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1 I n t r o d u c t i o n

Optical vortices are fundamental localised structures associ-
ated with the points of vanishing intensity and phase singu-
larities of optical beams [1]. Optical vortices are generated ex-
perimentally in different types of linear and nonlinear optical
media [1, 2]. However, when a vortex beam propagates in a
self-focusing nonlinear medium, it becomes unstable due to
the symmetry-breaking azimuthal instability [2], and it de-
cays into several fundamental solitons [3]. This vortex az-
imuthal instability can be suppressed when the vortex beam is
placed in a waveguide created in a photonic crystal fibre (PCF)
known to support stable fundamental and vortex nonlinear
modes [4, 5]. In strongly nonlinear media, PCF vortex solitons
still remain stable when they are perturbed only by symmetric
(diagonal) perturbations, but they decay into two fundamen-
tal solitons when affected by asymmetric (non-diagonal) per-
turbations. These fundamental solitons, however, remain con-
fined inside the PCF waveguide instead of flying off, and they
do not undergo collapse even in the focusing medium [4, 5].
This is in a sharp contrast with homogeneous and unbounded
nonlinear Kerr media where two-dimensional self-trapped
beams –spatial solitons– become unstable and undergo the
collapse instability [3].

Photonic crystal fibres, cylindrical structures presenting a lat-
tice of holes running parallel to its optical axis, have turned
into an active field of research due to its remarkable proper-
ties compared with the conventional fibres [6]. Recent theoret-
ical and experimental papers reported the studies and fabri-
cation of dual-core PCF structures for broadband directional
coupling or polarisation splitting [7]–[11]. In addition, the sta-

bility of nonlinear modes of a dual-core PCF coupler recently
analysed in Ref. [12] allows to describe the basic features of
nonlinear switching in the PCF couplers, and the first experi-
mental results for nonlinear switching realised in a dual-core
PCF have been reported recently [13].

The purpose of this paper is twofold. First, we study the basic
operation of the nonlinear dual-core PCF coupler when, in-
stead of the fundamental mode usually employed for switch-
ing of linear and nonlinear couplers, we launch a vortex
beam into one core of the coupler. We are interested how a
nonzero angular momentum associated with the vortex beam
can switch between the cores of the coupler, in both linear
and nonlinear regimes, and how the vortex behaves when the
rotational symmetry of the structure is destroyed. Generally
speaking, we wonder how the “angular momentum switch-
ing” of the vortex correlates with the familiar switching ob-
served for the beam power. To the best of our knowledge, this
question has never been addressed before, but it seems very
important for suggesting novel ways to manipulate, trans-
form and control the angular momentum of light. Second, we
study novel types of instabilities of the vortex beam observed
during its tunnelling between the cores of the PCF coupler.

The paper is organised as follows. In section 2 we formulate
our problem and introduce the basic model and equations
which we then solve numerically. Then, in section 3, we sum-
marise our numerical results for the vortex dynamics and de-
scribe three different scenarios of the vortex switching, for both
linear and nonlinear regimes.
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2 M O D E L A N D T H E B A S I C E Q U A -
T I O N S

We consider a nonlinear PCF constituted by a triangular lat-
tice of circular holes filled with the dielectric material with the
linear refractive index na in a substrate with the refractive in-
dex ns made of a material possessing a nonlinear response.
We assume that a dual-core coupler in this PCF is created by
two missing holes which are separated at least by another hole
or by an interspace between two holes. This restriction seems
important because two consecutive PCF defects do not lead
to an optical coupler device but instead creates an asymmet-
ric waveguide that supports elliptical modes, as discussed in
detail in Ref. [12].

