poincare’s sphere
and the degree of polarization, and works with practically any

rigorous method. However, in the derivation we employ the
S-matrix (scattering matrix) approach [11] which is assumed
to be known by the reader.

2 DIFFRACTION GEOMETRY

Assume a diffracting structure which is periodically modu-
lated in one or two directions that are perpendicular to the
z-axis, i.e. the normal vector of the structure is parallel to the z
axis. Without a loss of generality, we may assume that the first
(or only) direction of modulation is the x direction. We also as-
sume, for simplicity, that the input field is a plane wave, with
its propagation direction defined by the wave vector kin, such
that kin,z > 0, and the complex amplitude of the electric field
is denoted by ein, where the subscript in denotes the input
field. Note that in the following analysis, we employ the spa-
tial frequency–temporal frequency representation of the field
quantities, i.e. we examine one temporal frequency at a time.
Thus, the properties of ein are frequency-dependent but we
omit the explicit dependence because of brevity. In general,
ein is a random vector, i.e. both its magnitude and direction
are known only in statistical terms, which permits us to ana-
lyze, not only deterministic fields, but also partially polarized
light.

As usual, we analyze the properties of the input field with the
help of the plane of incidence, i.e. the plane defined by the
wave vector and the surface normal of the grating. The angle
between the wave vector and the z axis is denoted by θin, and
the angle between the input plane and the x axis is denoted
by φin (see Figure 1 for definitions). Thus, the components of
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FIG. 1 Basic definitions of the geometry. Only the zeroth reflected order is shown for

clarity.

the input wave vector are related to the angles as follows:

kin,x = kin sin θin cos φin, (1a)

kin,y = kin sin θin sin φin, (1b)

kin,z = kin cos θin, (1c)

The electric-field components of the input plane wave are best
described in the π–σ basis (also known as p–s and TM–TE
bases), in which the unit vectors ûin,π and ûin,σ are parallel
and perpendicular, respectively, to the input plane:

ein,π = ein,x cos θin cos φin + ein,y cos θin sin φin − ein,z sin θin,
(2a)

ein,σ = −ein,x sin φin + ein,y cos φin. (2b)

If k is parallel to the z axis, in which case the choice of the field
directions is not unique, we may very well fix ûin,π parallel to
the x axis.

The propagating diffraction orders are analyzed analogously:
For each transmitted and reflected diffraction order (m, n), we
define the angles θ

(m,n)
j and φ

(m,n)
j as well as the field com-

ponents e(m,n)
j,π and e(m,n)

j,σ , where j = t for transmitted waves
and and j = r for reflected waves. Here the angles and com-
ponents are defined with respect to the so-called exit plane of
the diffraction order, defined by the wave vector k(m,n)

j of the
order and the z axis. The definitions of the wave-vector com-
ponents are analogous to Eqs. (1a)–(1b), except that k(m,n)

r,z =
−kin cos θ

(m,n)
r . Also definitions for e(m,n)

t,π , e(m,n)
t,σ , and er, σ(m,n)

are completely analogous to Eqs. (2a) and (2b), but the π-
components of the reflected orders are obtained from

e(m,n)
r,π = −e(m,n)

r,x cos θ
(m,n)
r cos φ

(m,n)
r

− e(m,n)
r,y cos θ

(m,n)
r sin φ

(m,n)
in − e(m,n)

r,z sin θ
(m,n)
r . (2c)

Our definitions are thus analogous to the ones used, e.g.,
in [12]: the wave vector, π-unit vector and σ-unit vector form
a right-handed triplet for every order. Note that the above-
given definitions hold only for propagating diffraction orders:
The polarization analysis of evanescent fields does not usually
involve the analysis of different spatial frequencies.

