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Hanna Lajunen School of Information and Communication Technology, Royal Institute of Technology (KTH), Electrum
229, SE–16440 Kista, Sweden,
Permanent address: Department of Physics and Mathematics, University of Joensuu, P.O. Box 111, FI–
80101 Joensuu, Finland.

Ari T. Friberg School of Information and Communication Technology, Royal Institute of Technology (KTH), Electrum
229, SE–16440 Kista, Sweden.
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1 I n t r o d u c t i o n

The optical energy spectrum of a train of ultrashort pulses
consists of multiple longitudinal modes spaced by a frequency
equal to the pulse repetition rate. The energy carried by each
line is related to the Fourier transform of the pulse envelope.
Due to the difference between the group and phase velocities
in the laser cavity, there is a constant phase slip from pulse–to–
pulse which determines the comb offset. When this offset and
repetition rate are stabilized to specific values, the frequency
comb can be employed as a ruler for high resolution optical
metrology [1, 2].

However, as is well known, various sources of noise can dete-
riorate the ideal frequency–comb energy spectrum [3]– [7]. In
order to assess the stochastic noise phenomena, previous ef-
forts have mainly focused on the mathematical description of
the effects of pulse–to–pulse fluctuations in timing jitter and
amplitude [8]– [12]. Only very recently, the noise in relative
phase has been taken into account [6, 7]. However, there can
also be random fluctuations in the intensity profiles, chirp-
ing, and temporal durations of the pulses, which have been
ignored. It means that the pulse train is an inherently tempo-
rally partially coherent wave field. A realization of the ran-
dom field contains a large number of individual pulses.

In this work, we give a simple analytical model to include
simultaneously all these random effects and the timing jit-
ter. Under the assumption of statistical de–correlation, we
give a closed–form expression for the energy spectrum which
deals with partial coherence and timing jitter separately. We
find that the effects of partial coherence contribute to broaden
the comb lines, whereas the pulse jitter manifests as a two–
sided pedestal of the comb. Our approach is especially useful
for any frequency comb produced by actively mode–locked

pulses or, alternatively, for combs obtained by external mod-
ulation of a continuous wave (CW) laser source [13]. The pre-
sented model accounts successfully for the previous experi-
mental researches on the spectral line width of longitudinal
modes in mode–locked lasers [5].

2 T H E O R Y

The complex field of the pulse train, U(t), when all noise phe-
nomena are ignored, is [1]

U(t) =
N

∑
n=−N

ψ(t− nT) exp[−i(ωct− nωcT + n∆ΦCE)], (1)

where ωc is the carrier frequency, T denotes the fundamental
period, ψ(t) is the complex field of each of the 2N + 1 pulses
constituting the train, and ∆ΦCE denotes the pulse–to–pulse
phase shift. To account for the effects of partial temporal co-
herence and timing jitter, we rewrite Eq. (1) as

U(t) = N(t)
N

∑
n=−N

ψ(t− Tn) exp[−i(ωct− nωcT + n∆ΦCE)].

(2)
Here N(t) is a dimensionless, statistically stationary, com-
plex random process [14]. Its mutual coherence function is
ΓN(t1, t2) = 〈N∗(t1)N(t2)〉 = ΓN(τ), where the angle brack-
ets denote ensemble averaging and τ = t2 − t1. The mean in-
tensity of the noise is constant, 〈|N(t)|2〉 = ΓN(0), and with-
out any loss of generality we may assume that this function is
normalized, i.e., ΓN(0) = 1. The variations in the pulse rep-
etition rate are treated mathematically in Eq. (2) by writing
Tn = nT + εn, where εn is a small temporal fluctuation that

Received December 13, 2006; published February 20, 2007 ISSN 1990-2573



Journal of the European Optical Society - Rapid Publications 2, 07007 (2007) V. Torres–Company, et. al.

accounts for the timing jitter. The specific statistics of εn de-
pend on the way the laser is mode locked [11, 12]. To keep the
approach general we will not restrict ourselves to any partic-
ular type of mode–locking process.

We emphasize that since N(t) is a complex random function,
it can simultaneously model the temporal fluctuations of the
phase, amplitude, energy, and pulse duration, including also
the usually ignored chirping and shape variations. In other
words, it deals with general temporal partial coherence. Our
approach can be considered as a generalization of the classic
work of von der Linde [9] to the complex field. Thus we are
examining optical energy spectra instead of intensity power
spectra. Note that the relative random amplitude fluctuations
studied in previous works [11,12] can be recovered just by re-
stricting N(t) = an for (n − 1)T < t < nT, where an is an ap-
propriate real and positive random variable. The phase fluc-
tuation between pulses [6, 7] could be represented similarly
by making N(t) a stepwise unimodular complex random pro-
cess. It is also worth mentioning that, in a different context, the
multiplicative noise model has been successfully employed to
describe temporal fluctuations taking place in CW lasers that
are externally amplitude modulated [15]. This has proven to
be useful for determining the maximum bit rate achievable in
fiber–optical communication systems that operate by wave-
length division multiplexing [16].

