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The transmittance spectrum of a slab of an electro–optic structurally chiral material (SCM) that is helicoidally non homogeneous in the
thickness direction and is endowed with a central 90◦–twist defect, shows evidence of an ultranarrowband spectral hole when a sufficiently
high dc electric field is applied between the entry and the exit planes and the incident light is circularly polarized in opposition to the
structural handedness of the SCM. This spectral hole migrates on the wavelength axis as the applied dc electric field is altered in magnitude,
thereby suggesting the possible use of a centrally defective, electro–optic SCM slab as an electrically tunable, circular–polarization rejection
filter with ultra narrow bandwidth. [DOI: 10.2971/jeos.2006.06006]
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1 I n t r o d u c t i o n

Volume gratings are generally made of isotropic dielectric ma-
terials. The relative permittivity of a volume grating varies
periodically in the thickness direction from the entry plane
to the exit plane [1, 2], and therefore it exhibits the Bragg
phenomenon: the existence of a high–reflectance wavelength–
regime, provided the grating thickness spans a large num-
ber of relative–permittivity periods. Haus and Shank [3] pro-
posed the insertion of a phase defect half–way along a vol-
ume grating, in order to create a spectral hole in the reflection
spectrum — a transmission feature in the center of the Bragg
regime which is useful for narrow–bandpass filtering [4].

On normal illumination, the Bragg phenomenon is insensi-
tive to the polarization state of the incident light, because the
volume gratings are made of isotropic materials. However,
structurally chiral materials (SCMs), being anisotropic and pe-
riodically non homogeneous, exhibit a circular–polarization–
sensitive Bragg phenomenon even on normal illumination.
SCMs are exemplified by cholesteric liquid crystals [5, 6] as
well as chiral sculptured thin films [7]. As the relative permit-
tivity matrix of a SCM varies helicoidally in the thickness di-
rection, the high–reflectance characteristic of the Bragg regime
is observed only when the incident light is circularly polarized
(CP) in such a way that its handedness matches the structural
handedness of the material; but incident CP light of the other
handedness is mostly transmitted. This distinction suggests
that the term circular Bragg phenomenon (CBP) be used for the
most important optical characteristic of SCMs.

The introduction of a phase defect half–way inside a SCM slab
also gives rise to a spectral hole — but only when the CP state
of the incident light matches the structural handedness [8, 9].
This spectral hole in the co–handed reflectance spectrum of a

SCM slab can be exploited for narrow–bandpass filtering [10]
as well as for sensing fluid infiltrants [11].

The CP–sensitivity of structurally chiral spectral–hole filters
can not, of course, be exhibited by isotropic spectral–hole fil-
ters. Even more interestingly, as the SCM slab with a cen-
tral phase defect becomes thicker, but with its period fixed,
the spectral hole in the co–handed reflectance spectrum di-
minishes steadily and eventually vanishes. Simultaneously, a
spectral hole appears, grows, and eventually matures in the
transmittance spectrum for incident light of the other CP state.
The bandwidth of the second spectral hole is a tiny fraction of
the bandwidth of the first spectral hole, according to theoreti-
cal calculations [12]–[14].

The two spectral holes and the crossover from one to the other
have been taken to indicate the arousal of a defect mode. The
defect mode has been subjected to several theoretical studies
with both exact and approximate analytical techniques [15]–
[19]. The possibility of exploiting the defect mode for emis-
sion of narrow band CP light is also very attractive [20, 21].
However, the second spectral hole (in the cross–handed trans-
mission spectrum) has yet not been experimentally realized —
possibly, because the SCM thickness required is so large that
the presence of even small dissipation is ruinous [13, 22].

The key then to realize the ultranarrowband spectral hole in
the cross–handed transmission spectrum is to somehow re-
duce the thickness of the SCM slab with the central phase de-
fect. Such a reduction could be possible if the SCM were to dis-
play the Pockels effect [23], which thought was examined and
validated for a SCM endowed with a local 4̄2m point group
symmetry [24]. That validation necessarily led to the issue of
SCMs with other local point group symmetries being more
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suitable than the one with local 4̄2m point group symmetry,
and engendered this more comprehensive report on the pos-
sible use of a centrally defective, electro–optic SCM slab as an
electrically tunable, CP rejection, ultranarrowband filter.