3 GENERAL CONCEPTS OF PARTIALLY
POLARIZED AND PARTIALLY
COHERENT LIGHT

Let us next recall some well known basic concepts of par-
tially polarized planar wave fields. The second-order statis-
tical properties of a planar wave field in the space–frequency
are usually described by a spectral polarization matrix (also
known as a coherency matrix) [13, 14]

J = 〈e∗eT〉 =
[
〈|eπ |2〉 〈e∗πeσ〉
〈e∗σeπ〉 〈|eσ|2〉

]
=

[
Jππ Jπσ

Jσπ Jσσ

]
, (3)

where e = [eπ , eσ]T denotes the realization of a (random) elec-
tric field. Here the angle brackets denote the average over the
statistical ensemble of the possible field realizations, the aster-
isk denotes complex conjugation, and T denotes the transpose
operation. It is obvious from Eq. (3) that J is Hermitian, i.e.
J† = J, where the dagger denotes the adjoint matrix. More-
over, J is also non-negative definite, i.e. for any vector v, we
have v†Jv ≥ 0. In the diffraction problem discussed in the pre-
ceding Section, we may employ the definition (3) in the anal-
ysis of either the input plane wave or any of the propagating
diffraction orders. For those readers who are not familiar with
the polarization matrix, we point out that each element of J is
measurable using simple optical elements (see, e.g. Ref. [13]).
In particular, the trace of the matrix is proportional to the in-
tensity of the field.

Another commonly employed description of partially polar-
ized radiation is the Stokes representation, in which one uses
the four Stokes parameters [13, 14], denoted here by Sq, q =
0 . . . 3, that are related to the elements of the polarization ma-
trix as follows:

S0 = Jππ + Jσσ, S1 = Jππ − Jσσ, (4a)

S2 = 2<(Jπσ), S3 = 2=(Jπσ), (4b)

where < and = denote the real part and the imaginary part,
respectively. It is also customary to define the normalized
Stokes parameters sq = Sq/S0, q = 1 . . . 3. In the Stokes no-
tation, the degree of polarization takes on the form

P = (s2
1 + s2

2 + s2
3)

1/2, (5)

whereas the diffraction efficiency of the order (m, n) is

η
(m,n)
j =

cos θ
(m,n)
j S(m,n)

0,j

cos θinS0,in
, j = (t, r). (6)

where we have clearly assumed that only propagating orders
are considered.

The strength of Stokes representation is that the three nor-
malized Stokes parameters sq can be employed to graphically
illustrate the state of polarization in Poincare’s sphere [14].
Namely, by assuming three orthogonal directions, denoted by
unit vectors ŝq, q = 1 . . . 3, and defining the Poincare vec-
tor [14] p = s1ŝ1 + s2ŝ2 + s3ŝ3, each state of polarization is
uniquely related to one point in a unit sphere: The direction
of the vector, characterized by the spherical-polar-coordinate
angles ϑ and ϕ, related to the Stokes parameters by

s1 = P sin ϑ cos ϕ, s2 = P sin ϑ sin ϕ, s3 = P cos ϑ, (7)
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gives us the type of polarization, and the length of the vector,
in view of Eq. (5), gives the degree of polarization. For graph-
ical illustration of the geometry, see Figure 2.

FIG. 2 Poincare’s sphere and the definition of angles ϑ and ϕ.

The parameters (η, θ, φ, P, ϑ, ϕ) thus provide us the conve-
nient knowledge of the properties of certain plane-wave
component. The first three parameters give us the standard
knowledge on diffraction efficiency and propagation direc-
tion, whereas the last three parameters give us full knowledge
on the polarization properties of the wave, including partial
polarization. However, since the phase is, in general, a
random quantity, the phase information can be only given
through the correlation properties between the orders. To
this end, one must introduce either the cross-spectral density
matrix [13, 15] or the angular correlation matrix [13, 16], the
latter of which is particularly useful in the diffraction-order
analysis. Since we have assumed that the input field is a plane
wave, the angular correlation matrix is of a discrete form:

