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1 I n t r o d u c t i o n

Photonic crystal fibers (PCFs) can exhibit a photonic bandgap
that enables light to be guided predominantly in air. Recently,
hollow-core PCFs (HC-PCFs) have attracted attention due to
their low loss and nonlinearity [1] and their ability to con-
vey laser pulses at very high peak power [2]. In order to
predict the loss and optimize fiber production, accurate nu-
merical modeling of the fiber is crucial. The oldest and still
frequently applied numerical method for calculating mode
solutions in these fibers is the plane-wave expansion (PWE)
method [1, 3, 4]. Subsequently, a large variety of simulation
methods have been devised; see [5] for a review.

One of the most promising solution methods for mode field
profiles in HC-PCFs is the finite-element method (FEM) [6]-
[11]. In this work, we use the commercial FEM program
JCMmode [12]-[14] which employs higher-order vectorial el-
ements and automatic triangulation with adaptive iterative
grid refinement, resulting in the application of an optimized
basis to the fiber geometry. Adaptive triangulation, being
controlled by a residuum-based error estimator, strongly im-
proves the accuracy of the computed field and results in the
glass/air interfaces becoming particularly closely sampled by
triangle edges. This is because fast field variations occur near
the interfaces, and the normal component of the electric field
suffers a discontinuity across the interfaces. The increased ac-
curacy is particularly important when computing loss due to
mode coupling induced by interface roughness [15, 16], as we
will demonstrate in this work.

To solve the algebraic equations appearing in the FEM dis-
cretization of the Maxwell eigenproblem, JCMmode uses an
inverse shifted Arnoldi subspace iteration method with a

multi-level preconditioner. For matrix inversion the sparse LU
solver PARDISO is employed [17]. The exact description of the
solver is beyond the scope of this paper and the reader is re-
ferred to [12] for details. Computing a single fiber mode so-
lution with two refinement iterations typically requires only
about 40 seconds on a fast workstation, making the method
fast enough for automatic multidimensional parameter opti-
mization. Our purpose is to optimize the design of a HC-PCF
whose hollow core corresponds to 19 omitted cladding cells
with a target minimum attenuation of less than 30 dB/km at
589 nm, for use in high-power pulsed laser sodium guide star
beam relays [18]. We chose 19-cell core HC-PCFs since we ex-
pect 7-cell (or smaller) core fibers to guide a larger fraction of
light in glass with a larger field intensity existing at the ma-
terial/air interfaces. These smaller-core fibers will therefore
show higher loss [19] and a lower power threshold for the on-
set of nonlinear processes such as stimulated Brillouin scatter-
ing (SBS). On the other hand, fibers with larger cores, such as
37-cell, do not feature quasi-single mode behavior and suffer
from higher macrobending losses [16].

The contribution of the current work is to obtain a realistic
design of a 19-cell core HC-PCF that has been optimized to re-
duce the field intensity at the glass/air interfaces, and as such
is expected to show lower-loss than has so far been demon-
strated. The obtained design also yields enhanced field exclu-
sion from the silica and a high overlap with a Gaussian in-
cident mode, indicating an improved power handling capa-
bility. The improved design was found using a robust auto-
matic multidimensional optimization procedure for the com-
plete HC-PCF geometry. To our knowledge this is the first
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demonstration of automatic optimization of a realistic HC-
PCF geometry.

We describe the simulation details in Section 2, the simulation
validation and optimization of a HC-PCF in Section 3, and we
conclude in Section 4.

2 S I M U L A T I O N S E T U P

2 . 1 G e o m e t r y

The accurate description of the fiber geometry is essential to
obtain accurate simulation results. We assume that the fiber
cross section consists of undoped silica and air, separated by
smooth interfaces. The HC-PCFs under study contain a do-
decagonal core surrounded by a glass core wall, in turn sur-
rounded by seven rings of hexagonal cladding cells.
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FIG. 1 (a) The simulation domain, which equals one quarter of the fiber cross section.

The boundary conditions are shown along the four edges, where E and H denote

the electric and magnetic tangential field components, respectively. In addition, the

intensity of the HE11-like mode is overlaid in color. (b) Enlarged fiber detail, showing

the four fiber geometry parameters: pitch Λ, strut thickness w, cladding meniscus

radius r, and core surround thickness t.