The plan of this paper is as follows: Section 2 contains a de-
scription of the boundary–value problem when a CP plane
wave is normally incident on a SCM slab with local point
group symmetry of one of 20 types and containing a central
phase defect. Although the phase defect can be in several dif-
ferent forms [25, 26], here we take it as a 90◦–twist defect
about the thickness axis. Section 3 contains numerical results
that theoretically demonstrate the feasibility of exploiting an
electro–optic SCM slab with a central 90◦–twist defect as an
electrically tunable, CP rejection filter with ultra narrow band-
width.

A note about notation: Vectors are denoted in boldface; the
Cartesian unit vectors are represented by ûx, ûy, and ûz; sym-
bols for column vectors and matrices are decorated by an over
bar; and an exp(−iωt) time–dependence is implicit with ω as
the angular frequency, t as time, and i =

√
−1. The wavenum-

ber and the intrinsic impedance of free space (i.e., vacuum)
are denoted by k0 = ω

√
ε0µ0 and η0 =

√
µ0/ε0, respectively,

with µ0 and ε0 being the permeability and permittivity of free
space.

2 B O U N D A R Y – V A L U E P R O B L E M

Suppose that an electro–optic SCM slab with a central 90◦–
twist defect occupies the region 0 ≤ z ≤ 2L, the half spaces
z ≤ 0 and z ≥ 2L being vacuous. The SCM slab has the z axis
as its axis of helicoidal non homogeneity, and is subject to a
dc electric field Edc = Edc

z ûz. An arbitrarily polarized plane
wave is normally incident on the device from the half space
z ≤ 0. In consequence, a reflected plane wave also exists in
the same half space and a transmitted plane wave in the half
space z ≥ 2L.

The total electric field phasor in the half space z ≤ 0 is given
by

E(r) = (aL û+ + aR û−) exp(ik0z)+

(rL û− + rR û+) exp(−ik0z) , z ≤ 0 , (1)

where u± = (ûx ± iûy)/
√

2. Likewise, the electric field pha-
sor in the half space z ≥ 2L is represented as

E(r) = (tL û+ + tR û−) exp [ik0(z− 2L)] , z ≥ 2L . (2)

Here, aL and aR are the known amplitudes of the left– and
the right–CP (LCP & RCP) components of the incident plane
wave; rL and rR are the unknown amplitudes of the reflected
plane wave components; while tL and tR are the unknown am-
plitudes of the transmitted plane wave components. The aim
in solving the boundary value problem is to determine rL,R
and tL,R for known aL and aR.

2 . 1 O p t i c a l R e l a t i v e P e r m i t t i v i t y
M a t r i x o f t h e S C M S l a b

In line with the optical relative permittivity matrix of non–
electro–optic SCM slabs with central 90◦–twist defects [7, 10,
11] that of the electro–optic SCM slab may be stated as follows
[24]:

ε̄SCM(z) = S̄z

[
h

πz
Ω

+ hψ(z)
]
· R̄y(χ) · ε̄PE·

R̄y(χ) · S̄−1
z

[
h

πz
Ω

+ hψ(z)
]

, 0 < z < 2L . (3)

The tilt matrix

R̄y(χ) =

 − sin χ 0 cos χ

0 −1 0
cos χ 0 sin χ

 (4)

depends on the angle χ ∈ [0, π/2] with respect to the x axis in
the xz plane; it contains a rotation about the y axis for general-
ity, thereby letting Eq. (3) mimic the morphologies of both chi-
ral smectic liquid crystals [6] and chiral sculptured thin films
[7]. The use of the rotation matrix

S̄z(ζ) =

 cos ζ − sin ζ 0
sin ζ cos ζ 0

0 0 1

 (5)

in Eq.(3) involves the half–pitch Ω of the SCM along the z axis.
In addition, the handedness parameter h = 1 for structural
right–handedness and h = −1 for structural left–handedness.
The angle ψ(z) delineates the central 90◦–twist defect as

ψ(z) =
{

0 , 0 < z < L
π/2 , L < z < 2L .

(6)

As the two halves of the SCM slab are supposed to be identi-
cal, the ratio L/Ω is conveniently taken to be an integer.