The energy spectrum, S(ω), of the mode–locked laser is de-
fined as [17]

S(ω) = 〈|Ũ(ω)|2〉, (3)

where Ũ(ω) is the Fourier transform of Eq. (2). Providing the
noise and the timing jitter are uncorrelated the spectrum can
be expressed, after some straightforward calculations, in the
simple form

S(ω) = WN(ω −ωc)⊗ F(ω −ωc), (4)

where ⊗ stands for the convolution operation and

F(ω) = |ψ̃(ω)|2
N

∑
n=−N

N

∑
m=−N

exp[−i(n−m)

× (ωT + ωcT − ∆ΦCE)]〈exp[−iω(εn − εm)]〉,
(5)

where ψ̃(ω) is the Fourier transform of ψ(t). In addition, we
have used the fact that different frequency components of
a stationary process are uncorrelated, i.e., 〈Ñ∗(ω)Ñ(ω′)〉 =
WN(ω)δ(ω′ − ω), where δ is the Dirac delta function. More-
over, WN(ω) is the spectral density of N(t), which is related
to ΓN(τ) via the Wiener–Khintchine theorem [14]

WN(ω) =
∫

ΓN(τ) exp(iωτ)dτ. (6)

Eq. (4) is the main result of the present work. It connects sep-
arately, through the simple operation of convolution, the ef-
fects of partial coherence, given by WN(ω), and the effects of
pulse jitter, described by F(ω). Moreover, no assumptions on
the mode–locking process are made, which allows us to di-
rectly utilize previous models developed for the jitter [11, 12].

To gain further physical insight, we first ignore the timing jit-
ter by setting εn = 0 for all n. When N → ∞ we find 1 that
F(ω) = |ψ̃(ω)|2 ∑∞

n=−∞ δ(ω + ωc − ∆ΦCE/T − 2πn/T) and,
in consequence, Eq. (4) becomes

S(ω) =
∞

∑
n=−∞

WN(ω − ∆ΦCE/T − 2πn/T)

× |ψ̃(∆ΦCE/T + 2πn/T −ωc)|2. (7)

This result shows that the spectral content of a single ideal
pulse, |ψ̃(ω)|2, is sampled, instead of a comb, by a different
sampling function with some spectral width [6, 7]. We note
that not only the phase fluctuations but the general partial
temporal coherence properties contribute. In this way, every
spectral line acquires a finite width given by the spectral den-
sity function, WN(ω), of the noise N(t). Thus, the line broad-
ening contains the information of the coherence of the pulse
train. The deterministic carrier–envelope phase shift only af-
fects by changing the positions of the lines in the same way
as in the coherent case. Moreover, when timing jitter is not
relevant, the line width is independent of the particular lon-
gitudinal mode under consideration, consistently with some
previous experimental observations [5].

To study the interplay between timing fluctuations and partial
coherence, we first have to pick a specific statistical model for
the jitter. We consider a Gaussian statistical distribution with
zero mean; it permits us to write Eq. (5) in the following form

F(ω) = |ψ̃(ω)|2 exp(−ω2ε2
0)

N

∑
n=−N

N

∑
m=−N

exp[−i(n−m)

× (ωT + ωcT − ∆ΦCE)] exp(ω2〈εmεn〉), (8)

where ε2
0 = 〈ε2

n〉 for all n. The specific statistics of 〈εnεm〉 are
determined by the mode–locking process.

First, it is possible that the timing fluctuations are uncorre-
lated from pulse to pulse, so that 〈εnεm〉 = ε2

0δnm, where δnm is
the Kronecker delta function. Such statistical timing jitter can
be produced in gain–switched laser diodes [10]. In contrast,
for actively mode–locked lasers the timing fluctuations are in-
duced by the intra–cavity modulator. In this case stationary
statistics are widely assumed [11], i.e., 〈εnεm〉 = 〈ε0ε|n−m|〉 =
G(|n − m|). In this way, the correlation between the pulse–
period fluctuations only depends on the absolute time interval
between the considered pulses. Finally, for passively mode–
locked lasers the stationarity assumption no longer holds [12].
Of course, such a jitter can still be described by our model
through Eqs. (4) and (8). With no loss of generality, we demon-
strate the model with the uncorrelated and stationary cases.

3 N U M E R I C A L E X A M P L E S

For numerical examples, we consider an infinite pulse train
with 40 GHz repetition rate and Gaussian envelope ψ(t). The
root–mean–square temporal length of the pulse intensity is
taken to be about 1.12 ps. The central frequency is ωc/2π ≈
193.55 THz, corresponding to the wavelength 1.55 µm. We
also take ωcT − ∆ΦCE = 0. Different values would shift, as

1With use of the identity ∑∞
n=−∞ exp(−iωTn) = ∑∞

n=−∞ δ(ω − 2πn/T).
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in the coherent case, the comb structure by an amount be-
tween 0 and 2π/T. Based on previous experimental results
[4], the noise spectrum WN(ω) is chosen as a Lorentzian func-
tion with line width ∆ω. Note that according to Eq. (6) this
corresponds to a mutual coherence function ΓN(τ) with ex-
ponential decay. Thus the coherence time of the pulse train is
roughly given by the inverse of the line width. Again, this is
closely connected to the single–mode operation of CW lasers.

