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The perceived lateral position of a transmitted beam, upon propagating through a slab made of homogeneous, isotropic, dielectric material
at an oblique angle, can be controlled through varying the velocity of the slab. In particular, on judiciously selecting the slab velocity,
the transmitted beam can emerge from the slab with no lateral shift in position. Thereby, a degree of concealment can be achieved, as
exemplified by numerical simulations involving a 2D Gaussian beam. [DOI: 10.2971/jeos.2007.07003]
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1 I n t r o d u c t i o n

The topic of invisibility — which is a very old one in optics
and electromagnetics [1] — has lately acquired a new lease
of life with the advent of metamaterials [2, 3]. In particular,
the exotic electromagnetic possibilities offered by nonhomo-
geneous metamaterials may be harnessed to achieve cloaking,
at least in principle [4]–[7]. The underlying theoretical argu-
ments exploit the invariance of the Maxwell postulates under
certain coordinate transformations.

A quite different approach to concealing a material is pursued
in this paper. It is based on the perceived deflection of light
by a material slab translating at constant velocity. No special
material properties are required, but for illustrative purposes,
we consider an isotropic, homogeneous, dielectric material. In
two previous studies, we have demonstrated that the much–
heralded negative–phase–velocity phenomenon often associ-
ated with negatively refracting electromagnetic metamaterials
can be realized by conventional materials through the process
of uniform motion [8, 9].1 Here, we demonstrate that a sub-
stantial degree of concealment may also be realized by uni-
form motion.

As regards notational matters, 3 vectors are in boldface, with
theˆsymbol identifying unit vectors. Double underlining sig-
nifies a 3×3 dyadic and I is the identity 3×3 dyadic. The su-
perscript T denotes the transpose of a column vector. The per-
mittivity and permeability of vacuum are ε0 and µ0. The vac-
uum wavenumber is k0 = ω

√
ε0µ0 with ω being the angular

frequency, and the vacuum wavelength is λ0 = 2π/k0.

2 P L A N E W A V E P R O P A G A T I O N
I N T O A U N I F O R M L Y M O V I N G
H A L F – S P A C E

As a preliminary to concealment of a moving slab (section 3),
let us consider a uniformly moving half–space. Suppose that
a plane wave is launched with wavevector ki = kik̂i from
vacuum (z < 0) towards the half–space z > 0 occupied by
an isotropic, nondissipative, dielectric material. This material
moves at constant velocity v = vv̂ = vx̂, parallel to the in-
terface and in the plane of incidence. In an inertial frame of
reference that moves with the same velocity v with respect
to the laboratory frame of reference wherein ki is specified,
the refracting material is characterized by relative permittivity
εr. The Minkowski constitutive relations of the moving half–
space in the laboratory frame of reference are [11]

D(r) = ε0εr α • E(r) +√
ε0µ0

(
m× I

)
• H(r)

B(r) = −√ε0µ0

(
m× I

)
• E(r) + µ0 α • H(r)

}
, (1)

where

α = α I + (1− α) v̂v̂ , α =
1− β2

1− εrβ2 ,

m = mv̂ , m =
β (εr − 1)
1− εrβ2 , β = v

√
ε0µ0

 . (2)

In order to exclude the possibility of evanescent plane waves,
εr > 1 is assumed. The envisaged scenario is illustrated
schematically in Figure 1.

1The phenomenon of negative refraction is not exclusively associated
with metamaterials and relativisitic scenarios, as is demonstrated by the
superposition eyes of certain moths and lobsters [10].
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FIG. 1 A plane wave with wavevector ki is incident from vacuum onto a half–space

occupied by a simply moving dielectric material at an angle φi with respect to the

unit vector ẑ normal to the planar interface. The moving material is characterized by

relative permittivity εr > 0 in a co–moving frame of reference. As observed in the

non–co–moving (laboratory) frame of reference wherein the incident plane wave is

specified, the refracted wavevector kt makes an angle φt with ẑ.