A(m,n;p,q)
j;l =

〈
e(m,n)

j

∗
e(p,q)

l

T〉
=

〈
e(m,n)

j,π

∗
e(p,q)

l,π

〉 〈
e(m,n)

j,π

∗
e(p,q)

l,σ

〉
〈

e(m,n)
j,σ

∗
e(p,q)

l,π

〉 〈
e(m,n)

j,σ

∗
e(p,q)

l,σ

〉 , (8)

where j = (t, r) and l = (t, r). Thus, the elements of the angu-
lar correlation matrix describe the cross-correlation between
any two components of any two diffraction orders. This ma-
trix thus contains the information on the statistical correlation
between the components of two diffraction orders. Note that if
the orders are the same, i.e. j = l, m = p, and n = q, the angu-
lar correlation matrix coincides with the polarization matrix of
the examined order. Analogously, we can also define the an-
gular correlation matrix between the input-field components
and one of the diffraction orders, in which case we employ the
notations

A(m,n)
in;j =

〈
e∗ine(m,n)

j

T〉
,

A(m,n)
j;in =

〈
e(m,n)

j

∗
eT

in

〉
, j = (t, r). (9)

Note that if there is full correlation between the input-field
components, i.e. if |Jin,πσ|2 = Jin,ππ Jin,σσ, which corresponds

to the case traditionally assumed in the grating analysis, the
arguments of the diagonal elements of the angular correlation
functions of diffraction orders correspond to the phase infor-
mation.

The definitions presented above provide us with the full infor-
mation of the field within the framework of the second-order
statistical theory of light. In the next Section, we shall study
how this information can be efficiently employed in rigorous
diffraction theory of gratings.

4 RIGOROUS GRATING THEORY WITH
PARTIALLY POLARIZED INPUT FIELD

Assume next that we know the parameters
(θin, φin, Pin, ϑin, ϕin) for the input plane wave, and we
desire to find out the same parameters for every diffraction
order, as well as their diffraction efficiencies. In the most
typical case encountered in the rigorous diffraction theory of
gratings, the field must be input to the grating code as two
electric-field components. In basic Fourier Modal Method
(FMM) [2, 4] these components are x and y components of
the electric field, but they can be also other components. For
each order, the transformations between the π–σ-basis and
the grating coordinate basis can be represented by matrices
T(m,n)

j,πσ→g and T(m,n)
j,g→πσ, j = (r, t). Analogous matrices can be

naturally defined also for the input field, in which case we
use notations Tin,πσ→g and Tin,g→πσ.

In order to employ the S-matrix approach [11], let us arrange
the complex amplitudes of transmitted and reflected diffrac-
tion orders into column vectors Et,g and Er,g, respectively.
Note that the ordering of the elements in the vectors in the S-
matrix algorithm is free. Also the complex amplitudes of the
input plane wave are arranged in a column vector Ein,g that
usually contains mostly zeros (other plane-wave components
in the Rayleigh basis). For example, in basic FMM only two of
the elements are non-zero. The S-matrix equation now reads[

Et,g

Er,g

]
= S

[
Ein,g

0

]
, (10)

where S is the system S-matrix and 0 is a zero-vector of the
same size as Ein,g. Note that here we have assumed that the
grating is illuminated from one side only, which is almost ex-
clusively the case in practice.

It is obvious from Eq. (10) that, for every diffraction order, we
have a sub-matrix S(m,n)

j of S for which

e(m,n)
j,g = S(m,n)

j ein,g, j = (t, r). (11)

On the other hand, since e(m,n)
j,πσ = T(m,n)

j,g→πσe(m,n)
j,g and ein,g =

Tin,πσ→gein,πσ, we have at once

e(m,n)
j,πσ = T(m,n)

j,g→πσS(m,n)
j Tin,πσ→gein,πσ,

= M(m,n)
j ein,πσ, j = (t, r), (12)

where

M(m,n)
j = T(m,n)

j,g→πσS(m,n)
j Tin,πσ→g, j = (t, r), (13)
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are 2× 2 matrices that describe how the input electric field is
diffracted to the reflected and transmitted orders.