The core replaces the central 19 cladding cells, and the core
surround vertices are located on a circle. Figure 1a shows a
plot of a fiber cross section where silica is black. Figure 1b de-
tails the following four fiber geometry parameters: pitch Λ
(cladding lattice constant, measured between the centers of

opposite struts in a cell), strut thickness w, cladding meniscus
radius r [20], and core surround thickness t [21].

Fibers of the kind shown in Figure1a possess six rotational re-
flection planes in addition to the point symmetry about the
origin and hence belong to the point group C6ν [22]-[25]. Non-
degenerate eigenmodes of the fiber can be found by com-
puting the field in just one 30o symmetry sector and contin-
uing the field by repeated reflection and rotation. The most
relevant (fundamental) mode is HE11-like and so is two-fold
degenerate. It can be conveniently computed in a 90o sector,
around which we choose the following boundary conditions:
short circuit (zero tangential electric field) on one inner edge
and the outer edges and open circuit (zero tangential mag-
netic field) on the other inner edge, as shown in Figure 1a. We
note that this choice of boundary conditions excludes numer-
ous modes such as TE01, HE21, TM01 and many higher-order
modes, which are not the focus of our present study since they
are not so well concentrated in the central core and conse-
quently experience much higher attenuation and nonlinearity
than HE11.

Low-loss HC-PCFs contain numerous air holes separated by
delicate glass struts and typically have air filling fractions of
well over 90%. The exact thickness and shape of the strut inter-
sections have a large influence on the mode properties [20, 21].
JCMmode automatically discretizes the fiber simulation do-
main by a triangular grid. Expressing the geometry in a vec-
tor format rather than in a bitmap ensures the glass/air inter-
faces are arbitrarily precisely reproduced in the triangulation.
To automatically optimize fiber parameters, it is desirable to
express the interface description as a polygon list that can be
directly read into the mode solver. We have implemented the
interface renderer as a Matlab script that is controlled by the
geometry parameters of Figure 1b.

2 . 2 L o s s E s t i m a t i o n

The overall attenuation of light power in the HE11 mode of
many current HC-PCFs is dominated by scattering loss due
to roughness at glass/air interfaces [15, 16]. The origins of the
surface roughness are mainly due to thermal surface capillary
waves (SCWs) that become frozen in when the silica solidifies
during the fiber draw. The scattering will be decreased as the
field intensity at the interfaces is reduced. We use a relative
measure of the scattering strength provided by the quantity F
defined as

F =
√

ε0

µ0

∮
hole

perimeters

|E|2 ds
/∫

Ac
(E×H∗) · ẑ ds, (1)

where ε0 and µ0 are the vacuum permittivity and permeabil-
ity, respectively, ẑ is the unit vector along the fiber axis, E and
H are the electric and magnetic fields within the fiber cross-
section, and × denotes the vector cross product. In the nu-
merator, the E-field is evaluated along a path just inside each
hole interface, i.e. within the air. The integral in the denomina-
tor runs over the fiber simulation domain of area Ac. Since re-
duced field strength at the interfaces is closely associated with
a lowering of the power residing within the glass [21], designs
which minimize F will also show an enhanced damage thresh-

06011- 2



Journal of the European Optical Society - Rapid Publications 1, 06011 (2006) R. Holzlöhner,et. al.

old in high-power pulsed laser applications [2]. Consequently,
we employ F as the figure of merit in the simulation.

The outer boundary conditions in Figure 1a imply a perfect
conductor. In reality, the cladding is surrounded by bulk fused
silica with a thickness of about 50 microns. This situation can
be better modeled applying so-called transparent boundary
conditions to the outer computational boundaries, emulating
an infinitely wide silica coating. Transparent boundary con-
ditions are realized with the perfectly matched layer (PML)
method in JCMmode [6, 12]. The field decaying in the PML
along rays pointing outwards is discretized with typically
around ten finite elements of second polynomial order on each
ray [12]. The PML leads to complex eigenvalues and leaky
eigenmodes which radiate to the exterior. We have run ex-
tensive comparisons and found that in the parameter regimes
considered throughout this paper, both the mode field solu-
tion of the HE11-like mode and the real part of its eigenvalue
do not change to numerical accuracy when PMLs are intro-
duced within JCMmode [26]. Moreover, SCW-induced loss in
dB scales like the inverse cube of the fiber design wavelength
[16], while confinement loss in dB scales only like the inverse
wavelength, hence the relative importance of confinement loss
decreases quickly with reduced wavelength. Attenuation of
the HE11-like mode in fiber structures close to our considered
19-cell cores design is already dominated by SCW-induced
loss at 1550 nm [19], and hence we will neglect confinement
loss in this study.