Correct to the first order in the components of the dc electric
field, the approximation

ε̄PE ≈


ε
(0)
1 (1− ε

(0)
1 S1) −ε

(0)
1 ε

(0)
2 S6 −ε

(0)
1 ε

(0)
3 S5

−ε
(0)
2 ε

(0)
1 S6 ε

(0)
2 (1− ε

(0)
2 S2) −ε

(0)
2 ε

(0)
3 S4

−ε
(0)
3 ε

(0)
1 S5 −ε

(0)
3 ε

(0)
2 S4 ε

(0)
3 (1− ε

(0)
3 S3)

 ,

(7)
where Si = ∑3

K=1 riKEdc
K , emerges from the reciprocal of the

optical relative permittivity matrix of a homogeneous electro–
optic material. This latter matrix is usually reported as [23]

ε̄−1
PE =


1/ε

(0)
1 + S1 S6 S5

S6 1/ε
(0)
2 + S2 S4

S5 S4 1/ε
(0)
3 + S3

 (8)

in the principal Cartesian coordinate system (with axes la-
beled 1, 2, and 3) relevant to the crystallographic structure of
a homogeneous material displaying the Pockels effect. Here,
ε
(0)
1,2,3 are the three principal relative permittivity scalars in the

optical regime, whereas rJK (with 1 ≤ J ≤ 6 and 1 ≤ K ≤ 3)
are the electro–optic coefficients in the traditional contracted
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or abbreviated notation for representing symmetric second–
order tensors [23]. Finally,

Edc
1 = Edc

z cos χ

Edc
2 = 0

Edc
3 = Edc

z sin χ

 . (9)

are the components of the applied dc electric field.

2 . 2 R e f l e c t a n c e s a n d T r a n s m i t -
t a n c e s

The procedure to obtain the unknown reflection and transmis-
sion amplitudes involves the 4×4 matrix relation [7, 24]

f̄exit = M̄ · f̄entry , (10)

where the column 4–vectors

f̄entry =
1√
2


(rL + rR) + (aL + aR)

i [−(rL − rR) + (aL − aR)]
−i [(rL − rR) + (aL − aR)] /η0
− [(rL + rR)− (aL + aR)] /η0

 (11)

and

f̄exit =
1√
2


tL + tR

i (tL − tR)
−i(tL − tR)/η0
(tL + tR)/η0

 (12)

emerge from the electromagnetic field phasors at the entry
and the exit planes, respectively. The 4×4 matrix

M̄ = B̄(hπ/2) ·
[

B̄
(

h
πL
Ω

)
· exp

(
iĀ′L

)]
·

B̄(−hπ/2) ·
[

B̄
(

h
πL
Ω

)
· exp

(
iĀ′L

)]
(13)

captures the optical response characteristics of the centrally
defective SCM slab, where

Ā′ =


0 −i hπ

Ω 0 ωµo

i hπ
Ω 0 −ωµo 0

−ωεoεE −ωεoεB 0 −i hπ
Ω

ωεoεD ωεoεE i hπ
Ω 0

 , (14)

B̄(ζ) =


cos ζ − sin ζ 0 0
sin ζ cos ζ 0 0

0 0 cos ζ − sin ζ

0 0 sin ζ cos ζ

 , (15)

εB = ε
(0)
2 −

ε
(0)
2

ε
(0)
1

εm , (16)

εD = εd −
ε
(0)
2

ε
(0)
1

[
ει cos χ+

(εj + ε`)
sin 2χ

2
+ εk sin χ

]
, (17)

εE =
ε
(0)
2

ε
(0)
1

(εe + εh) , (18)

εd =
ε
(0)
1 ε

(0)
3

ε
(0)
1 cos2 χ + ε

(0)
3 sin2 χ

, (19)

εe = Edc
z ε

(0)
1 εd(r41 cos2 χ− r63 sin2 χ) , (20)

εh = Edc
z ε

(0)
1 εd sin χ cos χ(r43 − r61) , (21)

ει = Edc
z

ε
(0)
1

ε
(0)
2

ε2
d(r31 cos2 χ− r53 sin2 χ) , (22)

εj = Edc
z

ε
(0)
1

ε
(0)
2

ε2
d sin χ(r11 − r53) , (23)

εk = Edc
z

ε
(0)
1

ε
(0)
2

ε2
d(r13 sin2 χ− r51 cos2 χ) , (24)

ε` = Edc
z

ε
(0)
1

ε
(0)
2

ε2
d cos χ(r33 − r51) , (25)

εm = Edc
z ε

(0)
1 ε

(0)
2 (r21 cos χ + r23 sin χ) . (26)

The foregoing expression for Ā′ is correct to the first order in
Edc

z .