The angle φt between the refracted wavevector kt = ktk̂t, as
observed from the laboratory frame of reference, and the unit
vector ẑ normal to the interface is related to the angle of inci-

dence φi = cos−1
(

k̂i • ẑ
)

by [11]

φt = sin−1
(

k0 sin φi
kt

)
, (3)

where

kt = k0

{
1 + ξ

[
1− β

(
k̂i • v̂

)]2
}1/2

(4)

is the wavenumber of the refracted wave and ξ =
(εr − 1)/(1− β2). Since 0 < φt < π/2 ∀ φi ∈ (0, π/2), re-
fraction is positive ∀ β ∈ (−1, 1) [12].

The time–averaged Poynting vector of the refracted plane
wave is given by [11]

Pt = Pt P̂t =
(
|C1|2 + εr|C2|2

)
(kt × v̂)2 [kt+

+ ξβ (k0 − βkt • v̂) v̂] , (5)

where C1 and C2 are constants, and the angle between ẑ and
P̂t is

φP = tan−1
(

P̂t • v
|v| P̂t • ẑ

)
. (6)

As an illustrative example, the angle φP is plotted in Figure 2
against β ∈ (−1, 1) for φi ∈ {15◦, 45◦, 75◦}, for the half–
space characterized by εr = 6.0. The orientation of the re-
fracted time–averaged Poynting vector rotates towards the di-
rection of motion as β increases from −1. The counterposition
regime — which occurs where φP < 0 for φt > 0 — is dis-
cussed elsewhere [12, 13].
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FIG. 2 The angle φP (in degree) between the time–averaged Poynting vector Pt and

the unit vector ẑ, plotted as a function of β ∈ (−1, 1), when the angle of inci-

dence φi = 15◦ (solid curve), 45◦ (dashed curve) and 75◦ (broken dashed curve);

and εr = 6.0. The red lines indicate where φP = φi . The counterposition regime

{φP < 0◦ , φt > 0◦} is shaded.

In connection with Figure 2, it is of particular interest here that
φP = φi at (i) β = 0.08 for φi = 15◦, (ii) β = 0.29 for φi = 45◦,
and (iii) β = 0.78 for φi = 75◦. That is, there exist angles of
incidence at which the time–averaged Poynting vector is not
deflected by the uniformly moving half–space. This suggests
that it may be possible for a light beam — not to be confused
with a plane wave — to pass through a uniformly moving slab
at an oblique angle without experiencing a lateral shift in po-
sition. That suggestion inspired the research presented in the
next section.

3 B E A M P R O P A G A T I O N T H R O U G H
A U N I F O R M L Y M O V I N G S L A B

Suppose that the uniformly moving half–space considered
in section 2 is now replaced by a slab of thickness L mov-
ing at constant velocity v = vx̂ parallel to its two surfaces,
as schematically illustrated in Figure 3. The slab — which is
characterized, as before, by εr > 1 in a co–moving reference
frame — is sandwiched by two vacuous half–spaces.
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FIG. 3 A beam is incident onto a simply moving slab at an angle θi with respect to

the unit vector ẑ normal to the planar interface. The moving material is characterized

by relative permittivity εr > 0 in a co–moving frame of reference. As observed in

the non–co–moving (laboratory) frame of reference wherein the incident plane wave

is specified, the transmitted beam is shifted by ∆, parallel to x̂, relative to its position

if the slab were absent.
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A 2D beam with electric field phasor [14]

Ei (x, z) =
∫ ∞

−∞
ei(ϑ) Ψ(ϑ) exp [i (ki • r)] dϑ, z ≤ 0, (7)

is incident upon the slab at a mean angle θi relative to the
slab normal direction ẑ. The beam is represented as an angular
spectrum of plane waves, with

ki = k0

[(
ϑ cos θi +

√
1− ϑ2 sin θi

)
x̂−

−
(

ϑ sin θi −
√

1− ϑ2 cos θi

)
ẑ

]
(8)

being the wavevector of each planewave contributor. The
angular–spectral function Ψ(ϑ) is taken to have the Gaussian
form [14]