Given that HC-PCFs with a similar (but not fully optimized)
design to the ones we are considering in the present work
have been produced with an attenuation of 1.2 dB/km at
around 1550 nm [15], we expect that the loss at 589 nm can in
principle be lowered to below 22 dB/km. Achieving this goal
requires extreme production precision due to the reduced fea-
ture sizes within the fiber cross-section that are required at the
shorter wavelength.

3 R E S U L T S A N D D I S C U S S I O N

In this section, we present the convergence and scaling behav-
ior of the solutions and finally report the results of optimiza-
tion runs.

3 . 1 V a l i d a t i o n , c o n v e r g e n c e a n d
s c a l i n g

In order to validate the solutions of our FE-solver, we have
investigated its convergence behavior with the number of
included triangular elements and grid refinement steps. We
have further compared its mode field solutions with those of
the PWE solver used in [16, 21, 27] which operates on a bitmap
approximation to the considered geometry.

The computational procedure starts by producing an initial
geometry list. JCMmode then creates the initial triangular
grid. Next, this grid is recursively refined twice, using adap-
tive grid refinement based on a local error criterion. The final
solution is the mode field whose eigenvalue n eff is closest to
the user-provided estimate n eff,est, in our case the effective re-

fractive index of the HE11-like mode. In a postprocessing step,
JCMmode computes the two integrals appearing in Eq. (1),
yielding the value of F. Finally, the mode field diameter dMFD
of the field and the fraction of light intensity in glass η can be
determined. The refractive index of silica at a wavelength of
589 nm equals 1.4585.

Figure 2 shows the intensity |E|2 of the optimized HE11-like
mode along the x-axis cutting though the center of the fiber
along the lower edge in Figure 1a, on a logarithmic scale (the
optimized structure will be defined in the Section 3.3).
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FIG. 2 Relative intensity |E|2 of the symmetrized HE11-like mode of Figure 1a plotted as

a slice through the fiber center along the x-axis from a PWE simulation with a 512×512
grid (black dotted), 1024×1024 grid (red dashed) and from the FEM simulation (blue
solid line). The gray vertical bars represent the glass.

The black dotted line displays the PWE result computed on
a 512×512 grid (referred to as PWE 512), the red dashed line
is the result for a 1024×1024 PWE computational grid (PWE
1024), and the blue solid line is the result of our FEM simu-
lation with N = 340,000 for comparison, where N is the num-
ber of degrees of freedom of the FEM solution. The gray ver-
tical bars represent the glass along the slice. In order to re-
duce pixilation effects when using the PWE method, we lin-
early interpolate the refractive index at Fourier samples that
are intersected by the glass/air interfaces, displayed as differ-
ent shades of gray. In the FEM simulation, such interpolation
is not necessary. In order to obtain a symmetric mode profile
from the FEM and PWE solutions, we used the symmetrized
electric mode field E = E vert + i E horiz, where E vert equals the
vertically polarized mode field found with the boundary con-
ditions shown in Figure 1a, E horiz is the corresponding hor-
izontally polarized mode where the boundary conditions on
the inner edges are exchanged, and i is the imaginary unit.
The modes E vert and E horiz form a 2-fold degenerate pair of
HE11-like modes which belong to the same eigenvalue, and
|E|2 exhibits the full symmetry of the considered fiber struc-
ture.

The intensity profile is close to a Gaussian within the fiber
core. As expected, the FEM curve is closer to the PWE 1024
curve than PWE 512 along most of the slice. This behavior
reverses near the right end of the plot, where the PWE 1024
curve deviates slightly from the FEM curve (however note the
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logarithmic scale). We attribute this deviation to the different
boundary conditions – the PWE simulation was computed on
a rectangular supercell with an x range of ±5Λ and y range
of ±3

