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An analysis of Young’s interference experiment for single cycle pulses showing the time evolution of the interference pattern due to two
square apertures is obtained in the Fresnel regime. The fact that the diffraction pattern from each aperture is not constant in time has
consequences on the interference pattern. We have also analyzed the changes in the spectrum at different regions at the observation
plane. This position-dependent spectrum results in frequency beating of the interference pattern for the case of two apertures. [DOI:
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1 I n t r o d u c t i o n

During the past decade, the technology of ultrashort pulse
lasers has been rapidly developed and many applications
of ultrashort pulses in areas such as communications, spec-
troscopy, chemistry, and microscopy are found. In these appli-
cations, it is important to understand the properties of ultra-
short pulses on propagation [1]–[8].

In many cases, the diffraction pattern for continuous-wave
illumination can be calculated using the Fresnel diffraction
theory that describes the light propagation in the free space.
However, calculations based on monochromatic continuous-
wave illumination are not valid for ultrashort pulses and we
must consider the spectral width and shape of the pulses.
As pointed out in Ref. [1], the diffraction of ultrashort pulses
evolves in time and the diffraction pattern is very different
from the one corresponding continuous-wave illumination.
This effect is the consequence of the difference in propaga-
tion time of wavelets that originate from different points of
the aperture to a point at the observation plane as a function
of the wavelength.

In this article we analyze the evolution in time of the diffrac-
tion pattern of an ultrashort pulse through two square aper-
tures in the Fresnel regime. The distance and size of the aper-
tures are such that in the continuos-wave case, an interference
pattern is observed as in the classical example of the Young’s
interference experiment. But as one can see here, in the case of
an ultrashort pulse, the interference fringes are not constant
in time; they have a temporal evolution as the pulse hits the
aperture. By a proper choice of the parameters of the aperture
size and distance to the observation plane, it is possible to find
situations during the time evolution of the diffraction pattern
where two separate spots (no interference) are observed or a
classical interference pattern.

In the first part of this paper, we introduce the calculation of
the diffraction pattern for a square aperture using the Fresnel
expression. In a second part, we show the profile and the spec-
trum of the diffraction pattern through a square aperture as a
function time using as an example pulses in terahertz regime.
In third part, the time evolution of the interference pattern
as well as the spectrum of the Young’s interference fringes is
shown.

2 T H E O R Y

2 . 1 F r e s n e l d i f f r a c t i o n

In order to do the first step of the diffraction pattern calcula-
tion of an ultrashort pulse we follow the lines of Ref. [9], i.e.,
we calculate the diffraction pattern for continuous wave illu-
mination in the Fresnel approximation. The general geometry
of the problem is shown in Figure 1.
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FIG. 1 Geometric configuration of the diffraction of one or two apertures: 2w is the

width of the slits, 2d is the distance between the centres of the two slits, and z is the

distance between the aperture and observation planes.
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We suppose that a square aperture of width 2w is illuminated
by a plane wave of unit amplitude. The distribution of the
complex field immediately behind the aperture is given by

U1(x1, y1) = rect
( x1

2w

)
rect

( y1

2w

)
, (1)

where x1 and y1 are the coordinates in the plane of aperture
and rect(x) is the rectangular function. With the Fresnel diffrac-
tion equation, the distribution of the complex field U(x,y,ω) at
the observation plane located at a distance z from the aperture
and for the incident plane with distribution U1(x1, y1) is given
by:

U(x, y, ω) =
eikz

iλz

∫ +w∫
−w

exp
[

i
k

2z

[
(x − x1)

2 +

(y − y1)
2
]]

dx1dy1, (2)

where x and y are the coordinates in the observation plane,
λ=2πc/ω is wavelength of the incident field and k is the
wavevector.

2 . 2 S p e c t r u m o f t h e p u l s e

The second step of the calculation is described in Refs. [1, 2].
The illumination of an ultrashort laser pulse is not monochro-
matic but includes a spectral distribution. Thus, the field in
the observation plane is a coherent superposition of the dis-
tributions from each individual frequency component with a
certain amplitude distribution. The Fresnel equation (2) be-
comes:

U(x, y, ω) = V(∆ω)
ei·k·z

iλz

∫ +w∫
−w

exp
[

i
k

2z

[
(x − x1)

2 +

(y − y1)
2
]]

dx1dy1, (3)

where ∆ω = ω − ω0 and V(∆ω) is the spectrum of the ultra-
short laser pulse given by [3, 4]:

V(∆ω) =
[

s + 1
ω1

]
(ω − ω0)

s

Γ(s + 1)
exp

[
− (s + 1)

ω − ω0

ω1

]
,

if ω ≥ ω0 and 0, else, with ω0 the frequency shift, ω1 the
spectrum width and s is a positive parameter (small values
of s correspond to very short pulses in the time domain). The
value of the frequency shift ω0 gives an estimate of the central
wavelength of the spectrum. Eq.(3) can be rewritten as:

U(x, y, ω) = V(∆ω)
eikz

i
I(x, ω)I(y, ω) (4)

where

I(x, ω) =
1√
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The integrals I(x, ω) and I(y, ω) are related to Fresnel inte-
grals C(z) and S(z) as described in detail in Ref. [8]:

I(x, ω) =
1√
2

{[
C (α2(ω))− C (α1(ω))

]
+

i
[
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]}
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1√
2

{[
C (β2(ω))− C (β1(ω))

]
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i
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]}
With this substitution, equation (4) becomes:

U(x, y, ω) = V(∆ω)
ei ω

c z

i
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(5)

This equation describes the spectrum of the diffracted field at
the observation plane.

