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The conventional representation of Zernike polynomials Rm
n (ρ) gives unacceptable numerical results for large values of the degree n. We

present an algorithm for the computation of Zernike polynomials of arbitrary degree n. The algorithm has the form of a discrete Fourier
(cosine) transform which comes with advantages over other methods in terms of computation time, accuracy and ease of implementation.
As an application we consider the effect of NA-scaling on the lower-order aberrations of an optical system in the presence of a very high
order aberration. [DOI: 10.2971/jeos.2007.07012]
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1 INTRODUCTION

The (radial part of the) Zernike polynomials Rm
n (ρ) are widely

used in the representation of the aberrations of optical sys-
tems and in the computation of the diffraction integral defin-
ing the point-spread function of these systems [1]-[5].When
we are dealing with smooth exit pupil functions, it is, in gen-
eral, sufficient to consider the Rm

n for modest values of the de-
gree n and azimuthal order m, say, n + m ≤ 12. For such pupil
functions, the conventional polynomial representation [1]

Rm
n (ρ) =

=
(n−m)/2

∑
s=0

(n− s)! (−1)s( n−m
2

− s
)

!
( n + m

2
− s

)
! s!

ρn−2s , 0 ≤ ρ ≤ 1 ,

(1)

can be used to calculate the Zernike polynomials. Some low
order Zernike polynomials are shown in Table 1.

Degree n m Rm
n (ρ)

0 0 1
1 1 ρ

2 0 2ρ2 − 1
2 2 ρ2

4 0 6ρ4 − 6ρ2 + 1
3 1 3ρ3 − 2ρ

3 3 ρ3

...

TABLE 1 Low order Zernike polynomials

In the case that the exit pupil function contains discontinu-
ities, or is roughly behaved in a more general sense, it is neces-
sary to consider Zernike polynomials of much higher degree

and order. For instance, when the pupil function has a central
obstruction (0 and 1 on two concentric sets 0 ≤ ρ < a and
a ≤ ρ ≤ 1), the coefficient of R0

n(ρ) in the Zernike expansion
of the pupil function can be shown to decay only like n−1/2.
Then Eq. (1) becomes cumbersome because of the high-order
factorials that are required. Also, for m = 0, it can be shown
from the Stirling’s formula that the largest coefficient of ρn−2s

occurring in the series in Eq. (1) behaves like (1 +
√

2)n. Ac-
cordingly, when computing with d digits, Eq. (1) produces er-
rors of the order of unity or larger from n = d/log(1 +

√
2)

onwards. Hence, for the commonly used 15 digits precision,
one has serious problems from n = 40 onwards, as shown in
Figure 1, top, right. An alternative to compute Zernike poly-
nomials is to use recursions for them such as those found in
Ref. [6]. These recursion schemes are, however, computation-
ally more expensive and less direct than a formula like Eq. (1)
and their accuracy due to error propagation is also an issue.

In this paper, we present a new computation scheme in which
one can allow degrees as large as 105 without problems. This
new algorithm is of the discrete-cosine transform (DCT) type,
and is direct and transparent. Furthermore, the computation
can be done using the FFT-algorithm which comes with the
following advantages [7, 8]:

• Very favorable and well-established accuracy

• Simultaneous computation of all Zernike polynomials of
the same degree n in as few as O(n logn) operations

As an application we consider the effect of NA-scaling on the
lower-order aberrations of an optical system in the presence of
a very high order aberration. For this we use a recently found
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formula [9], entirely in terms of Zernike polynomials, for the
Zernike coefficients of scaled pupils.

2 DCT FORMULA FOR ZERNIKE
POLYNOMIALS

In Appendix A we show that

Rm
n (ρ) =

1
N

N−1

∑
k=0

Un

(
ρ cos

2πk
N

)
cos

2πmk
N

, 0 ≤ ρ ≤ 1 ,

(2)
where N is any integer > n + m. In Eq. (2) we have integer
n, m ≥ 0 with n − m even and ≥ 0 (as usual), and Un is the
Chebyshev polynomial of the second kind and of degree n. No
matter how large n is, the evaluation of Un(x) is no problem
since we have

Un(x) =
sin(n + 1) v

sin v
, x = cos v. (3)

Eq. (2) is a consequence of the formula (A.10) that represents
Rm

n (ρ) as an integral of a trigonometric polynomial of degree
n + m over a periodicity interval. Such an integral can be com-
puted error-free as a series when the number of equidistant
sample points N exceeds the degree n + m. It also follows from
this that the right-hand side of Eq. (2) (and that of Eq. (A.10))
vanish when m > n or when n and m have different parity
(with again N > n + m).