Parenthetically, although Eq.(3) is naturally independent of
the direction of propagation of the incident plane wave, the
matrix Ā′ becomes a function of z for oblique–incidence con-
ditions. However, the normal–incidence case appears to be the
most application–oriented one, and therefore is focused upon
this paper.

The reflection amplitudes rL,R and the transmission ampli-
tudes tL,R can be determined for specified incident amplitudes
(aL and aR) by solving Eq.(10) to yield:(

rL
rR

)
=

(
rLL rLR
rRL rRR

) (
aL
aR

)
, (27)(

tL
tR

)
=

(
tLL tLR
tRL tRR

) (
aL
aR

)
. (28)

Both 2×2 matrices in these equations are defined phenomeno-
logically. The co–polarized transmission coefficients are de-
noted by tLL and tRR, and the cross–polarized ones by
tLR and tRL; and similarly for the reflection coefficients in
Eq.(27). Reflectances and transmittances are denoted, e.g., as
TLR = |tLR|2.

2 . 3 C i r c u l a r B r a g g p h e n o m e n o n

For definiteness, let us set h = 1, i.e., the chosen SCM slab is
structurally right–handed. Suppose the central 90◦–twist de-
fect were to be absent. Then the matrices B̄(±hπ/2) would
have to be removed from the right side of Eq.(13). With the
twin assumptions of the absence of dispersion and the neg-
ligibly small dissipation, an incident RCP plane wave would
be highly reflected and an incident LCP plane wave would be
highly transmitted in the Bragg regime, provided the thick-
ness ratio L/Ω were to be sufficiently high.
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By comparison to extant results for non–electro–optic SCMs
[7], the center–wavelength of the Bragg regime for normal in-
cidence is given by [27]

λBr
0 = Ω

(√
εBξ +√

εDξ

)
(29)

and the corresponding full–width–at–half–maximum
(FWHM) bandwidth by

(∆λo)Br = 2Ω
∣∣∣√εBξ −

√
εDξ

∣∣∣ , (30)

where

εBξ =
1
2

[
εB + εD +

√
(εB − εD)2 + 4ε2

E

]
, (31)

εDξ =
1
2

[
εB + εD −

√
(εB − εD)2 + 4ε2

E

]
. (32)

3 N U M E R I C A L R E S U L T S A N D
D I S C U S S I O N

The central 90◦–twist defect is responsible for the produc-
tion of the two spectral holes centered at λBr

0 , according to
exact calculations [16]-[19], whereas the prediction of the ap-
proximate coupled–wave theory is very slightly different [17].
There are 20 classes of point group symmetry: cubic 23, 4̄3m,
tetragonal 4, 4mm, 422, 4̄, 4̄2m, hexagonal 6, 6mm, 622, 6̄, 6̄m2,
trigonal 3, 3m, 32, orthogonal 222, mm2, monoclinic 2, m, and
triclinic 1. For each point group symmetry, λBr

0 was expanded
in a three–term Maclaurin series with respect to Edc

z . From the
results, the 20 point group symmetries were classified into two
groups:

• Group A: λBr
0 has zeroth–, first– and second–order de-

pendences on Edc
z for tetragonal 4, 4mm, 4̄, hexagonal 6,

6mm, 6̄, trigonal 3, 3m, 32, orthogonal mm2, and triclinic
1;

• Group B: λBr
0 does not have the first– but has zeroth–

and second–orders dependences on Edc
z for cubic 23,

4̄3m, tetragonal 422, 4̄2m, hexagonal 622, 6̄m2, orthog-
onal 222, mm2, monoclinic 2, and m.

There ought to be pronounced differences between the re-
sponses of centrally defective SCM slabs with local point
group symmetries belonging to Groups A and B, which in-
deed turned out to be true.

Figures 1 and 2 contain the spectrums of all four reflectances
and all four transmittances, as functions of Edc

z , of a SCM slab
with local point group symmetry of the trigonal 3m class and
without a central defect. The relative permittivity scalars and
the electro–optic coefficients used are those of lithium niobate
[28], and Ω was chosen so as to position λBr

0 in the neighbor-
hood of 650 nm. The Bragg regime is evident through the ele-
vated X–shaped feature in the plot of RRR and the absence of
that feature in the plot of RLL, in Figure 1. The transmittance
plots in the next figure contain complementary signatures of
the CBP as well, due to the satisfaction of the principle of con-
servation of energy [7] by all presented calculations.
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FIG. 1 Reflectances of a SCM slab of thickness 2L as functions of the free–space

wavelength λ0 and the dc electric field Edc
z . The SCM slab does not have a central de-

fect. The local crystallographic class of the SCM is trigonal 3m. Other parameters are:

ε
(0)
1 = ε

(0)
2 = 5.48, ε

(0)
3 = 5.04, r22 = −r12 = −r61 = 6.8 × 10−12 m V−1,

r13 = r23 = 9.6 × 10−12 m V−1, r33 = 30.9 × 10−12 m V−1, r42 = r51 =

32.6 × 10−12 m V−1, all other rJK = 0, h = 1, Ω = 140 nm, L = 40Ω, and

χ = 45◦.
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FIG. 2 Transmittances of a SCM slab of thickness 2L as functions of the free–space

wavelength λ0 and the dc electric field Edc
z . The SCM slab does not have a central

defect. Other parameters are the same as for Figure 1.

Close examination of Figures 1 and 2 reveals that the Bragg
regime expands as Edc

z becomes more negative. However,
as Edc

z increases positively from zero, the Bragg regime first
contracts (as the CBP is not well–developed for Edc

z ∼
0.5 GV m−1) and then expands. This asymmetry with respect
to the direction of the applied dc electric field is characteristic
of Group A, and is engendered by the first–order dependence
of λBr

0 on Edc
z . Significantly, the plots indicate clearly that the

Bragg regime can be manipulated with sufficiently large |Edc
z |.

The introduction of a central 90◦–twist defect gives rise to
spectral holes. For moderate values of |Edc

z |, a spectral hole ap-
pears in the spectrum of RRR, but it wanes as |Edc

z | increases.
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This is evident in the somewhat magnified spectrums of RRR
and TRR presented in Figure 3 for a SCM slab with a central
defect. The plot of RRR clearly indicates a spectral hole for
Edc

z ∈ [0, 2] GV m−1, the FWHM bandwidth of the spectral
hole being on the order of 1 nm. Parenthetically, the broad
ridges in these plots for Edc

z ∼ 0.5 GV m−1 simply signify a
poorly developed CBP.

TRR

λ   (nm)ο

E   (GV/m)z
dc

�����
�����

�����
�����

�����
���

�

�
�

�	� �
�	� �
�
� �
�
� �

�

�
�����

�����
�����

RRR

λ   (nm)ο

E   (GV/m)z
dc

�����
�����

�����
�����

�����
���

�

�
�

�	� �
�	� �
�
� �
�	� �

�

�
�����

�����
�����

FIG. 3 Reflectance RRR and transmittance TRR of a SCM slab of thickness 2L as func-

tions of the free–space wavelength λ0 and the dc electric field Edc
z . The SCM slab has

a central 90◦–twist defect. Other parameters are the same as for Figure 1. The plot

of RRR presents a spectral hole for roughly Edc
z ∈ [0, 2] GV m−1. The fine structure

evident in this figure as well as in the following three figures is due to the finite

number of points chosen for the λ0 and Edc
z axes.

As the first spectral hole (in the spectrum of RRR) wanes with
increasing |Edc

z |, the second spectral hole (in the spectrum of
TLL) develops and matures. The FWHM bandwidth of this
spectral hole is on the order of 0.1 nm and increases with |Edc

z |,
as the spectrums of RLL in Figure 4 show. Most importantly,
the location of the second spectral hole varies smoothly with
Edc

z for sufficiently high values of |Edc
z |, blue shifting for nega-

tive Edc
z and red shifting for positive Edc

z . Very precise tunabil-
ity of the second spectral hole is indicated by the plots pre-
sented, and the feasibility of exploiting an electro–optic SCM
slab with a central 90◦–twist defect as an electrically tunable,
CP rejection, narrow band filter is thereby established.
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FIG. 4 Reflectance RLL of a SCM slab of thickness 2L as a function of the free–space

wavelength λ0 and the dc electric field Edc
z . The SCM slab has a central 90

◦–twist

defect. Other parameters are the same as for Figure 1.