2 . 3 T i m e d e p e n d e n c e

The diffracted field as a function of time U(x, y, t) of an ultra-
short pulse is given by the inverse Fourier transform of Eq.(5):

U(x, y, t) =
+∞∫
−∞

U(x, y, ω) · e−iωtdω

U(x, y, t) =
+∞∫

ω0
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c z

i

{[
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]
+
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]}{[
C (β2(ω))− C (β1(ω))

]
+

i
[
S (β2(ω))− S (β1(ω))

]}
e−iωtdω (6)

Next, we show the numerical computation of the diffraction
integral of the time evolution as well as the spectrum at the ob-
servation planes for two situations: single and double square
apertures.

3 S I N G L E A P E R T U R E

3 . 1 T i m e d e p e n d e n c e o f t h e d i f f r a c -
t i o n p a t t e r n

In this section we present simulations of the temporal evolu-
tion of the diffraction pattern from a square aperture in the
Fresnel regime.

We have chosen to do our calculations in the terahertz domain
since in this frequency regime ultrashort pulses containing
one or two cycles are routinely being produced in laborato-
ries. We consider a spectrum width ω1= 6.1012 rad/s, which
corresponds to a pulse whose duration is about 1 ps, the fre-
quency shift ω0= 1014 rad/s (wavelength of 20 µm), and the
parameter s is set to 1. Here we show an example where the
time evolution of the diffraction pattern can be clearly seen.
The choice of the size of the apertures and the distance be-
tween diffraction and observation planes is such that the time
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delay due to the path difference between the diffracted light
at the centre and at the edge of the main lobe is larger than
the temporal width of the light pulse. In the example here, the
aperture width is w = 0.1 mm and the distance between the
aperture and observation planes z is 0.250 m. With these pa-
rameters, the Fresnel number N0 = ω0w2/(2πcz) is 0.002. The
data is shown in the interval of x = [-20 mm, 20 mm]. In Figure
2 we plot the 2D diffraction pattern (left side) and the corre-
sponding profile at the x axis (right side) of the central lobe
for various time shots.
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FIG. 2 Left: Time evolution of the cental lobe of the diffraction pattern in the xy plane

for x, y ranging from -20 to 20 mm, of the diffraction pattern of a ultrashort pulse

for the following time shots from (a) to (e): -0.3, 0,0.7,1.2, 1.7 ps. Time t =0 is the

time that |U(x, y, t)|2 is maximum at the observation plane. The spectrum width is
6.1012 rad/s, the frequency shift 1014 rad/s, the aperture width is w= 0.1 mm and the

distance z is 0.250 m. With these parameters, the Fresnel number N0 is 0.002. Right:

for each 2D pattern (left side) we plot the corresponding 1D profile at y=0. Intensity

units are arbitrary.

In Figure 3 we show the superposition of a few profiles of the
time shots of Figure 2 for a wider range of values of the x
axis (-0.1 to 0.1 m) in order to show how the diffraction pat-
tern spreads out further at the observation plane as the time
evolves. The three peaks at the central area appear first (early
times) while the side lobes appear later. Note also the split-
ing of the central peak as time evolves. If plotted in 2D, the
diffraction figure follows the one from a square aperture, i.e.,
a central area and side lobes distributed in two perpendicular
lines.
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FIG. 3 Superposition of the profiles at different time shots of the diffraction pattern

due to a single aperture along the x axis. The parameters are the same that of Figure

2 except that the x-axis here has been extended to beyond the central region of the

diffraction pattern so that the side lobes can be seen.