Eq. (2) gives Rm
n (ρ) as the mth component of the DCT of the se-

quence (Un(ρ cos 2πk/N))k=0,1,...,N−1, hence we get all Rm
n (ρ),

with m ≥ 0 and m = n, n− 2, ... , using O(N log N) operations.
Since m ≤ n, it is sufficient to take N any integer > 2n.

In Figure 1, top, we show Rm
n (ρ) as a function of ρ, 0 ≤ ρ ≤ 1,

computed according to Eq. (1) and Eq. (2), using 16 decimal
places, for m = 17, n = 39 and for m = 0 , n = 50. We see that
Eq. (1) gives unacceptable results for the case m = 0, n = 50
from ρ = 0.8 onwards.

In Figure 1, bottom, we show Rm
n (ρ), computed according to

Eq. (2), with m = 0 and n = 10000 and ρ very close to 1. We
see that Rm

n (ρ = 1) = 1 which is in agreement with the theory
[1].

3 AN APPLICATION: HIGH-ORDER
ABERRATIONS AND SCALING

In lithographic imaging systems, the numerical aperture (NA)
is varied intentionally below its maximum value so as to op-
timize the performance for the particular object to be imaged.
In Ref. [9] the effect of NA-scaling on the Zernike coefficients
describing the optical system has been concisely expressed in
terms of Zernike polynomials. Thus we consider a pupil func-
tion

P(ρ, ϑ) = exp {i Φ(ρ, ϑ)} , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π , (4)

in polar coordinates with real phase Φ, and we assume that Φ
is expanded as a Zernike series according to

Φ(ρ, ϑ) = ∑
n,m

αm
n Rm

n (ρ) cos mϑ . (5)
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FIG. 1 Top: Rm
n (ρ) as a function of ρ, 0 ≤ ρ ≤ 1, computed according to Eq. (1)

and Eq. (2), using 16 digits, for m = 17, n = 39 and for m = 0 , n = 50. Bottom:

Rm
n (ρ), computed according to Eq. (2), with m = 0 and n = 10000 and ρ very close

to 1

Scaling to a pupil with relative size ε = NA/NAmax ≤ 1
requires computation of the Zernike coefficients αm

n (ε) of the
scaled phase function Φ(ερ, ϑ). For m = 0, 1, ... the αm

n (ε) are
given in terms of the αm

n as

αm
n (ε) = ∑

n′
αm

n′ [R
n
n′ (ε)− Rn+2

n′ (ε)] , n = m, m + 2, ... , (6)

where the summation is over n′ = n, n + 2, ... (Rn+2
n ≡ 0).

In case of a non-smooth phase function Φ, one should expect
significant values of αm

n′ for very high degrees n′. Also, scal-
ing is normally done using values of ε close to its maximum 1,
where Eq. (1) produces the largest numerical error. Thus, for-
mula (6) is not practicable in these cases when Eq. (1) is used
to evaluate Rn

n′ (ε)− Rn+2
n′ (ε), but becomes so when Eq. (2) is

used instead.
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FIG. 2 The disturbance α0
n(ε) of the aberration of order n = 0, 2, · · · , 100, due to the

presence of an aberration of amplitude 1 and of the order n′ = 100 when the system

is scaled to relative size ε = 0.50 (left) and ε = 0.98 (right).