Note that, for given input angles θin and φin, M(m,n)
j are fixed,

i.e., they do not depend on the polarization properties of the
input field. Therefore, even though the input electric-field vec-
tor ein,ßœ is generally a random one, the matrices M(m,n)

j are
fully deterministic. Thus, by inserting Eq. (13) into Eq. (3), we
obtain the polarization matrices for reflected and transmitted
orders:

J(m,n)
j,πσ =

[
M(m,n)

j
]∗Jin,πσ

[
M(m,n)

j
]T, j = (t, r). (14)

These equations give us full and rigorous information about
the polarization states of the diffraction orders, including par-
tial polarization. However, it is possible to avoid solving the
submatrices M(m,n)

j , as we shall see in the next Section.

5 UTILIZATION OF THE
EIGENDECOMPOSITION OF THE
POLARIZATION MATRIX

Let us recall from Eq. (3) that the polarization matrix is al-
ways both Hermitian and non-negative definite square ma-
trix. It can be therefore decomposed into the form [17]

J = J1 + J2, (15)

where
Jp = Ipe∗peT

p , p = (1, 2). (16)

Here Ip and e∗p, p = (1, 2) are the eigenvalues and eigen-
vectors, respectively, of the polarization matrix. Moreover, the
eigenvalues are real and non-negative, and the different eigen-
vectors are orthonormal, i.e. e†

peq = δp,q, where δp,q is the Kro-
necker symbol. The polarization matrices J1 and J2 represent
fully polarized, but mutually uncorrelated fields. The vectors
e1 and e2 represent their polarization states, and I1 and I2 are
proportional to their intensities.

We next consider the polarization matrix of the input field
Jin,πσ, with its eigenvectors and eigenvalues likewise denoted
by a subscript in. Note that here the subscript πσ denotes the
π–σ basis, rather than the off-diagonal element of the matrix.
We first assume that the grating is illuminated only by a field
with intensity Iin,1 and polarization state ein,1,πσ. This clearly
permits us to apply the standard S-matrix approach, yield-
ing the output diffraction orders in terms of vectors e(m,n)

t,1,g and

e(m,n)
r,1,g . These can be converted at once into the π–σ-basis vec-

tors e(m,n)
t,1,πσ and e(m,n)

r,1,πσ. The polarization matrices of the orders
are now of the form

J(m,n)
j,1,πσ = Iin,1

[
e(m,n)

j,1,πσ

]∗[
e(m,n)

j,1,πσ

]T
, j = (t, r). (17)

Analogously, if we assume illumination only by a field with
intensity Iin,2 and polarization state ein,2,πσ, we obtain

J(m,n)
j,2,πσ = Iin,2

[
e(m,n)

j,2,πσ

]∗[
e(m,n)

j,2,πσ

]T
, j = (t, r). (18)

Employing Eqs. (12) and (14) we immediately find that

J(m,n)
j,πσ = J(m,n)

j,1,πσ + J(m,n)
j,2,πσ. (19)

Thus, illumination by fields characterized by the eigenvectors
are eigenvalues of the original polarization matrix yields ex-
actly the correct polarization matrices of the output orders. An
important consequence of this result is that one does not need
to find out the submatrices M(m,n)

j from the grating S-matrix.
Instead, it is possible to use the existing grating code directly,
assuming separate illuminations with fields characterized by
eigenvalues and eigenvectors of the input-field polarization
matrix.