Figure 1 illustrates the optical power spectra of pulse trains
with different states of coherence when there is no timing jit-
ter.
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FIG. 1 Energy spectra of mode–locked lasers with different states of coherence and

no timing jitter. The widths of the Lorentzian noise spectra are ∆ω = 2π f , where

f = 0.5 GHz (solid line), 2 GHz (dashed line), and 5 GHz (dash–dotted line). A closer

look of one of the comb lines is shown in the inset.

The comb lines are seen to become wider as the amount of
noise in the train increases. In Figure 2 the same pulse trains
are assumed to have uncorrelated timing jitter with ε0 ≈ 79 fs,
which corresponds to a 0.3 % deviation from the mean period.
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FIG. 2 Energy spectra of mode–locked lasers with different states of coherence and un-

correlated timing jitter. The widths of the Lorentzian noise spectra are as in Figure 1.

A close–up of one of the comblines is shown in the inset.

The line–width variations depending on the state of coher-
ence remain similar as those in Figure 1, but the timing jit-
ter changes the shape of the spectrum by creating additional
pedestals on both sides of the central frequency. Finally, in

Figure 3 we consider pulse trains with the same noise func-
tions but more general stationary timing jitter. The parameter
ε0 is as in the uncorrelated case, and the correlation of the jitter
between the separate pulses is assumed to be given by func-
tion [8, 11] G(n) = ε2

0 exp(−αn), with α = 1.

193.3 193.4 193.5 193.6 193.7 193.8
0

1

2

3

4

5

6

7

193.624193.628193.632

1

2

3

4

5

ω/2π [THz]

S
(ω

)
[a

.u
.]

FIG. 3 Energy spectra of mode–locked lasers with different states of coherence and

stationary timing jitter. The widths of the Lorentzian noise spectra are as in Figure 1.

A close–up of one of the comblines is shown in the inset.

In this case, the jitter causes not only the pedestal parts to the
spectrum, but also changes to the widths and shapes of the
comb lines. It should also be noted that the envelope function
is no longer the same Gaussian as with no timing jitter.

4 D I S C U S S I O N A N D C O N C L U -
S I O N S

Nevertheless, as predicted by the theory and in accordance
with previous approaches [6], the central line of the comb is
not altered by the presence of jitter. When there is no overlap
between neighboring lines the coherence time, tc, can be de-
fined as the inverse of the bandwidth ∆ωc of that line, given
for instance by (see Eq. (4.3–68) in Ref. [14])

∆ω2
c =

∫ ω+
ω−

(ω −ω0)2S2(ω)dω∫ ω+
ω−

S2(ω)dω
, (9)

where now ω0 = ωc − ∆ΦCE/T and ω± = ω0 ± π/T. It is
worth mentioning that the coherence time of frequency combs
is often defined as the inverse of the maximum frequency at
which the energy of the phase–noise spectral density of the
spectral line corresponding to the offset has accumulated a
phase of 1 rad [1]. However, although quite practical in terms
of experimental implementation, this definition of coherence
only takes into account the carrier–envelope phase coherence,
i.e., the random changes in phase. It is not an appropriate mea-
sure of the general temporal optical coherence. In order to im-
plement a measurement of the quantity described in Eq. (9),
an approach such as the one described in Ref. [5] should be
adopted. A proper filter on the central line first converts the
pulsed laser into CW radiation. Thereafter, a delayed self–
heterodyne detection method is used, which allows to extract
the optical energy spectrum.
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Additionally, we have also been studying the case in which
the timing jitter and the temporal partial coherence are not
statistically independent. In this case the energy spectrum re-
mains practically the same as that plotted in Figure 3, but
spikes appear at the top of the spectral lines, apart from the
central line. So, the procedure to measure the coherence time
as the inverse of the central–line width given by Eq. (9) re-
mains valid. We find that the height of the spikes is propor-
tional to the correlation between the strength of the jitter and
noise. Complete analysis of this more complicated situation is
presented elsewhere [18].

In summary, the effects of temporal partial coherence and
timing jitter have been included in the description of mode–
locked frequency combs. We have shown that both types of
noise influence the ideal comb in their own distinct ways. Our
mathematical model is analytical and consistent with previ-
ous experimental work on the line widths of mode–locked
lasers. The presented theoretical approach opens up possibil-
ities to measure the coherence time of pulse trains and, fur-
ther, to generate coherently stabilized frequency combs, which
would increase the spectral resolution.
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