√
3Λ and naturally has periodic boundary conditions,

while the FEM simulation domain is not periodic and hence
allows the field to decay faster.1 The relative difference in |E|2
between the FEM and the PWE 1024 and PWE 512 curves,
evaluated on the outer glass/air interface of the core surround
near x = 2.34Λ, where the contribution to F in this slice is
maximal, is 8% and 24%, respectively. In the limit of large
N, number of Fourier basis-waves and computational domain
size, the curves should converge. The FE-method yields FΛ0
= 0.0646 and light intensity in glass η = 0.00171, and the PWE
1024 method gives FΛ0 = 0.0650 and η = 0.00169, correspond-
ing to 0.7 % and −1.3 % deviation from FEM, respectively. In
order to obtain the PWE result of FΛ0, one has to rescale the
E-component of the PWE solution normal to the interfaces ac-
cording to the intersection fraction of the pixel with the inter-
face. Without this rescaling procedure, we obtain FΛ0 = 0.049
(24% deviation from FEM). We have also compared the FE-
solver to our PWE solver for a variety of other parameter com-
binations and found similar results. Our PWE algorithm uses
a targeted eigensolver, but is otherwise not well optimized
for speed. The PWE 1024 solution requires about 8 hours of
CPU time, and we expect more optimized solvers such as MIT
Photonic-Bands [3] to be only about a factor of 2 faster, while
attaining the same accuracy. This large discrepancy is only in
part due to the employed PWE method not fully taking ad-
vantage of the fiber symmetry, but is mostly due to finite el-
ements being much more efficient at sampling complicated,
discontinuous structures.

Figure 3a shows the dependence of the relative error of the ef-
fective index, ∆n eff = |n eff − n eff,qe|/n eff,qe on the number
of unknowns N of the finite-element expansion of the solu-
tion on the triangular grid. The effective refractive index of the
quasi-exact solution, n eff,qe is obtained from a well-converged
solution computed on a fine grid with about N = 6 × 106. The
four curves depict the convergence behavior with linear and
quadratic field interpolating functions (elements) in each tri-
angle and for adaptive grid refinement as well as for regular,
non-adaptive grid refinement. Linear finite elements are pa-
rameterized by 6 unknowns, quadratic elements by 14. The
solver computed the HE11-like mode that is displayed in Fig-
ure 1a in color. With adaptive grid refinement (♦, ◦), an au-
tomatic a-posteriori error estimator decides which triangles of
the finite-element grid are further refined. In contrast, with
regular grid refinement (×, � ) every triangle is refined in each
refinement step. Adaptive grid refinement results in dramati-
cally reduced computation times for a specified accuracy, even
though the asymptotic convergence rate for large N depends
only on the polynomial order of the elements. On the other
hand, it is easy to see that quadratic elements (�, ◦) have
a much better convergence rate than linear elements (×, ♦).
Consequently, the quadratic adaptive method with quadratic
finite elements (◦) was used in the optimization study pre-
sented in the next subsection. Additionally, the computation
times for this simulation are displayed as numbers next to the

graph (solution of the algebraic problem, without triangula-
tion and without post-processing, computed on a 64-bit work-
station with 4 dual-core AMD Opteron processors, 2.2 GHz,
and 32 GB RAM).

10
4

10
5

10
6

10
7

10
-10

10
-8

10
-6

10
-4

Number of unknowns

R
el

at
iv

e 
er

ro
r 
∆

 n
ef

f

11s

19s

40s

81s
173s

345s

a)

linear, regular

quadratic, regular

linear, adaptive

quadratic, adaptive

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

Number of unknowns

C
P

U
 t

im
e 

in
 s

b)

FIG. 3 Convergence behavior of the FEM solution for different interpolating functions

and refinement strategies. The values next to the red quadratic adaptive graph show

the CPU execution times for the HE11-like mode displayed in Figure 1a. (b) CPU time

vs. number of unknowns. The scaling is almost linear.

Figure 3b shows the computational time as a function of N.
The quadratic-element adaptive mesh curve is very well ap-
proximated by a straight line with the function 9.469×10−5×
N 1.0185, i.e. the method behaves approximately as an “order
N” method. The JCMmode eigensolver exploits the sparse-
ness of the wave equation in the FE basis to enable the fast
evaluation. The number of unknowns N rivals or betters that
attainable using an FFT-based plane-wave scheme, but the FE
basis is inherently superior in dealing with complicated ge-
ometries and the electromagnetic field boundary conditions
which exist at interfaces. The peak RAM requirement scales
linearly with N and equals 4,527 Bytes per unknown or ap-
proximately N/237,000 in GB. All simulations in this work
except those shown in Figure 3 had about N = 340,000 un-
knowns and consumed 1.5 GB RAM (third data point on the
red curves with circles in Figure 3a; initial triangulation fol-
lowed by two adaptive refinement steps).