It is obvious that the eigenvector-based approach is based on
the linearity of the S-matrix approach and, on the other hand,
on the fact that the eigenstates of the input field are uncorre-
lated. In other words, one may superpose two different inputs
to the system either coherently or, as in this particular case,
incoherently. However, we point out that, in general, the S-
matrix operation does not preserve orthogonality. Thus, the
output field vectors e(m,n)

j,1,πσ and e(m,n)
j,2,πσ for same m, n, and j, are

not generally orthogonal. An exemplar of this kind of situa-
tion is the metal-stripe polarizer (see, for example, [18]): re-
gardless of the state of polarization of the input field, the out-
put field vectors are parallel. This property does not, however,
affect the validity of Eq. (19).

Finally, let us summarize the general procedure with making
use of the Stokes representation:

1. The input field, characterized by the parameters
(θin, φin, Pin, ϑin, ϕin) is converted into a polarization
matrix Jin,σπ by using Eqs. (4)–(7).

2. The eigenvalues and eigenvectors of the input-field po-
larization matrix are solved by standard tools.

3. The fields characterized by the eigenvectors are propa-
gated separately through the grating, which yields us the
vectors e(m,n)

j,1,πσ and e(m,n)
j,2,πσ, j = (r, t), of the diffraction or-

ders.

4. Polarization matrices of the orders are obtained from
Eq. (19).

5. The parameters
[
θ
(m,n)
j , φ

(m,n)
j , P(m,n)

j , ϑ
(m,n)
j , ϕ

(m,n)
j

]
for

diffraction orders are obtained from Eqs. (4)–(7).

6 POLARIZATION ANALYSIS WITH
FOURIER MODAL METHOD

Let us next turn to examine how we can employ the method
discussed in preceding Section in the case of standard
FMM [4] in the case that the the grating vectors are perpen-
dicular to each other, i.e. the angle ζ in Ref. [4] is zero. In such
a case, the internal coordinate system of the grating is the
Cartesian one. Assuming that the input field is characterized
by parameters (θin, φin, Pin, ϑin, ϕin), and that its amplitude
is normalized to unity (and hence S0,in = 1), as is common
practice within the grating theory, we first need to find the
polarization matrix of the field. Consulting Eqs. we obtain the
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elements of the polarization matrix in the forms

Jin,ππ =
1
2
(1 + P sin ϑin cos ϕin) (20a)

Jin,πσ =
P
2

(sin ϑin sin ϕin + i cos ϑin) (20b)

Jin,σπ =
P
2

(sin ϑin sin ϕin − i cos ϑin) (20c)

Jin,σσ =
1
2
(1− P sin ϑin cos ϕin). (20d)

We next solve the eigenvalues Iin,1 and Iin,2, as well as the
eigenvectors e∗in,1,πσ and e∗in,2,πσ by any suitable way.

The complex conjugates of the eigenvectors can now be used
as the inputs to the FMM code. In order to do that, let us first
convert the vectors from πσ system to the Cartesian basis, by
using Eqs. (2), which yields

ein,p,x = ein,p,π cos θin cos φin − ein,p,σ sin φin (21a)

ein,p,y = ein,p,π cos θin sin φin − ein,p,σ cos φin, (21b)

where p = (1, 2). These vectors are now used separately as
inputs to the system S-matrix, which yields us the complex
amplitudes of the diffraction orders, typically in the form of
x, y, and z, components of the electric field vectors. Note that
one should solve the S-matrix only once, as it does not depend
on the polarization state of the input. Again using Eqs. (2), we
find the vector complex amplitudes e(m,n)

j,p,πσ, where j = (r, t)
and p = (1, 2). The polarization matrices of the orders are
now simply

J(m,n)
j,πσ = Iin,1

[
e(m,n)

j,1,πσ

]∗ [
e(m,n)

j,1,πσ

]T
+ Iin,2

[
e(m,n)

j,2,πσ

]∗ [
e(m,n)

j,2,πσ

]T
,

(22)
where j = (r, t). The degrees of polarization of the orders can
be now found from [13, 14]

P(m,n)
j =

1−
4 det J(m,n)

j,πσ[
tr J(m,n)

j,πσ

]2


1/2

, j = (r, t), (23a)

where det stands for the determinant. Moreover, the polariza-
tion angles are found using Eqs. (4) and (7), which yields

ϑ
(m,n)
j = arccos

 2=
[

J(m,n)
j,πσ

]
P(m,n)

j tr J(m,n)
j,πσ

 , (23b)

ϕ
(m,n)
j = arctan

 2<
[

J(m,n)
j,πσ

]
J(m,n)
j,ππ − J(m,n)

j,σσ

 , j = (r, t). (23c)

The diffraction efficiencies are obtained directly from Eq. (6).