Ψ(ϑ) =
k0 w0√

2π
exp

[
− (k0 w0 ϑ)2

2

]
, (9)

with w0 being the width of the beam waist. Two polarization
states are considered: parallel to the plane of incidence, i.e.,

ei(ϑ) ≡ e‖ =
(

ϑ sin θi −
√

1− ϑ2 cos θi

)
x̂

+
(

ϑ cos θi +
√

1− ϑ2 sin θi

)
ẑ, (10)

and perpendicular to the plane of incidence, i.e.,

ei(ϑ) ≡ e⊥ = ŷ. (11)

As the incident beam has the spatial Fourier representation
(7), the reflected and the transmitted beams must also have
similar representations. The electric field phasor of the re-
flected beam is given as

Er (x, z) =
∫ ∞

−∞
er(ϑ) Ψ(ϑ) exp [i (kr • r)] dϑ, z ≤ 0, (12)

with

kr = k0

[(
ϑ cos θi +

√
1− ϑ2 sin θi

)
x̂

+
(

ϑ sin θi −
√

1− ϑ2 cos θi

)
ẑ

]
(13)

and

er(ϑ) =


r‖

[
−

(
ϑ sin θi −

√
1− ϑ2 cos θi

)
x̂

+
(

ϑ cos θi +
√

1− ϑ2 sin θi

)
ẑ
]

for ei(ϑ) = e‖

r⊥ e⊥ for ei(ϑ) = e⊥

.

(14)
The electric field phasor of the transmitted beam is given as

Et (x, z) =
∫ ∞

−∞
et(ϑ) Ψ(ϑ) exp {i [kt • (r− Lẑ)]} dϑ, z ≥ L,

(15)
with kt = ki and

et(ϑ) =

{
t‖ ei(ϑ) for ei(ϑ) = e‖
t⊥ e⊥ for ei(ϑ) = e⊥

. (16)

Expressions for the reflection coefficients r‖,⊥ and transmis-
sion coefficients t‖,⊥ are provided in equations (A.16)–(A.19)
in Appendix A.

In view of Figure 2, we fixed the mean angle of incidence of
the beam at θi = 45◦ and explored the behaviour of the trans-
mitted beam for β < 0.29, β = 0.29 and β > 0.29. The energy
density of the beam in both half–spaces, as measured by

|E|2 =

{
|Ei + Er|2 for z ≤ 0

|Et|2 for z ≥ L
, (17)

is mapped for z/λ0 ∈ (−8, 12) and x/λ0 ∈ (−25, 25) in
Figure 4 with the slab thickness L = 4λ0. The restriction
ϑ ∈ [−1, 1] was imposed to exclude evanescence. A beam
waist of w0 = 1.75λ0 was selected for all calculations. We con-
sidered β ∈ {−0.15, 0.29, 0.8} for both ei = e‖ and ei = e⊥.
The numerical values for the beam waist and slab thickness
were chosen in order to accentuate the clarity of Figure 4.

FIG. 4 Normalized |E|2 is mapped in the xz plane for a 2D Gaussian beam incident

onto a simply moving slab at an angle θi = 45◦. The relative speed of the slab is:

β = −0.15 (top); β = 0.29 (middle); and β = 0.8 (bottom). The electric field phasor

of the incident beam is polarized parallel (left) and perpendicular (right) to the plane

of incidence. The red line indicates the mean beam position in the absence of the

moving slab.

The fringes which can observed in Figure 4 are artefacts. These
are due to aliasing errors associated with the discretization of
the spatial Fourier representation of the beam and the finite in-
tegration domain used for the computations [15]. The appar-
ent secondary reflected beams which lie to the left of the inci-
dent beam in Figure 4 for ei = e‖ with β = 0.29 and β = 0.8
are similarly artefacts due to aliasing errors.
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Regardless of the polarization state, the transmitted beam
does not undergo a lateral shift (relative to the incident beam)
when β = 0.29. However, the transmitted beam is laterally
shifted in the direction of −x̂ when β < 0.29 and in the direc-
tion of +x̂ when β > 0.29. The energy densities of the reflected
and transmitted beams are sensitive to β and the polarization
state of the incident beam.