Figure 4 shows the HE11-like mode in a small region of the
fiber rendered as a 3D-plot.

1 The E|| = 0 boundary conditions that we choose on the outer boundary imply reflections. However, our FEM simulation domain contains more cladding
layers (7) than the PWE supercell, so that between x = 0 and about x = 4Λ the decay of |E|2 is found to remain the same if PMLs are used instead.
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FIG. 4 The HE11-like mode of Figure 1a displayed as a 3D-plot, where height is propor-

tional to the intensity |E|2. The intensity in air is also color-coded, while glass appears
in gray. The final triangular grid is superimposed, demonstrating the reduction of tri-

angle size near the glass/air interfaces, in particular where the struts meet. The field

discontinuities at the interfaces are also visible.

Height is proportional to the optical intensity |E|2. The inten-
sity of the light in air is also color-coded and shaded, while the
intensity in glass in shown in gray. Superimposed is the trian-
gular grid of the final refinement step. The triangles tend to
be smallest near the glass/air interfaces, in particular near the
glass nodes where three struts are joined. The field disconti-
nuities lead to gaps in the 3D intensity plots and are most pro-
nounced where the electric field vector is oriented almost nor-
mal to the interfaces. Since the major contributions of the line
integral in the numerator of Eq. (1) stem from these regions,
the FE-method is particularly well suited to the computation
of F and hence of surface roughness induced attenuation.

3 . 2 M u l t i d i m e n s i o n a l o p t i m i z a t i o n

To efficiently find local or even global minima of F, we use the
multidimensional optimization implemented in the Matlab
routine fminsearch, which is based on the Nelder-Mead Sim-
plex Method [28]. This algorithm approaches a minimum in
n dimensions by enclosing it in an (n+1)-dimensional simplex
(an interval in 1D, a triangle in 2D, a tetrahedron in 3D, etc.)
and hence does not rely on local derivatives, making it more
robust to fast-varying objective functions. As a scan or an
optimization proceeds, the eigenvalue of the HE11-like mode
changes. Hence, even when tracking the eigenvalue by setting
n eff,est to the eigenvalue of the previously computed mode, it
occasionally happens that the solver locks onto a mode differ-
ent from HE11-like. This situation can be fixed by re-running
the solver for multiple modes if it is found that the change in
F exceeds a certain threshold and proceeding with the mode
that has the lowest value of F.

Although fminsearch implements an unconstrained optimiza-
tion method, the accessible parameter space can be effectively
bounded by having the objective function return a large value

(e.g. 1010 times a typical value of F) instead of F if one of the
trial optimization parameters is out of bounds [27].

3 . 3 O p t i m i z a t i o n r u n s

We have run various optimizations with different starting pa-
rameters. All of these optimizations finally terminated at the
same fiber geometry parameter set. A typical optimization
was started at the parameter set w/Λ = 0.035, r/Λ = 0.2, t/Λ =
0.1 and normalized wavevector kΛ = 14.0 and ended after 55
simplex iterations involving 102 evaluations of F at the pa-
rameter set w/Λ = 0.028629, r/Λ = 0.19084, t/Λ = 0.11444
and kΛ = 16.0364 (Figure 1a shows the corresponding fiber
cross section). We imposed the constraints w/Λ ≥ 0.028 and
an air filling fraction ≤ 93%, since fibers outside these lim-
its are extremely hard to fabricate. At the wavelength of λ0
= 2π/k = 589 nm the final optimized geometrical lengths are
Λ0 = 1503 nm, w = 43.2 nm, r = 285 nm, and t = 172 nm. The
air filling fraction equals 93%, n eff = 0.997749, η = 0.00171.

If the fiber is irradiated with a perfect Gaussian beam [29]
whose waist lies at the fiber end, a maximum coupling effi-
ciency [30] of 96.9% can be achieved with a mode field diam-
eter of 2.822Λ0 = 4.24 µm (1/e2 diameter). We note that the
fraction of light traveling in glass, η ≈ 0.2%, is extremely low
and we expect it to lead to a high damage threshold of the op-
timized fiber (for comparison, other studies have considered
HC-PCFs with η ≈ 2% [31]). In principle, the damage thresh-
old at a given wavelength can be assumed to scale inversely
proportional to η, but the exact value depends critically on
the fiber geometry, launch conditions, pulse format, and repe-
tition rate of the input laser [2].