7 EXAMPLES

Finally, let us study several examples on how polarization
states of diffraction orders are changed upon propagation
through one- or two-dimensionally modulated gratings. As-
sume first a simple two-level surface-relief linear grating,
made into glass (n = 1.5). The period of the grating is
3.6λ, where λ is the wavelength in vacuum, the thickness of
the grating layer is 2.8λ, and the filling factor (linewidth-to-
period ratio) is 0.5. We assume incidence from air, and that the

field is characterized by parameters (θin, φin, Pin, ϑin, ϕin) =
(12◦, 90◦, 0, 0, 0), where the last two parameters are in fact free
because the field is unpolarized. Thus, we are dealing the so-
called pure conical mounting, the grating lines being paral-
lel to the plane of incidence. Owing to the mirror-symmetric
problem, it is expected that the efficiencies and degrees of po-
larization of diffraction orders are symmetric with respect to
the zeroth order. Examining the results for the transmitted
field, summarized in Table 1 and Figure 3, we find that this
is indeed the case. Moreover, we find that majority of the or-
ders has non-negligible degree of polarization, even though
it remains quite low for first diffraction orders which contain
the majority of the energy. It is remarkable that ϑ

(m)
t ≈ 90◦

for every order, i.e. the orders may be called partially linearly
polarized.

m η
(m)
t [%] P(m)

t ϑ
(m)
t ϕ

(m)
t

−5 0.9 0.35 93◦ 204◦

−4 3.9 0.03 94◦ 231◦

−3 2.4 0.62 88◦ 36◦

−2 4.5 0.26 86◦ 48◦

−1 32.1 0.10 94◦ 257◦

0 9.7 0.15 90◦ 180◦

+1 32.1 0.10 86◦ 103◦

+2 4.5 0.26 94◦ 312◦

+3 2.4 0.62 92◦ 324◦

+4 3.9 0.03 86◦ 129◦

+5 0.9 0.35 87◦ 156◦

TABLE 1 Transmitted-orders efficiencies and polarization parameters for the first grat-

ing.
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FIG. 3 Polarization states of transmitted orders in Poincare’s sphere for the first grating.

Only planar projection is shown for clarity, since s3 is very small for all orders.

We next consider the same grating, but this time illumi-
nated by partially polarized input, characterized by param-
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eters (θin, φin, Pin, ϑin, ϕin) = (12◦, 90◦, 0.5, 90◦, 180◦). The re-
sults, summarized in Table 2 and Figure 4, show some interest-
ing properties of the degrees of polarizations of the orders. In
particular, some orders are less polarized than the input field,
i.e. one may speak about depolarization of light. This prop-
erty may sound somewhat astonishing, as the element is very
thin deterministic optical element, but can be explained if we
recall that the polarized part of the input field has in general
different diffraction efficiencies than the unpolarized part.

m η
(m)
t [%] P(m)

t ϑ
(m)
t ϕ

(m)
t

−5 0.7 0.19 80◦ 39◦

−4 3.9 0.48 80◦ 28◦

−3 3.1 0.85 88◦ 36◦

−2 5.1 0.67 89◦ 46◦

−1 30.5 0.42 90◦ 75◦

0 10.4 0.61 90◦ 180◦

+1 30.5 0.42 90◦ 285◦

+2 5.1 0.67 91◦ 314◦

+3 3.1 0.85 92◦ 324◦

+4 3.9 0.48 100◦ 332◦

+5 0.7 0.19 100◦ 321◦

TABLE 2 Transmitted-orders efficiencies and polarization parameters for the second

grating.
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FIG. 4 Polarization states of transmitted orders in Poincare’s sphere for the second

grating. Again, only planar projection is shown for clarity, since s3 is quite small for

all orders.