We describe the field propagation in this coupler device using
the standard model [4, 5, 12],

i
∂E
∂z

+
(

∂2E
∂x2 +

∂2E
∂y2

)
+

(
W(x, y) + V(x, y)|E|2

)
E = 0, (1)

where E is the electric field, W(x, y) = na + δV(x, y), being
δ = ns − na, and the function V(x, y) describes an effective
potential created by two missing holes in the perfect PCF lat-
tice (i.e., two solid cores of the coupler). We assume that V
takes the value V = 1 in the substrate, and it vanishes in-
side the holes, V = 0. In Eq. (1), we have used the non-
dimensional normalised units, x, y and z, related with the di-
mensional ones, X, Y and Z, through a scale factor η,

x = X/η,

y = Y/η,

z = Z/(2k0n0η2), (2)

where k0 = 2π/λ, being λ the vacuum wavelength, and n0 is
a base refractive index that we choose as the one of the sub-
strate. Additionally, we also considered the index difference δ

a normalised quantity defined by,

δ = 2k0n0η2∆, (3)

where ∆ = ñs − ña is the actual index difference between the
substrate (ñs) and the holes (ña). This normalisation allows
us to describe the system independently of the characteris-
tics of the materials –substrate and holes– used for the PCF-
structure. In fact, a change in the index difference can always
be compensated, accordingly to Eq. (3), by a proper spatial
rescaling of the system, i.e. by a proper definition of the scal-
ing factor η, and the actual dimensions and spatial variables
can be easily calculated by means of Eqs. (2). On the other
hand, the description can also be made independent of the
nonlinear coefficient of the substrate, defining the normalised
field as,

E = (2k2
0n0n2η2)1/2E , (4)

where E is the actual (dimensional) electric field and n2 the
nonlinear Kerr coefficient. This will suppose working with
normalised power units which can be easily converted to the
actual ones using Eq. (4) as will be done below.

We chose, in our normalised system, the values ns = 3 and
na = 1 for the refractive indices (so that δ = 2), Λ = 5 for
the PCF pitch and r = 2 for the hole radius. This assures that

the single-core waveguide supports the first order mode, what
implies a specific relation between the hole radius and pitch.
As is well-known, unlike conventional fibres, PCFs present for
usual values of the parameters a strongly limited number of
modes [6, 14], being single-mode for a ratio r/Λ . 0.4. We
would like to stress that choosing particular materials for the
PCF-structure is only a matter of calculating the correspond-
ing scaling parameter η for the spatial coordinates. So, as an
example, if we consider pure silica for the substrate and air
for the holes (ñs = n0 = 1.5, ∆ = 0.5), and λ = 1.5 µm
for the wavelength, from Eq. (3) we obtain the scaling factor
η = 0.2849 µm for the actual system fulfilling the requested
characteristics.

We aim to study the switching characteristics of a nonlin-
ear PCF coupler with the input vortex mode carrying a non-
vanishing angular momentum. The vortex mode has the well-
known structure, E(r, φ) = u(r) exp(iφ), and we generate it
by choosing the input beam with the radial amplitude corre-
sponding to the LP11 mode of a step-index optical fibre –linear
combination of the almost degenerated modes TE01, TM01 and
HE21– and launch it into one of the cores of the PCF coupler.
The LP11 mode is chosen for a fibre core with the diameter
equal to the PCF pitch in order to assure a reasonable good
coupling of the initial field to the PCF core waveguide.

We solve Eq. (1) for the field propagation numerically, em-
ploying the standard beam propagation algorithm, and calcu-
late the z-component of the angular momentum and the beam
power, defined as

Lz = −i
∫

E∗(x, y)
(

x
∂E
∂y

− y
∂E
∂x

)
dxdy, (5)

P =
∫
|E|2dxdy, (6)

as functions of the propagation distance z, for different values
of the input field power.