Figure 5 shows a scan of FΛ0 for the optimized geometry as a
function of kΛ0 in the range from 14.0 to 19.0 with increments
of 0.05.
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FIG. 5 Scan of F as a function of kΛ0; all other geometry parameters are optimized

for achieving low-loss at a fixed wavelength λ0 (if λ0 = 589 nm, then one obtains

Λ0 = 1503 nm).

Two regions of low FΛ0 and hence low predicted loss are vis-
ible, the wider and deeper one having a minimum of FΛ0 =
0.0646 at kΛ0 = 16.0364 and a width which corresponds to
13.2 nm at Λ0 = 1503 nm (value of FΛ0 10 % above minimum
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at the most). The peaks within the bandgap which separate
the low-loss regions correspond to anti-crossing events [32].
We note that the proportionality factor arising in the approx-
imate relation between F and the fiber attenuation depends
on k [16], and hence the graph in Figure 5 cannot be directly
regarded as a wavenumber dependent loss profile.

It is well known that minimization algorithms are prone to
becoming stuck in local minima. This problem is particularly
serious if the objective function fluctuates strongly as a func-
tion of some parameters, as F obviously does as a function of
kΛ0. In addition, we also found that F fluctuates strongly as
a function of t. It is therefore beneficial to scan F as a func-
tion these two variables independently, and then to start the
Nelder-Mead optimization at the parameters producing the
lowest F. This procedure can also be repeated iteratively. We
have employed it to find the optimization starting parameters
mentioned in the beginning of this subsection. Subsequent ex-
tensive parameter scans have produced no lower value of F
than FΛ0 = 0.0646. Hence we consider it likely that the pa-
rameter set given above points to a global minimum in F, for
the rather broad class of practical 19-cell core HC-PCF geome-
tries that is spanned by the geometrical parameterization we
have employed, with w/Λ ≥ 0.028, an air filling fraction ≤
93%, and a refractive index of glass near 1.46. We will report
on detailed studies of the parameter space in a forthcoming
publication.

Although the optimization is performed at a single target
wavelength, the obtained optimized structure will necessar-
ily show a reasonably broad bandwidth for low-loss transmis-
sion (in the example above, the bandwidth is 13.2 nm centered
near 589 nm). This is because some coupling occurs between
a core mode and a core interface mode of compatible sym-
metry, which would lead to a non-optimum interface field
intensity if the associated mode-crossing is nearby in wave-
length, as detailed in [27]. Indeed, the bandwidth for the opti-
mized design is found to be close to a local maximum; small
changes in the fiber geometry from this design lead to a de-
crease in useable bandwidth. Note, however, that the separa-
tion between mode-crossing events for substantially thinner
core walls (smaller t) is typically larger than for the design op-
timized for minimum interface field intensity, as discussed in
[21].

The cost function to be minimized in the optimization can be
changed to impose different desired aspects to the fiber per-
formance. For example, by introducing an integration over a
target wavelength range, a broader bandwidth for low-loss
propagation can be enforced. Of course the minimum loss will
be compromised compared to a single wavelength optimiza-
tion, but the benefits of an increased bandwidth may in some
circumstances outweigh the cost in loss. Other aspects can be
naturally be built into the cost function, such as a required dis-
persion characteristic. Automatic optimization of a variety of
HC-PCF attributes is currently under investigation.

4 C o n c l u s i o n s

We compute the electric and magnetic fields of modes in a
19-cell core HC-PCF using the commercial FEM solver JCM-
mode [12]-[14]. Taking advantage of the high computational
speed of the solver, we drive it by a multidimensional op-
timization algorithm to obtain a realistic fiber geometry in
which the field intensity at the material interfaces and hence
the expected loss is minimized. The glass strut thickness,
meniscus radius, core surround thickness and cladding lattice
constant are all allowed to vary during the optimization pro-
cedure. As a result, we compute optimal parameters for cur-
rently producible 19-cell core HC-PCFs, which to our knowl-
edge is the first complete geometry optimization in HC-PCFs.
The optimal design shows a 99.8 % power fraction within the
air and an overlap with a Gaussian mode of 96.9 %. The FE-
method is mature, reliable, and very efficient in modeling HC-
PCFs, to the degree that it allows us to study the fiber param-
eter space using multidimensional optimization.
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