Our third example deals with the so-called planar chiral meta-
materials that attract much interest in recent years [19]-[23].
Since this kind of artificial nanostructures can produce large
optical activity that originates from the structural chiral fea-
tures, but not the intrinsic property of the materials, they are
very promising to be developed as new generation polariza-
tion elements. Nowadays, the analysis of polarization conver-
sion effect of the chiral nanograting is needed to be made for

not only the directly transmitted order[21, 22], but also the
higher diffracted orders [19, 20]. However, if taking into ac-
count simultaneously the structural chirality, the arbitrary po-
larization state of input field, as well as the general diffraction
configuration, one would realize that the theoretical analysis
of the problem seems extremely complex if only applying the
traditional rigorous diffraction theory of gratings; it is almost
impossible to figure out the polarization states of all diffrac-
tion orders within one calculation. Nevertheless, with the ap-
proach the we proposed, the numerical analysis of the planar
chiral metamaterials would be largely simplified.

We analyze as an example a gammadion-shaped nanoparti-
cle array shown in Figure 5, where the structural parameters
are also given. The spatial mounting and polarization state
of the input field is characterized by (θin, φin, Pin, ϑin, ϕin) =
(10◦, 0◦, 0.5, 60◦, 0◦), i.e., it is an oblique incident, partially el-
liptically polarized plane wave. As can be seen from the simu-
lation results demonstrated in Table 3, the polarization states
of all the transmitted orders are quite complex and are totally
different from each other, which shows that the structural chi-
rality imposes a strong effect on the polarization response in
diffraction. With the previous numerical methods, the deter-
mination of the polarization state of each order is quite trou-
blesome; however, with our approach, all the results were ob-
tained at once without a perceivable increase of the computa-
tion time. So it is very hopeful that this approach can be used
as a convenient tool in analyzing the polarization effect of pla-
nar chiral metamaterials.

a

cw
h

H

x

y

z

n1

n2

n3

n2

FIG. 5 Gammadion structure assumed in the third example. The grating parameters are

a = 240 nm, c = 320 nm, w = 400 nm, h = H = 200 nm, n1 = 1, n2 = 3, and

n3 = 1.5. The grating parameters in the y-direction are the same as in the x-direction,

and the grating period is 500 nm.
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(m, n) η
(m,n)
t [%] P(m,n)

t ϑ
(m,n)
t ϕ

(m,n)
t

(0,−1) 12 0.89 82◦ 132◦

(−1, 0) 28 0.66 72◦ 49◦

(0, 0) 24 0.30 108◦ 30◦

(+1, 0) 5 0.62 92◦ 177◦

(0, +1) 16 0.92 77◦ 133◦

TABLE 3 Transmitted-orders efficiencies and polarization parameters for the third grat-

ing.

8 SUMMARY

We have put forward a general approach for convenient anal-
ysis of diffraction problem of gratings under illumination of
arbitrarily polarized light, which can be easily incorporated
with the existing rigorous numerical methods of gratings.
We also discussed how one should illustrate the polarization
states of the input field and diffraction orders such that the re-
sults can be easily interpreted. The approach is based on well-
known properties of partially polarized radiation, in partic-
ular Stokes representation and polarization matrix approach,
as well as rigorous diffraction theory of gratings. In addition,
we have provided detailed guidelines of the implementation
of the method, and illustrated the usefulness of the taken ap-
proach by numerical examples. It may be expected that the
method will found its way in the analysis and design of polar-
ization effects in diffraction gratings.
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