3 R E S U L T S A N D D I S C U S S I O N S

We observe different scenarios of the vortex switching, and
three major types of the vortex dynamics are illustrated in Fig-
ure 1, where three simulations for three different input powers
are presented. The evolution of the beam power and vortex
angular momentum are plotted in Figure 2 for the same three
cases, along with the example of the pure linear case. Due to
the symmetry-breaking instability induced by the presence of
the second core, the vortex breaks up into a dipole structure
due to the growing azimuthal perturbations. The two dipole
modes present a different coupling rate to the second core, and
the light distribution inside the core transforms itself when the
beam propagates, adopting the shape of a dipole that flips be-
tween the two states and partially recovers the vortex shape
at intermediate positions between both dipole states.
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FIG. 1 Evolution of a vortex beam launched into one core of the nonlinear PCF coupler

for different input powers. (a): case I (P = 0.5), (b) case II (P = 3), and (c) case III

(P = 6). Click to watch the movies for case I (1.6 MB), case II (1.6 MB) and case III

(1.3 MB).

In the linear regime (i.e. for low input powers), we observe
a characteristic periodic power coupling between both the
PCF cores as illustrated in Figure 2(a). The difference with the
switching of a fundamental mode is that in the vortex case
we observe relative minima between the absolute ones. Addi-
tionally, the absolute ones do not reach a full zero value. This
is due to the existence of the two superposed dipole modes
which present a different coupling length as discussed above.
On the other hand, some amount of the angular momentum
is also transferred to the second core and the field emerging
at that core also rotates in a similar way as the field in the
first core. The angular momentum Lz goes through zero at the
points where the power reaches a minimum and reaches max-
ima (in absolute value) at those where power is maximum.

In the nonlinear regime, we observe several different scenarios
of the nonlinear switching and instabilities. When the input
power is low [case I in Figure 1(a) and Figure 2(b)], the beam
dynamics is similar to the linear case, except but minor dif-
ferences [compare Figure 2(a) and Figure 2(b)] which can be
explained by the fact that nonlinearity changes the coupling
length of the dipole modes.

When the input beam power raises [see Figure 1(a-b) and Fig-
ures 2(c-d), the cases II and III], two different effects are ob-
served. First, the coupling between the PCF cores is progres-

sively suppressed in a similar way as in the familiar case of
the fundamental mode switching. Second, there is an increase
of the power converted into the fundamental mode. For mod-
erate input powers, the coupling is only partially suppressed
[see Figure 2(c)] whereas for high enough input powers all
the energy remains in the first core [see Figure 2(d)]. On the
other hand, in our simulations we observe that when the in-
put power raises there is an increase of the energy initially
radiated that lowers the power in the first core. The remain-
ing power progressively couples to the fundamental mode in-
side the same core and the vortex structure decays. The angu-
lar momentum transfer also decreases for larger powers, and
it undergoes a change of the regime when the energy con-
version to the fundamental mode starts. In this way, as the
beam propagates a superposed higher-frequency component
appears, and this corresponds to an orbital angular momen-
tum transferred to the fundamental mode [see Figures 2(c-
d)]. The original angular momentum component of the vortex
progressively disappears, only remaining, after a certain prop-
agation distance, the fraction transferred to the fundamental
mode. The amplitude of the oscillations slowly damps, and
it eventually vanishes for long propagation distances, result-
ing in the generation of a fundamental soliton at the centre of
the core. The higher oscillation frequency of the orbital angu-
lar momentum component could be explained by the fact that
the fundamental mode has the power more concentrated at
the centre, and this implies a lower momentum of inertia of
the beam.
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FIG. 2 Power (normalised) and angular momentum Lz versus propagation distance

for each of the cores of the PCF coupler, when a vortex is launched into one of the

cores. The continuous line corresponds to the initially excited core (first core) and the

dashed line to the second core. (a) Linear propagation regime. (b-d) Nonlinear regime

for different input powers corresponding to the simulations showed in Figure 1 (labels

I, II and III are correspondent in both figures). Input powers: PI = 0.5, PI I = 3 and

PI I I = 6.