A more quantitative representation of the transmitted beam
is provided in Figure 5, wherein |E|2 is plotted against x for
β ∈ {−0.15, 0.29, 0.8} at z = 4λ0. For comparison, |E|2 for the
beam in the absence of the moving slab is also plotted. It is
clear that the beam position for β = 0.29 coincides with the
beam position in the absence of the moving slab. At β = 0.29,
the peak energy density of the transmitted beam for the case of
parallel polarization is approximately 11% less than it would
be if the slab were absent; the corresponding figure for per-
pendicular polarization is 38%. The energy losses in trans-
mission presented here are typical rather than minimal. The
transmission losses could be reduced by adjusting the beam
parameters, but there will always be some loss.

FIG. 5 Normalized |E|2 at z = 4λ0 for β = −0.15 (broken dashed curve); β = 0.29

(solid dark curve); and β = 0.8 (dashed curve). The solid red curve represents the

normalized |E|2 in the absence of the moving slab. The electric field phasor of the
incident beam is polarized parallel (left) and perpendicular (right) relative to the plane

of incidence.

The median shift of transmitted beam in relation to the inci-
dent beam is defined as

∆ =
(∫ ∞

−∞
x|Et(x, L)|2 dx

) (∫ ∞

−∞
|Et(x, L)|2 dx

)−1

−
(∫ ∞

−∞
x|Ei(x, L)|2 dx

) (∫ ∞

−∞
|Ei(x, L)|2 dx

)−1
.(18)

For both parallel and perpendicular polarizations, ∆ is plotted
against β ∈ (−1, 1) in Figure 6.

FIG. 6 The median beam shift ∆ at z = 4λ0, plotted against β. The electric field phasor

of the incident beam is polarized parallel (left) and perpendicular (right) relative to

the plane of incidence. Zero median beam shift at β = 0.29 is indicated by dashed

lines.

Thus, regardless of the polarization state, the beam can be
shifted laterally along±x̂ by means of uniform motion. In par-
ticular, the zero beam shift at β = 0.29 is further confirmed in
Figure 6. The wrinkles apparent in the graphs of Figure 6 are
an artefact of the computations.

4 C O N C L U D I N G R E M A R K S

Our numerical investigations show that a 2D beam can pass
obliquely through a uniformly moving slab without undergo-
ing a lateral shift in its position. At a fixed angle of beam in-
cidence, this effect occurs only for a unique translational slab
velocity. However, extrapolating from Figure 2, for every an-
gle of beam incidence a slab velocity can be found at which
the beam undergoes no lateral shift. Furthermore, the zero lat-
eral deflection results presented in Figure 4 will also hold for
a pulsed beam at a fixed angle of incidence, provided that the
constitutive parameters of the moving slab do not vary with
angular frequency in the pulse spectrum. This finding is in
agreement with the well–known Fresnel drag [11].

Concealment achieved by uniform motion — as indicated by
the absence of a lateral shift — is not 100% perfect due to
reflections but, in the particular case of the example consid-
ered in section 3, almost 90% of the peak energy density of the
beam can be transmitted without deflection. Other schemes
for concealment have deficiencies too: most notably, highly
specialized, nonhomogeneous metamaterials are required and
the degree of concealment is not perfect [4]. Our results in-
dicate that the effectiveness of a cloaking device could be
enhanced by motion, particularly for future applications in
space.
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A A P P E N D I X

The reflection coefficients r‖,⊥ and transmission coefficients
t‖,⊥ are straightforwardly calculated by solving the reflection–
transmission problem as a boundary value problem. We out-
line the procedure here, further details being available else-
where [16].

Consider the plane wave with electric and magnetic field pha-
sors

E(x, z) = ẽ(z, θ) exp (ik0x sin θ)

H(x, z) = h̃(z, θ) exp (ik0x sin θ)

}
(A.1)

propagating in the xz plane. As in section 3, a moving slab de-
scribed by the Minkowski constitutive relations (1) occupies
the region between z = 0 and z = L; elsewhere there is vac-
uum. We write

p̃(z, θ) = p̃x(z, θ) x̂ + p̃y(z, θ) ŷ + p̃z(z, θ) ẑ, (p = e, h). (A.2)

07003- 4
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Substitution of equations (1) and (A.1) into the source–free
Maxwell curl postulates

∇× E(x, z)− iωB(x, z) = 0, (A.3)