As an example, we consider the effect of a single high order
aberration term αm

n′ on the totality of αm
n with n = m, m +

2, ..., n′ while scaling to relative size ε. We take αm
n = 0 for

n 6= n′ and αm
n′ = 1, and get from Eq. (6)

αm
n (ε) = [Rn

n′ (ε)− Rn+2
n′ (ε)], n = m, m + 2, ..., n′, (7)
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while αm
n (ε) = 0 when n > n′. The numbers Rn

n′ (ε)− Rn+2
n′ (ε)

required in Eq. (7), with n′ fixed and n = m, m + 2, ..., n′ , can
be computed simultaneously using O(n′ log n′) operations by
employing Eq. (2) in its DCT-mode. Figure 2 shows the result
for m = 0 and n′ = 100, n = 0, 2, · · · , 100, α0

n(ε) with ε = 0.50
and ε = 0.98.

A PROOF OF THE MAIN RESULT

We write for integer n, m ≥ 0 with n−m even and ≥ 0

zm
n (ν, µ) = Zm

n (ρ, ϑ) = Rm
n (ρ) cos mϑ , (A.1)

in which the Cartesian coordinates ν, µ and polar coordinates
ρ, ϑ are related according to ν = ρ cos ϑ, µ = ρ sin ϑ and 0 ≤
ρ ≤ 1, 0 ≤ ϑ ≤ 2π. Furthermore, we let

f m
n (ν) =

1
2(1− ν2)1/2

√
1−ν2∫

−
√

1−ν2

zm
n (ν, µ) dµ , − 1 ≤ ν ≤ 1 .

(A.2)
According to the formula for the Radon transform of Zm

n we
have, see Ref. [10], Eq. (8.13.17),

f m
n (ν) =

1
n + 1

Un(ν) , − 1 ≤ ν ≤ 1 , (A.3)

with the Chebyshev polynomial Un given in Eq. (3). We con-
sider next the Zernike expansion of f m

n (ν),

f m
n (ν) = ∑

n′ ,m′
βm,m′

n,n′ zm′
n′ (ν, µ) (A.4)

in which the β’s are given, due to the orthogonality1 of the z’s,
by

βm,m′

n,n′ =
(n′ + 1)εm′

π

∫
ν2+µ2≤1

∫
f m
n (ν) zm′

n′ (ν, µ) dν dµ . (A.5)

In Eq. (A.5) we have that m, m′, n, n′ all have the same parity
and n′ ≥ m′, and εm′ = 1 for m′ = 0 and εm′ = 2 for m′ =
1, 2, ... (Neumann’s symbol). According to Eq. (A.3) we have

βm,m′

n,n′ =
(n′ + 1) εm′

(n + 1) π

1∫
−1

Un(ν)


√

1−ν2∫
−
√

1−ν2

zm′
n′ (ν, µ) dµ

 dν .

(A.6)
Then using Eqs. (A.2), (A.3) with n′, m′ instead of n, m, we
find

βm,m′

n,n′ =
2εm′

π(n + 1)

1∫
−1

Un(ν) Un′ (ν)(1− ν2)1/2 dν =
εm′

n + 1
δn,n′ ,

(A.7)
where δ denotes Kronecker’s delta, and where we have used
the orthogonality of the U’s, see Ref. [11], 22.2.5 on p. 774.

We conclude from Eqs. (A.3), (A.4), (A.7) that

Un(ν) = ∑
m′

εm′ zm′
n (ν, µ) , (A.8)

i.e., that

Un(ρ cos ϑ) = ∑
m′

εm′ Rm′
n (ρ) cos m′ϑ . (A.9)

By orthogonality of the cos m′ϑ, ϑ ∈ [0, 2π], it follows that

Rm
n (ρ) =

1
2π

2π∫
0

Un(ρ cos ϑ) cos mϑ dϑ . (A.10)

Finally, Un(ρ cos ϑ) cos mϑ is a trigonometric polynomial of
degree n + m. Therefore, the integral in Eq. (A.10) can be eval-
uated using the sample values of the integrand at the points
2πk/N, k = 0, 1, ..., N− 1 when N > n + m. This yields Eq. (2).

Note. Eq. (A.10) can also be used to get accurate stationary
phase approximations to Rm

n (ρ) when n gets large. Accord-
ingly, Rm

n (ρ) is vanishing small when 0 ≤ ρ ≤ m
n − ε, and is os-

cillatory and of amplitude O(n−1/2) when m
n + ε ≤ ρ ≤ 1− ε

(ε > 0 fixed, n → ∞). This can be used to explain some of the
phenomena that one observes in Figure 2.
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