The switching curve for the beam power is presented in Figure
3(a) where it is shown, for the exited core, the ratio between
the output and input powers as a function of the input power.
We present the results for the vortex input beam as well as for
a fundamental beam for the shake of comparison. To build this
switching curves, the propagation distance is set at the value
corresponding to the first absolute power minimum for the
linear propagation regime. For the parameters considered it is
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z = 310.50, for the vortex, and z = 358.65, for the fundamental
beam. The curve corresponding to the fundamental mode il-
lustrates the well-known nonlinear switching [12], fast raising
from zero to almost the unity and then stabilising after some
transitory small oscillations. The high-slope part corresponds
to the nonlinearity-induced coupling suppression, and it con-
stitutes the key of the nonlinear switching operation. For the
vortex input beam, the switching curve is qualitative similar,
but two main differences are observed. First, the switching is
produced for higher input powers and the transitory regime is
more steady. Second, the final power is lower, reaching about
half the power as for the fundamental state.
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FIG. 3 Switching curves for the dual-core PCF coupler. (a) Power switching when one

of the cores is excited by a fundamental LP01 mode and a vortex made from the two

degenerated LP11 dipoles. (b) Angular momentum switching curve for the vortex.

A simple explanation for the higher switching power required
for the vortex beam switching is based on the fact that in the
case of the vortex the power is distributed all over the ring or
it is concentrated in two lobes of the dipoles. Besides, when
the input power increases an initial radiation of energy is ob-
served due to the excitation of the fundamental mode as dis-
cussed above, lowering the power that remains in the core.
This initial energy radiation is also the reason that the final
relative power is much lower in the vortex case. On the other
hand, the existence of the two dipole modes with different
coupling ratios, due to the asymmetry induced by the pres-
ence of the second core and due to the nonlinear effect, pro-
duces a more complicated and longer transitory state. This
switching at different powers for the fundamental and vortex
states, together with the fact that the beating length is simi-
lar in both cases suggests the possible use of such a device for
double switching operations.

We also analyse how the light angular momentum couples be-
tween the two cores, and the corresponding switching curve
for the angular momentum is shown in Figure 3(b). As follows
from those results, the angular momentum remains zero in the
second core for low input powers since Lz vanishes at the min-
ima of the coupling [see Figure 2(a-b)]. When the input power
grows, the momentum undergoes through a transitory state,
in a similar fashion to the power curve [see Figure 3(a)], and

finally oscillate at high values of the input power as shown in
Figure 3(b).

Finally, in order to estimate the actual power P̃ necessary to
achieve those effects, in terms of the normalised power P,
we only have to take into account the normalisation given by
Eqs. (2) and (4), so that,

P̃ =
ε0c
2

∫
|E |2dXdY =

1
2k2

0n0n2η2
.
∫
|E|2η2dxdy, (7)

being ε0 the vacuum dielectric constant and c the speed of
light. Taking into account the nonlinear coefficient, n′2, ex-
pressed in cm2/W, so that n2 = (ε0c/2)n′2, we finally obtain,

P̃ =
P

2k2
0n0n′2

. (8)

As an example, for pure silica, taking λ = 1.55 µm, n′2 =
2.5 × 10−16cm2/W and assuming n0 = 1.5, we obtain for
the normalised power unit (P=1) in Figure 3, P̃ = 8.11 × 105

W≈ 800 kW. For a higher nonlinear material, such as As2Se3-
chalcogenide glass, we take λ = 1.55 µm, n′2 = 1.1 ×
10−13cm2/W, n0 = 2.76 (see Ref. [15]), to obtain P̃ = 103

W= 1 kW. This value is between two and three magnitude
orders below the one obtained for pure silica and though it is
too high for CW operation, it would be suitable for using a
nanosecond-pulse light source.

4 C O N C L U S I O N S

We have analysed linear and nonlinear switching of an op-
tical vortex in a dual-core nonlinear directional coupler cre-
ated by two neighbouring missing holes in a photonic crys-
tal fibre. We have considered the case when the optical vortex
is launched into one core of the coupler and analysed differ-
ent regimes of the vortex evolution, including vortex switch-
ing and nonlinearity-induced instability. We have described
three major scenarios of the vortex dynamics and studied
in detail the symmetry-breaking instabilities associated with
the nonzero angular momentum and the vortex tunnelling to
the second core of the coupler, in both linear and nonlinear
regimes.
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