Electrical control appears to require high dc voltages to be ap-
plied across SCM slabs, but the magnitudes of the dc voltages
are comparable with the half–wave voltages of electro–optic
materials, which are often in the 1–10 kV range [28, 29]. Fur-
thermore, the required magnitudes of Edc

z are much smaller
than the characteristic atomic electric field strength [23]. The
possibility of electric breakdown exists, but it would signif-
icantly depend on the time that the dc voltage would be
switched on for.
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FIG. 5 Reflectance RLL of a SCM slab of thickness 2L as a function of the free–space

wavelength λ0 and the dc electric field Edc
z . The SCM slab has a central 90

◦–twist

defect. The local crystallographic class of the SCM is orthorhombic mm2. Other pa-

rameters are: ε
(0)
1 = 4.72, ε

(0)
2 = 5.20, ε

(0)
3 = 5.43, r13 = 34 × 10−12 m V−1,

r23 = 6 × 10−12 m V−1, r33 = 63.4 × 10−12 m V−1, r42 = 450 × 10−12 m V−1,

r51 = 120× 10−12 m V−1, all other rJK = 0, h = 1, Ω = 150 nm, L = 24Ω, and

χ = 90◦.

One way to reduce |Edc
z | is to use materials with larger electro–

optic coefficients. Figure 5 contains spectrums of RLL com-
puted with the relative permittivity scalars and the electro–
optic coefficients of potassium niobate [28]. For positive as
well as negative Edc

z of sufficiently large magnitude, a linear
relationship between the dc electric field and the location of
the second spectral hole is obvious. In particular, the dc elec-
tric field’s magnitude is about half of that in Figure 4 when
Edc

z > 0. Parenthetically, with increasing |Edc
z |, the second

spectral hole redshifts for negative Edc
z but blue shifts for pos-

itive Edc
z , in contrast to Figure 4.

All five figures presented thus far exemplify local point group
symmetries in Group A. The plots of RLL in Figure 6 were
computed with the permittivity scalars and the electro–optic
coefficients of ammonium dihydrogen phosphate [28], which
has a tetragonal 4̄2m point group symmetry and thus belongs
to Group B. Once again, the second spectral hole, captured in
this figure, shifts with increasing |Edc

z |; however, the shift is a
blue shift regardless of the sign of Edc

z . This insensitivity to the
direction of the applied dc field is characteristic of SCM slabs
with local point group symmetries in Group B.
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FIG. 6 Reflectance RLL of a SCM slab of thickness 2L as a function of the free–space

wavelength λ0 and the dc electric field Edc
z . The SCM slab has a central 90

◦–twist

defect. The local crystallographic class of the SCM is tetragonal 4̄2m. Other param-

eters are: ε
(0)
1 = ε

(0)
2 = 2.34, ε

(0)
3 = 2.20, r41 = r52 = 24.5 × 10−12 m V−1,

r63 = 8.5× 10−12 m V−1, all other rJK = 0, h = 1, Ω = 210 nm, L = 40Ω, and

χ = 30◦.

All other factors the same, cross–handed–transmittance spec-
tral holes in centrally defective SCM slabs with local point
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group symmetries belonging to Group A will shift for mod-
erate values of Edc

z , whereas those in centrally defective SCM
slabs with local point group symmetries belonging to Group B
will shift for higher values of Edc

z . Moreover, the spectral holes
will either redshift or blue shift — depending on the sign of
Edc

z and the relative strengths of the first– and second–order
dependences of λBr

0 on Edc
z — for Group A, but the shifts will

be insensitive to the sign of Edc
z for Group B. It is even possible

for the Bragg regime to be greatly diminished and even elimi-
nated, along with the spectral holes, for Group A because the
first–order and the second–order dependences of λBr

0 on Edc
z

could offset each other such that εBξ ≈ εDξ for physically rel-
evant values of Edc

z .

4 C O N C L U D I N G R E M A R K S

The spectrum of the cross–handed transmittance of an electro–
optic SCM slab that is helicoidally non homogeneous in the
thickness direction and is endowed with a central 90◦–twist
defect, shows evidence of an ultranarrowband spectral hole
when a sufficiently high dc electric field is applied between
the entry and the exit planes. This spectral hole migrates on
the wavelength axis as the applied dc electric field is altered,
thereby establishing the use of a centrally defective SCM slab
as an electrically tunable, circular–polarization rejection filter
with ultra narrow bandwidth. The tunability may or may not
depend on the direction of the applied dc electric field, de-
pending on the local point group group symmetry of the cho-
sen SCM. Materials with higher electro–optic coefficients are
preferable, as lower dc electric fields have to be applied. The
presented theoretical results are expected to encourage exper-
imentalists to fabricate, characterize, and optimize the pro-
posed device.
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