3 . 2 S p e c t r u m o f t h e d i f f r a c t i o n
p a t t e r n

Apart from the evolution of the diffraction pattern, the spec-
tral distribution of the ultrashort pulse implies also conse-
quences on the spectral distribution of the diffraction pattern,
as can be seen from the frequency dependence on Eq.(6). The
spectrum at different points on the observation plane has a
blue or red shift with respect to the original spectrum at the
aperture plane [10]. In Table 1 we quantify the shift in the peak
of the spectrum for various x-values at the aperture plane with
positive (negative) values representing shifts in the spectrum
towards lower (higher) frequencies.

x(m) ∆ω (1014rad/s)
0 0.0014
0.0025 0.0013
0.005 0.0010
0.0075 0.0006
0.01 0.00001
0.0125 -0.0009
0.015 -0.0023
0.02 -0.0085

TABLE 1 Shift in the spectrum ∆ω with respect to the original spectrum (i.e., spectrum

at the aperture plane) at various positions x at the observation plane.
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4 T W O A P E R T U R E S

4 . 1 T i m e d e p e n d e n c e o f t h e i n t e r -
f e r e n c e p a t t e r n

Having seen how the diffraction pattern from one aperture
evolves, we analyse further the Young’s interference experi-
ment by considering two square apertures separated by the
distance 2d. We calculate the diffraction pattern for the same
parameters as for one aperture.
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FIG. 4 Time evolution of the Young’s interference experiment for a single ultrashort

pulse in the xy plane with x, y ranging -15 to 15 mm at the following times from (a)

to (f): -0.3, 0, 0.3, 0.7, 1 and 1.3 ps. The spectrum width is 6.1012 rad/s, the frequency

shift 1014 rad/s, the aperture width is w = 0.1 mm, the distance z is 0.250 m and the

distance between the apertures is 2d = 2.0 cm. With these parameters, the Fresnel

number N0 is 0.002. For each 2D pattern the profiles in the x axis are shown. The

dashed lines are the diffraction pattern due one aperture.

The theoretical aspect of this problem is not very different
than for one aperture; it is just the sum of the diffraction pat-
terns from each aperture. In this case, the Fresnel equation be-
comes:

U(x, y, ω) = V(∆ω)
eikz

iλz

{ −d∫
−d+2w

+w∫
−w

exp
[
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2z

[(x − x1)
2 +

(y − y1)
2 ]

dx1dy1

}
In Figure 4, we show the evolution in time of the diffraction
pattern due to two apertures in the x-y plane and the cross-
sections at y=0 (x axis). The parameters for the incident light
pulse and the diameter of the individual aperture are the same
as in Figures 2. The distance between the two apertures is 2d =
2.0 cm and the diffraction pattern is shown at the observation
interval x = [-1.5 , 1.5 cm]. From this example, we see that the
obtained results agree with the argument given at the begin-
ning of this paper, i.e., that the interference fringes evolve in
time. We notice that at the early times there is no interference,
because the diffracted pattern due to each aperture is concen-
trated at a small region. As the diffracted patterns spread out,
clear interference fringes with high visibility between the in-
ner sides of the rings occur. The interference fringes can better
be appreciated by looking at the profiles at the x axis from
Figure 4.

4 . 2 S p e c t r u m o f t h e i n t e r f e r e n c e
p a t t e r n

In the previous section we showed that the spectral distribu-
tion of the light pulse was not the same at every point on the
observation plane but shifted with respect to the spectrum of
the laser pulse at the aperture plane, with the shift being ei-
ther towards higher or lower frequencies. This shift has con-
sequences in the resulting spectra due to two apertures, since
frequency beating will occur in some positions of the observa-
tion plane. On Figure 5 , we show the spectra of the light pulse
at different points at the observation plane.
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line represents the spectrum of the pulse before the aperture. The parameters are the

same as in Figure 4
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We notice that the spectral distribution at the centre has no in-
terference fringes, since the spectral shift due to each aperture
is symmetrical at this point. At other positions, fringes will
appear since the spectra due to each aperture are shifted with
respect to each other. The frequency of the interference fringes
increase for a point far from the centre, since the difference in
frequency between the spectra also increases.

5 C O N C L U S I O N

By analysing the diffraction through a square aperture and
Young’s interference experiment for ultrashort pulses, we
have demonstrated that the diffraction pattern and the inter-
ference fringes are not constant in time, as in the case of con-
tinuous wave illumination, but evolve as the laser pulse hits
the apertures. We have also calculated the spectral distribu-
tion of the light at different regions at the observation plane
and as result we see that spectral shifts towards higher or
lower frequencies occur. As consequence, frequency beating
in the case of interference of two apertures will take place.

Finally, we would like to emphasize the importance of looking
at the evolution of the diffraction of ultrashort pulses. As seen
in Figure 2 and 3, at earlier times of the propagation of the
pulse through the aperture, the diffracted pattern is narrower
than the integrated intensity distribution of the entire pulse.
This means that a better resolution could be achieved in ul-
trashort pulse applications if one could record the diffracted
light pulse only at earlier times. Further, we have shown that
this concentrated intensity distribution has also consequences
in the case of diffraction due to two apertures, as seen in Fig-
ures 4. By choosing the time interval at earlier times (such as
in Figures 4a and b) one can clearly see two separate spots
at the observation plane (no interference), while at later times
(Figures 4c-e) interference fringes with large visibility are ob-
tained. In this way we conclude that whether interference of
ultrashort pulses at the observation plane occurs or not de-
pends on the time of the observation. The later remark could

imply interesting interpretations of the phenomenon of inter-
ference and its link to time of observation.
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