∇×H(x, z) + iωD(x, z) = 0, (A.4)

delivers four differential equations and two algebraic equa-
tions. The latter two equations are easily solved for ẽz and h̃z.
Thereby, the four differential equations may be expressed in
matrix form as

∂

∂z
[f(z, θ)] = ik0 [P(θ)] [f(z, θ)] , (A.5)

where

[f(z, θ)] =
[
ẽx(z, θ), ẽy(z, θ), h̃x(z, θ), h̃y(z, θ)

]T (A.6)

is a column vector and

P(θ) =


0 0 0 η0ρ

0 0 −η0 0
0 −εrρ/η0 0 0

εr/η0 0 0 0

 (A.7)

is a 4×4 matrix with

ρ = α− (m + sin θ)2

εrα
. (A.8)

The solution to (A.5) is conveniently expressed as

[f(L, θ)] = [M(L, θ)] [f(0, θ)] , (A.9)

in terms of the transfer matrix

[M(L, θ)] = exp {ik0 [P(θ)] L} . (A.10)

Now we turn to the incident, reflected and transmitted plane
waves. Let the incident plane wave be represented in terms of
linear polarization components as

ẽi(z, θ) =
[

a⊥ ŷ + a‖ (− cos θ x̂ + sin θ ẑ)
]
×

exp (ik0z cos θ)

h̃i(z, θ) = η−1
0

[
a⊥ (− cos θ x̂ + sin θ ẑ)− a‖ ŷ

]
×

exp (ik0z cos θ)


, z ≤ 0.

(A.11)
The corresponding reflected and transmitted plane waves are
given as

ẽr(z, θ) =
[

a⊥r⊥ ŷ + a‖r‖ (cos θ x̂ + sin θ ẑ)
]
×

exp (−ik0z cos θ)

h̃r(z, θ) = η−1
0

[
a⊥r⊥ (cos θ x̂ + sin θ ẑ)− a‖r‖ ŷ

]
×

exp (−ik0z cos θ)


, z ≤ 0

(A.12)
and

ẽt(z, θ) =
[

a⊥t⊥ ŷ + a‖t‖ (− cos θ x̂ + sin θ ẑ)
]
×

exp [ik0(z− L) cos θ]

h̃t(z, θ) = η−1
0

[
a⊥t⊥ (− cos θ x̂ + sin θ ẑ)− a‖t‖ ŷ

]
×

exp [ik0(z− L) cos θ]


, z ≥ L,

(A.13)

respectively. By application of the boundary conditions at
z = 0 and z = L to the solution (A.9), the reflection and trans-
mission coefficients are found to be related by the matrix alge-
braic equation

[K(θ)]
[
t⊥, t‖, 0, 0

]T
= [M(L, θ)] [K(θ)]

[
1, 1, r⊥, r‖

]T
, (A.14)

wherein

K(θ) =


0 − cos θ 0 cos θ

1 0 1 0
−η−1

0 cos θ 0 η−1
0 cos θ 0

0 −η−1
0 0 −η−1

0

 .

(A.15)
Thus, after some manipulation, the reflection and transmis-
sion coefficients emerge as

r⊥=
(
cos2 θ − εrρ

)
sin

(
k0L

√
εrρ

)
(cos2 θ + εrρ) sin

(
k0L

√
εrρ

)
+ 2i

√
εrρ cos

(
k0L

√
εrρ

)
cos θ

,

(A.16)

r‖=
(
ρ− εr cos2 θ

)
sin

(
k0L

√
εrρ

)
(εr cos2 θ + ρ) sin

(
k0L

√
εrρ

)
+ 2i

√
εrρ cos

(
k0L

√
εrρ

)
cos θ

,

(A.17)

t⊥=
−2i

√
εrρ cos θ

(cos2 θ + εrρ) sin
(
k0L

√
εrρ

)
+ 2i

√
εrρ cos

(
k0L

√
εrρ

)
cos θ

,

(A.18)

t‖=
2i
√

εrρ cos θ

(εr cos2 θ + ρ) sin
(
k0L

√
εrρ

)
+ 2i

√
εrρ cos

(
k0L

√
εrρ

)
cos θ

.

(A.19)
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